Spaces:
Runtime error
Runtime error
Commit
·
b1c6042
0
Parent(s):
- .gitattributes +3 -0
- 001.jpg +3 -0
- 002.jpg +3 -0
- 003.jpg +3 -0
- 004.jpg +3 -0
- 005.jpg +3 -0
- README.md +12 -0
- app.py +115 -0
- mix.pth +3 -0
- model/nets.py +259 -0
- requirements.txt +6 -0
- uhdm_checkpoint.pth +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
.jpg filter=lfs diff=lfs merge=lfs -text
|
001.jpg
ADDED
|
Git LFS Details
|
002.jpg
ADDED
|
Git LFS Details
|
003.jpg
ADDED
|
Git LFS Details
|
004.jpg
ADDED
|
Git LFS Details
|
005.jpg
ADDED
|
Git LFS Details
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Screen Image Demoireing
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.1.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from model.nets import my_model
|
| 3 |
+
import torch
|
| 4 |
+
import cv2
|
| 5 |
+
import torch.utils.data as data
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
import PIL
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from PIL import ImageFile
|
| 10 |
+
import math
|
| 11 |
+
import os
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
| 15 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
model1 = my_model(en_feature_num=48,
|
| 17 |
+
en_inter_num=32,
|
| 18 |
+
de_feature_num=64,
|
| 19 |
+
de_inter_num=32,
|
| 20 |
+
sam_number=1,
|
| 21 |
+
).to(device)
|
| 22 |
+
|
| 23 |
+
load_path1 = "./mix.pth"
|
| 24 |
+
model_state_dict1 = torch.load(load_path1, map_location=device)
|
| 25 |
+
model1.load_state_dict(model_state_dict1)
|
| 26 |
+
|
| 27 |
+
model2 = my_model(en_feature_num=48,
|
| 28 |
+
en_inter_num=32,
|
| 29 |
+
de_feature_num=64,
|
| 30 |
+
de_inter_num=32,
|
| 31 |
+
sam_number=1,
|
| 32 |
+
).to(device)
|
| 33 |
+
|
| 34 |
+
load_path2 = "./uhdm_checkpoint.pth"
|
| 35 |
+
model_state_dict2 = torch.load(load_path2, map_location=device)
|
| 36 |
+
model2.load_state_dict(model_state_dict2)
|
| 37 |
+
|
| 38 |
+
def default_toTensor(img):
|
| 39 |
+
t_list = [transforms.ToTensor()]
|
| 40 |
+
composed_transform = transforms.Compose(t_list)
|
| 41 |
+
return composed_transform(img)
|
| 42 |
+
|
| 43 |
+
def predict1(img):
|
| 44 |
+
in_img = transforms.ToTensor()(img).to(device).unsqueeze(0)
|
| 45 |
+
b, c, h, w = in_img.size()
|
| 46 |
+
# pad image such that the resolution is a multiple of 32
|
| 47 |
+
w_pad = (math.ceil(w / 32) * 32 - w) // 2
|
| 48 |
+
h_pad = (math.ceil(h / 32) * 32 - h) // 2
|
| 49 |
+
in_img = img_pad(in_img, w_r=w_pad, h_r=h_pad)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
out_1, out_2, out_3 = model1(in_img)
|
| 52 |
+
if h_pad != 0:
|
| 53 |
+
out_1 = out_1[:, :, h_pad:-h_pad, :]
|
| 54 |
+
if w_pad != 0:
|
| 55 |
+
out_1 = out_1[:, :, :, w_pad:-w_pad]
|
| 56 |
+
out_1 = out_1.squeeze(0)
|
| 57 |
+
out_1 = PIL.Image.fromarray(torch.clamp(out_1 * 255, min=0, max=255
|
| 58 |
+
).byte().permute(1, 2, 0).cpu().numpy())
|
| 59 |
+
|
| 60 |
+
return out_1
|
| 61 |
+
|
| 62 |
+
def predict2(img):
|
| 63 |
+
in_img = transforms.ToTensor()(img).to(device).unsqueeze(0)
|
| 64 |
+
b, c, h, w = in_img.size()
|
| 65 |
+
# pad image such that the resolution is a multiple of 32
|
| 66 |
+
