File size: 9,618 Bytes
f5288df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import wandb
from tqdm import tqdm 
from torch.optim.lr_scheduler import OneCycleLR
from torch.cuda.amp import GradScaler, autocast
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from dataset2 import MedicalImageDatasetBalancedIntensity3D, TransformationMedicalImageDatasetBalancedIntensity3D
from model import Backbone, SingleScanModel, Classifier
from utils import BaseConfig
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score


def calculate_metrics(pred_probs, pred_labels, true_labels):
    """
    Multi-class classification metrics.
    
    Args:
        pred_probs (numpy.ndarray): Predicted probabilities for each class
        pred_labels (numpy.ndarray): Predicted labels
        true_labels (numpy.ndarray): Ground truth labels
        
    Returns:
        dict: Dictionary containing accuracy, precision, recall, F1, and AUC
    """
    accuracy = accuracy_score(true_labels, pred_labels)
    precision = precision_score(true_labels, pred_labels, average='weighted')
    recall = recall_score(true_labels, pred_labels, average='weighted')
    f1 = f1_score(true_labels, pred_labels, average='weighted')
    auc = roc_auc_score(true_labels, pred_probs, multi_class='ovr')
    
    return {
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'f1': f1,
        'auc': auc
    }

#============================
#  TRAINER CLASS
#============================

class SequenceTrainer(BaseConfig):
    """
    Trainer class for sequence classification 
    """

    def __init__(self):
        super().__init__()
        self.setup_wandb()
        self.setup_model()
        self.setup_data()
        self.setup_training()
        
    def setup_wandb(self):
        config = self.get_config()
        wandb.init(
            project=config['logger']['project_name'],
            name=config['logger']['run_name'],
            config=config
        )
        
    def setup_model(self):
        self.backbone = Backbone()
        # Change classifier to output 4 values for multi-class classification
        self.classifier = Classifier(d_model=2048, num_classes=4)
        self.model = SingleScanModel(self.backbone, self.classifier)
        
        # Load weights from brainiac
        config = self.get_config()
        if config["train"]["finetune"] == "yes":
            checkpoint = torch.load(config["train"]["weights"], map_location=self.device)
            state_dict = checkpoint["state_dict"]
            filtered_state_dict = {}
            for key, value in state_dict.items():
                new_key = key.replace("module.", "backbone.") if key.startswith("module.") else key
                filtered_state_dict[new_key] = value
            self.model.backbone.load_state_dict(filtered_state_dict, strict=False)
            print("Pretrained weights loaded!")

        if config["train"]["freeze"] == "yes":
            for param in self.model.backbone.parameters():
                param.requires_grad = False
            print("Backbone weights frozen!")
            
        self.model = self.model.to(self.device)
        
    ## spinup dataloaders
    def setup_data(self):
        config = self.get_config()
        self.train_dataset = TransformationMedicalImageDatasetBalancedIntensity3D(
            csv_path=config['data']['train_csv'],
            root_dir=config["data"]["root_dir"]
        )
        self.val_dataset = MedicalImageDatasetBalancedIntensity3D(
            csv_path=config['data']['val_csv'],
            root_dir=config["data"]["root_dir"]
        )
        
        self.train_loader = DataLoader(
            self.train_dataset,
            batch_size=config["data"]["batch_size"],
            shuffle=True,
            collate_fn=self.custom_collate,
            num_workers=config["data"]["num_workers"]
        )
        self.val_loader = DataLoader(
            self.val_dataset,
            batch_size=1,
            shuffle=False,
            collate_fn=self.custom_collate,
            num_workers=1
        )
        
    def setup_training(self):
        """
        training setup
        """
        config = self.get_config()
        # Cross Entropy Loss for multi-class classification
        self.criterion = nn.CrossEntropyLoss().to(self.device)
        self.optimizer = optim.AdamW(
            self.model.parameters(),
            lr=config['optim']['lr'],
            weight_decay=config["optim"]["weight_decay"]
        )
        self.scheduler = OneCycleLR(
            self.optimizer,
            max_lr=config['optim']['lr'],
            epochs=config['optim']['max_epochs'],
            steps_per_epoch=len(self.train_loader)
        )
        self.scaler = GradScaler()
    
