Spaces:
Runtime error
Runtime error
| """ | |
| Implementation of ESDNet for image demoireing | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision | |
| from torch.nn.parameter import Parameter | |
| class my_model(nn.Module): | |
| def __init__(self, | |
| en_feature_num, | |
| en_inter_num, | |
| de_feature_num, | |
| de_inter_num, | |
| sam_number=1, | |
| ): | |
| super(my_model, self).__init__() | |
| self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number) | |
| self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num, | |
| sam_number=sam_number) | |
| def forward(self, x): | |
| y_1, y_2, y_3 = self.encoder(x) | |
| out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3) | |
| return out_1, out_2, out_3 | |
| def _initialize_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| m.weight.data.normal_(0.0, 0.02) | |
| if m.bias is not None: | |
| m.bias.data.normal_(0.0, 0.02) | |
| if isinstance(m, nn.ConvTranspose2d): | |
| m.weight.data.normal_(0.0, 0.02) | |
| class Decoder(nn.Module): | |
| def __init__(self, en_num, feature_num, inter_num, sam_number): | |
| super(Decoder, self).__init__() | |
| self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1) | |
| self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number) | |
| self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1) | |
| self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number) | |
| self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1) | |
| self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number) | |
| def forward(self, y_1, y_2, y_3): | |
| x_3 = y_3 | |
| x_3 = self.preconv_3(x_3) | |
| out_3, feat_3 = self.decoder_3(x_3) | |
| x_2 = torch.cat([y_2, feat_3], dim=1) | |
| x_2 = self.preconv_2(x_2) | |
| out_2, feat_2 = self.decoder_2(x_2) | |
| x_1 = torch.cat([y_1, feat_2], dim=1) | |
| x_1 = self.preconv_1(x_1) | |
| out_1 = self.decoder_1(x_1, feat=False) | |
| return out_1, out_2, out_3 | |
| class Encoder(nn.Module): | |
| def __init__(self, feature_num, inter_num, sam_number): | |
| super(Encoder, self).__init__() | |
| self.conv_first = nn.Sequential( | |
| nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number) | |
| self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number) | |
| self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number) | |
| def forward(self, x): | |
| x = F.pixel_unshuffle(x, 2) | |
| x = self.conv_first(x) | |
| out_feature_1, down_feature_1 = self.encoder_1(x) | |
| out_feature_2, down_feature_2 = self.encoder_2(down_feature_1) | |
| out_feature_3 = self.encoder_3(down_feature_2) | |
| return out_feature_1, out_feature_2, out_feature_3 | |
| class Encoder_Level(nn.Module): | |
| def __init__(self, feature_num, inter_num, level, sam_number): | |
| super(Encoder_Level, self).__init__() | |
| self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num) | |
| self.sam_blocks = nn.ModuleList() | |
| for _ in range(sam_number): | |
| sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num) | |
| self.sam_blocks.append(sam_block) | |
| if level < 3: | |
| self.down = nn.Sequential( | |
| nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.level = level | |
| def forward(self, x): | |
| out_feature = self.rdb(x) | |
| for sam_block in self.sam_blocks: | |
| out_feature = sam_block(out_feature) | |
| if self.level < 3: | |
| down_feature = self.down(out_feature) | |
| return out_feature, down_feature | |
| return out_feature | |
| class Decoder_Level(nn.Module): | |
| def __init__(self, feature_num, inter_num, sam_number): | |
| super(Decoder_Level, self).__init__() | |
| self.rdb = RDB(feature_num, (1, 2, 1), inter_num) | |
| self.sam_blocks = nn.ModuleList() | |
| for _ in range(sam_number): | |
| sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num) | |
| self.sam_blocks.append(sam_block) | |
| self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1) | |
| def forward(self, x, feat=True): | |
| x = self.rdb(x) | |
| for sam_block in self.sam_blocks: | |
| x = sam_block(x) | |
| out = self.conv(x) | |
| out = F.pixel_shuffle(out, 2) | |
| if feat: | |
| feature = F.interpolate(x, scale_factor=2, mode='bilinear') | |
| return out, feature | |
| else: | |
| return out | |
| class DB(nn.Module): | |
| def __init__(self, in_channel, d_list, inter_num): | |
| super(DB, self).__init__() | |
| self.d_list = d_list | |
| self.conv_layers = nn.ModuleList() | |
| c = in_channel | |
| for i in range(len(d_list)): | |
| dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i], | |
| padding=d_list[i]) | |
| self.conv_layers.append(dense_conv) | |
| c = c + inter_num | |
| self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1) | |
| def forward(self, x): | |
| t = x | |
| for conv_layer in self.conv_layers: | |
| _t = conv_layer(t) | |
| t = torch.cat([_t, t], dim=1) | |
| t = self.conv_post(t) | |
| return t | |
| class SAM(nn.Module): | |
| def __init__(self, in_channel, d_list, inter_num): | |
| super(SAM, self).__init__() | |
| self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num) | |
| self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num) | |
| self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num) | |
| self.fusion = CSAF(3 * in_channel) | |
| def forward(self, x): | |
| x_0 = x | |
| x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear') | |
| x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear') | |
| y_0 = self.basic_block(x_0) | |
| y_2 = self.basic_block_2(x_2) | |
| y_4 = self.basic_block_4(x_4) | |
| y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear') | |
| y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear') | |
| y = self.fusion(y_0, y_2, y_4) | |
| y = x + y | |
| return y | |
| class CSAF(nn.Module): | |
| def __init__(self, in_chnls, ratio=4): | |
| super(CSAF, self).__init__() | |
| self.squeeze = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0) | |
| self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0) | |
| self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0) | |
| def forward(self, x0, x2, x4): | |
| out0 = self.squeeze(x0) | |
| out2 = self.squeeze(x2) | |
| out4 = self.squeeze(x4) | |
| out = torch.cat([out0, out2, out4], dim=1) | |
| out = self.compress1(out) | |
| out = F.relu(out) | |
| out = self.compress2(out) | |
| out = F.relu(out) | |
| out = self.excitation(out) | |
| out = F.sigmoid(out) | |
| w0, w2, w4 = torch.chunk(out, 3, dim=1) | |
| x = x0 * w0 + x2 * w2 + x4 * w4 | |
| return x | |
| class RDB(nn.Module): | |
| def __init__(self, in_channel, d_list, inter_num): | |
| super(RDB, self).__init__() | |
| self.d_list = d_list | |
| self.conv_layers = nn.ModuleList() | |
| c = in_channel | |
| for i in range(len(d_list)): | |
| dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i], | |
| padding=d_list[i]) | |
| self.conv_layers.append(dense_conv) | |
| c = c + inter_num | |
| self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1) | |
| def forward(self, x): | |
| t = x | |
| for conv_layer in self.conv_layers: | |
| _t = conv_layer(t) | |
| t = torch.cat([_t, t], dim=1) | |
| t = self.conv_post(t) | |
| return t + x | |
| class conv(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1): | |
| super(conv, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride, | |
| padding=padding, bias=True, dilation=dilation_rate) | |
| def forward(self, x_input): | |
| out = self.conv(x_input) | |
| return out | |
| class conv_relu(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1): | |
| super(conv_relu, self).__init__() | |
| self.conv = nn.Sequential( | |
| nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride, | |
| padding=padding, bias=True, dilation=dilation_rate), | |
| nn.ReLU(inplace=True) | |
| ) | |
| def forward(self, x_input): | |
| out = self.conv(x_input) | |
| return out | |