w_pad = (math.ceil(w / 32) * 32 - w) // 2
|
| 67 |
+
h_pad = (math.ceil(h / 32) * 32 - h) // 2
|
| 68 |
+
in_img = img_pad(in_img, w_r=w_pad, h_r=h_pad)
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
out_1, out_2, out_3 = model2(in_img)
|
| 71 |
+
if h_pad != 0:
|
| 72 |
+
out_1 = out_1[:, :, h_pad:-h_pad, :]
|
| 73 |
+
if w_pad != 0:
|
| 74 |
+
out_1 = out_1[:, :, :, w_pad:-w_pad]
|
| 75 |
+
out_1 = out_1.squeeze(0)
|
| 76 |
+
out_1 = PIL.Image.fromarray(torch.clamp(out_1 * 255, min=0, max=255
|
| 77 |
+
).byte().permute(1, 2, 0).cpu().numpy())
|
| 78 |
+
|
| 79 |
+
return out_1
|
| 80 |
+
|
| 81 |
+
def img_pad(x, h_r=0, w_r=0):
|
| 82 |
+
'''
|
| 83 |
+
Here the padding values are determined by the average r,g,b values across the training set
|
| 84 |
+
in FHDMi dataset. For the evaluation on the UHDM, you can also try the commented lines where
|
| 85 |
+
the mean values are calculated from UHDM training set, yielding similar performance.
|
| 86 |
+
'''
|
| 87 |
+
x1 = F.pad(x[:, 0:1, ...], (w_r, w_r, h_r, h_r), value=0.3827)
|
| 88 |
+
x2 = F.pad(x[:, 1:2, ...], (w_r, w_r, h_r, h_r), value=0.4141)
|
| 89 |
+
x3 = F.pad(x[:, 2:3, ...], (w_r, w_r, h_r, h_r), value=0.3912)
|
| 90 |
+
|
| 91 |
+
y = torch.cat([x1, x2, x3], dim=1)
|
| 92 |
+
|
| 93 |
+
return y
|
| 94 |
+
|
| 95 |
+
img1 = Image.open('./imgs/001.jpg').convert('RGB')
|
| 96 |
+
img2 = Image.open('./imgs/002.jpg').convert('RGB')
|
| 97 |
+
img3 = Image.open('./imgs/003.jpg').convert('RGB')
|
| 98 |
+
img4 = Image.open('./imgs/004.jpg').convert('RGB')
|
| 99 |
+
img5 = Image.open('./imgs/005.jpg').convert('RGB')
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
iface1 = gr.Interface(fn=predict1,
|
| 103 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 104 |
+
outputs=gr.inputs.Image(type="pil"))
|
| 105 |
+
|
| 106 |
+
iface2 = gr.Interface(fn=predict2,
|
| 107 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 108 |
+
outputs=gr.inputs.Image(type="pil"))
|
| 109 |
+
|
| 110 |
+
iface_all = gr.mix.Parallel(
|
| 111 |
+
iface1, iface2,
|
| 112 |
+
examples=[img1, img2, img3, img4, img5]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
iface_all.launch()
|
mix.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bdcdd33f11e1d5eb836671f15991ecb42134bd5ba98c1e4de3b8e2f4138fdb2b
|
| 3 |
+
size 23895301
|
model/nets.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of ESDNet for image demoireing
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import torchvision
|
| 10 |
+
from torch.nn.parameter import Parameter
|
| 11 |
+
|
| 12 |
+
class my_model(nn.Module):
|
| 13 |
+
def __init__(self,
|
| 14 |
+
en_feature_num,
|
| 15 |
+
en_inter_num,
|
| 16 |
+
de_feature_num,
|
| 17 |
+
de_inter_num,
|
| 18 |
+
sam_number=1,
|
| 19 |
+
):
|
| 20 |
+
super(my_model, self).__init__()
|
| 21 |
+
self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number)
|
| 22 |
+
self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num,
|
| 23 |
+
sam_number=sam_number)
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
y_1, y_2, y_3 = self.encoder(x)
|
| 27 |
+
out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3)
