Divyanshu Tak
Initial commit of BrainIAC Docker application
f5288df
raw
history blame
9.62 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import wandb
from tqdm import tqdm
from torch.optim.lr_scheduler import OneCycleLR
from torch.cuda.amp import GradScaler, autocast
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from dataset2 import MedicalImageDatasetBalancedIntensity3D, TransformationMedicalImageDatasetBalancedIntensity3D
from model import Backbone, SingleScanModel, Classifier
from utils import BaseConfig
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
def calculate_metrics(pred_probs, pred_labels, true_labels):
"""
Multi-class classification metrics.
Args:
pred_probs (numpy.ndarray): Predicted probabilities for each class
pred_labels (numpy.ndarray): Predicted labels
true_labels (numpy.ndarray): Ground truth labels
Returns:
dict: Dictionary containing accuracy, precision, recall, F1, and AUC
"""
accuracy = accuracy_score(true_labels, pred_labels)
precision = precision_score(true_labels, pred_labels, average='weighted')
recall = recall_score(true_labels, pred_labels, average='weighted')
f1 = f1_score(true_labels, pred_labels, average='weighted')
auc = roc_auc_score(true_labels, pred_probs, multi_class='ovr')
return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1': f1,
'auc': auc
}
#============================
# TRAINER CLASS
#============================
class SequenceTrainer(BaseConfig):
"""
Trainer class for sequence classification
"""
def __init__(self):
super().__init__()
self.setup_wandb()
self.setup_model()
self.setup_data()
self.setup_training()
def setup_wandb(self):
config = self.get_config()
wandb.init(
project=config['logger']['project_name'],
name=config['logger']['run_name'],
config=config
)
def setup_model(self):
self.backbone = Backbone()
# Change classifier to output 4 values for multi-class classification
self.classifier = Classifier(d_model=2048, num_classes=4)
self.model = SingleScanModel(self.backbone, self.classifier)
# Load weights from brainiac
config = self.get_config()
if config["train"]["finetune"] == "yes":
checkpoint = torch.load(config["train"]["weights"], map_location=self.device)
state_dict = checkpoint["state_dict"]
filtered_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "backbone.") if key.startswith("module.") else key
filtered_state_dict[new_key] = value
self.model.backbone.load_state_dict(filtered_state_dict, strict=False)
print("Pretrained weights loaded!")
if config["train"]["freeze"] == "yes":
for param in self.model.backbone.parameters():
param.requires_grad = False
print("Backbone weights frozen!")
self.model = self.model.to(self.device)
## spinup dataloaders
def setup_data(self):
config = self.get_config()
self.train_dataset = TransformationMedicalImageDatasetBalancedIntensity3D(
csv_path=config['data']['train_csv'],
root_dir=config["data"]["root_dir"]
)
self.val_dataset = MedicalImageDatasetBalancedIntensity3D(
csv_path=config['data']['val_csv'],
root_dir=config["data"]["root_dir"]
)
self.train_loader = DataLoader(
self.train_dataset,
batch_size=config["data"]["batch_size"],
shuffle=True,
collate_fn=self.custom_collate,
num_workers=config["data"]["num_workers"]
)
self.val_loader = DataLoader(
self.val_dataset,
batch_size=1,
shuffle=False,
collate_fn=self.custom_collate,
num_workers=1
)
def setup_training(self):
"""
training setup
"""
config = self.get_config()
# Cross Entropy Loss for multi-class classification
self.criterion = nn.CrossEntropyLoss().to(self.device)
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=config['optim']['lr'],
weight_decay=config["optim"]["weight_decay"]
)
self.scheduler = OneCycleLR(
self.optimizer,
max_lr=config['optim']['lr'],
epochs=config['optim']['max_epochs'],
steps_per_epoch=len(self.train_loader)
)
self.scaler = GradScaler()
## main training loop
def train(self):
config = self.get_config()
max_epochs = config['optim']['max_epochs']
best_metrics = {
'val_loss': float('inf'),
'accuracy': 0,
'precision': 0,
'recall': 0,
'f1': 0,
'auc': 0
}
for epoch in range(max_epochs):
train_loss = self.train_epoch(epoch, max_epochs)
val_loss, metrics = self.validate_epoch(epoch, max_epochs)
# save model based on auc
if metrics['auc'] > best_metrics['auc']:
print(f"New best model found!")
print(f"Improved Val Loss from {best_metrics['val_loss']:.4f} to {val_loss:.4f}")
print(f"Improved F1 from {best_metrics['f1']:.4f} to {metrics['f1']:.4f}")
best_metrics.update(metrics)
best_metrics['val_loss'] = val_loss
self.save_checkpoint(epoch, val_loss, metrics)
wandb.finish()
## training pass
def train_epoch(self, epoch, max_epochs):
self.model.train()
train_loss = 0.0
for sample in tqdm(self.train_loader, desc=f"Training Epoch {epoch}/{max_epochs-1}"):
inputs = sample['image'].to(self.device)
labels = sample['label'].to(self.device) # No need for float() conversion
self.optimizer.zero_grad(set_to_none=True)
with autocast():
outputs = self.model(inputs)
loss = self.criterion(outputs, labels) # CrossEntropyLoss expects raw logits
self.scaler.scale(loss).backward()
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.scaler.step(self.optimizer)
self.scaler.update()
self.scheduler.step()
train_loss += loss.item() * inputs.size(0)
train_loss = train_loss / len(self.train_loader.dataset)
wandb.log({"Train Loss": train_loss})
return train_loss
## validation pass
def validate_epoch(self, epoch, max_epochs):
self.model.eval()
val_loss = 0.0
all_labels = []
all_preds = []
all_probs = []
with torch.no_grad():
for sample in tqdm(self.val_loader, desc=f"Validation Epoch {epoch}/{max_epochs-1}"):
inputs = sample['image'].to(self.device)
labels = sample['label'].to(self.device) # No need for float() conversion
outputs = self.model(inputs)
loss = self.criterion(outputs, labels) # CrossEntropyLoss expects raw logits
# Get probabilities and predictions for multi-class
probs = torch.softmax(outputs, dim=1).cpu().numpy()
preds = np.argmax(probs, axis=1)
val_loss += loss.item() * inputs.size(0)
all_labels.extend(labels.cpu().numpy())
all_preds.extend(preds)
all_probs.extend(probs)
val_loss = val_loss / len(self.val_loader.dataset)
metrics = calculate_metrics(
np.array(all_probs),
np.array(all_preds),
np.array(all_labels)
)
wandb.log({
"Val Loss": val_loss,
"Accuracy": metrics['accuracy'],
"Precision": metrics['precision'],
"Recall": metrics['recall'],
"F1 Score": metrics['f1'],
"AUC": metrics['auc']
})
print(f"Epoch {epoch}/{max_epochs-1}")
print(f"Val Loss: {val_loss:.4f}")
print(f"Accuracy: {metrics['accuracy']:.4f}")
print(f"Precision: {metrics['precision']:.4f}")
print(f"Recall: {metrics['recall']:.4f}")
print(f"F1 Score: {metrics['f1']:.4f}")
print(f"AUC: {metrics['auc']:.4f}")
return val_loss, metrics
## save checkpoint
def save_checkpoint(self, epoch, loss, metrics):
config = self.get_config()
checkpoint = {
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'metrics': metrics
}
save_path = os.path.join(
config['logger']['save_dir'],
config['logger']['save_name'].format(epoch=epoch, loss=loss, metric=metrics['f1'])
)
torch.save(checkpoint, save_path)
if __name__ == "__main__":
trainer = SequenceTrainer()
trainer.train()