    ## main training loop
    def train(self):
        config = self.get_config()
        max_epochs = config['optim']['max_epochs']
        best_metrics = {
            'val_loss': float('inf'),
            'accuracy': 0,
            'precision': 0,
            'recall': 0,
            'f1': 0,
            'auc': 0
        }

        for epoch in range(max_epochs):
            train_loss = self.train_epoch(epoch, max_epochs)
            val_loss, metrics = self.validate_epoch(epoch, max_epochs)
            
            # save model based on auc 
            if  metrics['auc'] > best_metrics['auc']:
                print(f"New best model found!")
                print(f"Improved Val Loss from {best_metrics['val_loss']:.4f} to {val_loss:.4f}")
                print(f"Improved F1 from {best_metrics['f1']:.4f} to {metrics['f1']:.4f}")
                best_metrics.update(metrics)
                best_metrics['val_loss'] = val_loss
                self.save_checkpoint(epoch, val_loss, metrics)
                
        wandb.finish()

    ## training pass
    def train_epoch(self, epoch, max_epochs):
        self.model.train()
        train_loss = 0.0
        
        for sample in tqdm(self.train_loader, desc=f"Training Epoch {epoch}/{max_epochs-1}"):
            inputs = sample['image'].to(self.device)
            labels = sample['label'].to(self.device)  # No need for float() conversion
            
            self.optimizer.zero_grad(set_to_none=True)
            with autocast():
                outputs = self.model(inputs)
                loss = self.criterion(outputs, labels)  # CrossEntropyLoss expects raw logits
            
            self.scaler.scale(loss).backward()
            
            self.scaler.unscale_(self.optimizer)
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
            
            self.scaler.step(self.optimizer)
            self.scaler.update()
            self.scheduler.step()
            
            train_loss += loss.item() * inputs.size(0)
            
        train_loss = train_loss / len(self.train_loader.dataset)
        wandb.log({"Train Loss": train_loss})
        return train_loss
    
    ## validation pass
    def validate_epoch(self, epoch, max_epochs):
        self.model.eval()
        val_loss = 0.0
        all_labels = []
        all_preds = []
        all_probs = []
        
        with torch.no_grad():
            for sample in tqdm(self.val_loader, desc=f"Validation Epoch {epoch}/{max_epochs-1}"):
                inputs = sample['image'].to(self.device)
                labels = sample['label'].to(self.device)  # No need for float() conversion
                
                outputs = self.model(inputs)
                loss = self.criterion(outputs, labels)  # CrossEntropyLoss expects raw logits
                
                # Get probabilities and predictions for multi-class
                probs = torch.softmax(outputs, dim=1).cpu().numpy()
                preds = np.argmax(probs, axis=1)
                
                val_loss += loss.item() * inputs.size(0)
                all_labels.extend(labels.cpu().numpy())
                all_preds.extend(preds)
                all_probs.extend(probs)
                
        val_loss = val_loss / len(self.val_loader.dataset)
        metrics = calculate_metrics(
            np.array(all_probs),
            np.array(all_preds),
            np.array(all_labels)
        )
        
        wandb.log({
            "Val Loss": val_loss,
            "Accuracy": metrics['accuracy'],
            "Precision": metrics['precision'],
            "Recall": metrics['recall'],
            "F1 Score": metrics['f1'],
            "AUC": metrics['auc']
        })
        
        print(f"Epoch {epoch}/{max_epochs-1}")
        print(f"Val Loss: {val_loss:.4f}")
        print(f"Accuracy: {metrics['accuracy']:.4f}")
        print(f"Precision: {metrics['precision']:.4f}")
        print(f"Recall: {metrics['recall']:.4f}")
        print(f"F1 Score: {metrics['f1']:.4f}")
        print(f"AUC: {metrics['auc']:.4f}")
        
        return val_loss, metrics
    
    ## save checkpoint
    def save_checkpoint(self, epoch, loss, metrics):
        config = self.get_config()
        checkpoint = {
            'epoch': epoch,
            'model_state_dict': self.model.state_dict(),
            'metrics': metrics
        }
        save_path = os.path.join(
            config['logger']['save_dir'],
            config['logger']['save_name'].format(epoch=epoch, loss=loss, metric=metrics['f1'])
        )
        torch.save(checkpoint, save_path)

if __name__ == "__main__":
    trainer = SequenceTrainer()
    trainer.train()