|
| 28 |
+
|
| 29 |
+
return out_1, out_2, out_3
|
| 30 |
+
|
| 31 |
+
def _initialize_weights(self):
|
| 32 |
+
for m in self.modules():
|
| 33 |
+
if isinstance(m, nn.Conv2d):
|
| 34 |
+
m.weight.data.normal_(0.0, 0.02)
|
| 35 |
+
if m.bias is not None:
|
| 36 |
+
m.bias.data.normal_(0.0, 0.02)
|
| 37 |
+
if isinstance(m, nn.ConvTranspose2d):
|
| 38 |
+
m.weight.data.normal_(0.0, 0.02)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class Decoder(nn.Module):
|
| 42 |
+
def __init__(self, en_num, feature_num, inter_num, sam_number):
|
| 43 |
+
super(Decoder, self).__init__()
|
| 44 |
+
self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1)
|
| 45 |
+
self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number)
|
| 46 |
+
|
| 47 |
+
self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1)
|
| 48 |
+
self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number)
|
| 49 |
+
|
| 50 |
+
self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1)
|
| 51 |
+
self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number)
|
| 52 |
+
|
| 53 |
+
def forward(self, y_1, y_2, y_3):
|
| 54 |
+
x_3 = y_3
|
| 55 |
+
x_3 = self.preconv_3(x_3)
|
| 56 |
+
out_3, feat_3 = self.decoder_3(x_3)
|
| 57 |
+
|
| 58 |
+
x_2 = torch.cat([y_2, feat_3], dim=1)
|
| 59 |
+
x_2 = self.preconv_2(x_2)
|
| 60 |
+
out_2, feat_2 = self.decoder_2(x_2)
|
| 61 |
+
|
| 62 |
+
x_1 = torch.cat([y_1, feat_2], dim=1)
|
| 63 |
+
x_1 = self.preconv_1(x_1)
|
| 64 |
+
out_1 = self.decoder_1(x_1, feat=False)
|
| 65 |
+
|
| 66 |
+
return out_1, out_2, out_3
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class Encoder(nn.Module):
|
| 70 |
+
def __init__(self, feature_num, inter_num, sam_number):
|
| 71 |
+
super(Encoder, self).__init__()
|
| 72 |
+
self.conv_first = nn.Sequential(
|
| 73 |
+
nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True),
|
| 74 |
+
nn.ReLU(inplace=True)
|
| 75 |
+
)
|
| 76 |
+
self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number)
|
| 77 |
+
self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number)
|
| 78 |
+
self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
x = F.pixel_unshuffle(x, 2)
|
| 82 |
+
x = self.conv_first(x)
|
| 83 |
+
|
| 84 |
+
out_feature_1, down_feature_1 = self.encoder_1(x)
|
| 85 |
+
out_feature_2, down_feature_2 = self.encoder_2(down_feature_1)
|
| 86 |
+
out_feature_3 = self.encoder_3(down_feature_2)
|
| 87 |
+
|
| 88 |
+
return out_feature_1, out_feature_2, out_feature_3
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class Encoder_Level(nn.Module):
|
| 92 |
+
def __init__(self, feature_num, inter_num, level, sam_number):
|
| 93 |
+
super(Encoder_Level, self).__init__()
|
| 94 |
+
self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num)
|
| 95 |
+
self.sam_blocks = nn.ModuleList()
|
| 96 |
+
for _ in range(sam_number):
|
| 97 |
+
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
|
| 98 |
+
self.sam_blocks.append(sam_block)
|
| 99 |
+
|
| 100 |
+
if level < 3:
|
| 101 |
+
self.down = nn.Sequential(
|
| 102 |
+
nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True),
|
| 103 |
+
nn.ReLU(inplace=True)
|
| 104 |
+
)
|
| 105 |
+
self.level = level
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
out_feature = self.rdb(x)
|
| 109 |
+
for sam_block in self.sam_blocks:
|
| 110 |
+
out_feature = sam_block(out_feature)
|
| 111 |
+
if self.level < 3:
|
| 112 |
+
down_feature = self.down(out_feature)
|
| 113 |
+
return out_feature, down_feature
|
| 114 |
+
return out_feature
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class Decoder_Level(nn.Module):
|
| 118 |
+
def __init__(self, feature_num, inter_num, sam_number):
|
| 119 |
+
super(Decoder_Level, self).__init__()
|
| 120 |
+
self.rdb = RDB(feature_num, (1, 2, 1), inter_num)
|
| 121 |
+
self.sam_blocks = nn.ModuleList()
|
| 122 |
+
for _ in range(sam_number):
|
| 123 |
+
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
|
| 124 |
+
self.sam_blocks.append(sam_block)
|
| 125 |
+
self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1)
|
| 126 |
+
|
| 127 |
+
def forward(self, x, feat=True):
|
| 128 |
+
x = self.rdb(x)
|
| 129 |
+
for sam_block in self.sam_blocks:
|
| 130 |
+
x = sam_block(x)
|
| 131 |
+
out = self.conv(x)
|
| 132 |
+
out = F.pixel_shuffle(out, 2)
|
| 133 |
+
|
| 134 |
+
if feat:
|
| 135 |
+
feature = F.interpolate(x, scale_factor=2, mode='bilinear')
|
| 136 |
+
return out, feature
|
| 137 |
+
else:
|
| 138 |
+
return out
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class DB(nn.Module):
|
| 142 |
+
def __init__(self, in_channel, d_list, inter_num):
|
| 143 |
+
super(DB, self).__init__()
|
| 144 |
+
self.d_list = d_list
|
| 145 |
+
self.conv_layers = nn.ModuleList()
|
| 146 |
+
c = in_channel
|
| 147 |
+
for i in range(len(d_list)):
|
| 148 |
+
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
|
| 149 |
+
padding=d_list[i])
|
| 150 |
+
self.conv_layers.append(dense_conv)
|
| 151 |
+
c = c + inter_num
|
| 152 |
+
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
|
| 153 |
+
|
| 154 |
+
def forward(self, x):
|
| 155 |
+
t = x
|
| 156 |
+
for conv_layer in self.conv_layers:
|
| 157 |
+
_t = conv_layer(t)
|
| 158 |
+
t = torch.cat([_t, t], dim=1)
|
| 159 |
+
t = self.conv_post(t)
|
| 160 |
+
return t
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class SAM(nn.Module):
|
| 164 |
+
def __init__(self, in_channel, d_list, inter_num):
|
| 165 |
+
super(SAM, self).__init__()
|
| 166 |
+
self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
|
| 167 |
+
self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
|
| 168 |
+
self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
|
| 169 |
+
self.fusion = CSAF(3 * in_channel)
|
| 170 |
+
|
| 171 |
+
def forward(self, x):
|
| 172 |
+
x_0 = x
|
| 173 |
+
x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
|
| 174 |
+
x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear')
|
| 175 |
+
|
| 176 |
+
y_0 = self.basic_block(x_0)
|
| 177 |
+
y_2 = self.basic_block_2(x_2)
|
| 178 |
+
y_4 = self.basic_block_4(x_4)
|
| 179 |
+
|
| 180 |
+
y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear')
|
| 181 |
+
y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear')
|
| 182 |
+
|
| 183 |
+
y = self.fusion(y_0, y_2, y_4)
|
| 184 |
+
y = x + y
|
| 185 |
+
|
| 186 |
+
return y
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class CSAF(nn.Module):
|
| 190 |
+
def __init__(self, in_chnls, ratio=4):
|
| 191 |
+
super(CSAF, self).__init__()
|
| 192 |
+
self.squeeze = nn.AdaptiveAvgPool2d((1, 1))
|
| 193 |
+
self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)
|
| 194 |
+
self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0)
|
| 195 |
+
self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)
|
| 196 |
+
|
| 197 |
+
def forward(self, x0, x2, x4):
|
| 198 |
+
out0 = self.squeeze(x0)
|
| 199 |
+
out2 = self.squeeze(x2)
|
| 200 |
+
out4 = self.squeeze(x4)
|
| 201 |
+
out = torch.cat([out0, out2, out4], dim=1)
|
| 202 |
+
out = self.compress1(out)
|
| 203 |
+
out = F.relu(out)
|
| 204 |
+
out = self.compress2(out)
|
| 205 |
+
out = F.relu(out)
|
| 206 |
+
out = self.excitation(out)
|
| 207 |
+
out = F.sigmoid(out)
|
| 208 |
+
w0, w2, w4 = torch.chunk(out, 3, dim=1)
|
| 209 |
+
x = x0 * w0 + x2 * w2 + x4 * w4
|
| 210 |
+
|
| 211 |
+
return x
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class RDB(nn.Module):
|
| 215 |
+
def __init__(self, in_channel, d_list, inter_num):
|
| 216 |
+
super(RDB, self).__init__()
|
| 217 |
+
self.d_list = d_list
|
| 218 |
+
self.conv_layers = nn.ModuleList()
|
| 219 |
+
c = in_channel
|
| 220 |
+
for i in range(len(d_list)):
|
| 221 |
+
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
|
| 222 |
+
padding=d_list[i])
|
| 223 |
+
self.conv_layers.append(dense_conv)
|
| 224 |
+
c = c + inter_num
|
| 225 |
+
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
|
| 226 |
+
|
| 227 |
+
def forward(self, x):
|
| 228 |
+
t = x
|
| 229 |
+
for conv_layer in self.conv_layers:
|
| 230 |
+
_t = conv_layer(t)
|
| 231 |
+
t = torch.cat([_t, t], dim=1)
|
| 232 |
+
|
| 233 |
+
t = self.conv_post(t)
|
| 234 |
+
return t + x
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class conv(nn.Module):
|
| 238 |
+
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
|
| 239 |
+
super(conv, self).__init__()
|
| 240 |
+
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
|
| 241 |
+
padding=padding, bias=True, dilation=dilation_rate)
|
| 242 |
+
|
| 243 |
+
def forward(self, x_input):
|
| 244 |
+
out = self.conv(x_input)
|
| 245 |
+
return out
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class conv_relu(nn.Module):
|
| 249 |
+
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
|
| 250 |
+
super(conv_relu, self).__init__()
|
| 251 |
+
self.conv = nn.Sequential(
|
| 252 |
+
nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
|
| 253 |
+
padding=padding, bias=True, dilation=dilation_rate),
|
| 254 |
+
nn.ReLU(inplace=True)
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
def forward(self, x_input):
|
| 258 |
+
out = self.conv(x_input)
|
| 259 |
+
return out
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.21.5
|
| 2 |
+
torch>=1.9.0
|
| 3 |
+
opencv-python==4.5.5.64
|
| 4 |
+
scikit-image==0.19.2
|
| 5 |
+
torchvision==0.1.8
|
| 6 |
+
|
uhdm_checkpoint.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:254235cd25f90a3f1785885385dc6cb3f2178e053291ab53d1943bd7c2f7de65
|
| 3 |
+
size 23895301
|