Spaces:
Running
on
Zero
Running
on
Zero
fixed model
#2
by
Andy1621
- opened
- inferencer.py +35 -56
- modeling/bagel/bagel.py +15 -13
inferencer.py
CHANGED
|
@@ -2,16 +2,10 @@
|
|
| 2 |
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
|
| 4 |
from copy import deepcopy
|
| 5 |
-
from typing import List,
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
| 10 |
-
import torch.nn.functional as F
|
| 11 |
-
from torch import nn
|
| 12 |
-
from torch.nn.attention.flex_attention import create_block_mask
|
| 13 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
|
| 16 |
from data.data_utils import pil_img2rgb
|
| 17 |
from modeling.bagel.qwen2_navit import NaiveCache
|
|
@@ -196,17 +190,17 @@ class InterleaveInferencer:
|
|
| 196 |
ropes = gen_context['ropes']
|
| 197 |
|
| 198 |
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
| 199 |
-
unpacked_latent
|
| 200 |
past_key_values=past_key_values,
|
| 201 |
max_length=max_length,
|
| 202 |
do_sample=do_sample,
|
| 203 |
temperature=temperature,
|
| 204 |
end_token_id=self.new_token_ids['eos_token_id'],
|
| 205 |
**generation_input,
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
@torch.no_grad()
|
| 212 |
def interleave_inference(
|
|
@@ -214,10 +208,11 @@ class InterleaveInferencer:
|
|
| 214 |
input_lists: List[Union[str, Image.Image]],
|
| 215 |
think=False,
|
| 216 |
understanding_output=False,
|
| 217 |
-
|
| 218 |
max_think_token_n=1000,
|
| 219 |
do_sample=False,
|
| 220 |
text_temperature=0.3,
|
|
|
|
| 221 |
cfg_text_scale=3.0,
|
| 222 |
cfg_img_scale=1.5,
|
| 223 |
cfg_interval=[0.4, 1.0],
|
|
@@ -225,23 +220,20 @@ class InterleaveInferencer:
|
|
| 225 |
num_timesteps=50,
|
| 226 |
cfg_renorm_min=0.0,
|
| 227 |
cfg_renorm_type="global",
|
| 228 |
-
image_shapes=(1024, 1024),
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
output_list = []
|
| 232 |
gen_context = self.init_gen_context()
|
| 233 |
cfg_text_context = deepcopy(gen_context)
|
| 234 |
cfg_img_context = deepcopy(gen_context)
|
| 235 |
|
| 236 |
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
|
|
|
| 237 |
if think:
|
| 238 |
-
if understanding_output
|
| 239 |
-
system_prompt = VLM_THINK_SYSTEM_PROMPT
|
| 240 |
-
else:
|
| 241 |
-
system_prompt = GEN_THINK_SYSTEM_PROMPT
|
| 242 |
gen_context = self.update_context_text(system_prompt, gen_context)
|
|
|
|
| 243 |
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
|
| 244 |
-
|
| 245 |
for input_term in input_lists:
|
| 246 |
if isinstance(input_term, str):
|
| 247 |
cfg_text_context = deepcopy(gen_context)
|
|
@@ -251,29 +243,29 @@ class InterleaveInferencer:
|
|
| 251 |
elif isinstance(input_term, Image.Image):
|
| 252 |
input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term))
|
| 253 |
gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output)
|
| 254 |
-
|
| 255 |
image_shapes = input_term.size[::-1]
|
| 256 |
cfg_text_context = deepcopy(gen_context)
|
| 257 |
|
| 258 |
else:
|
| 259 |
raise ValueError(f"Unsupported input type: {type(input_term)}")
|
| 260 |
-
|
| 261 |
-
if understanding_output:
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
else:
|
| 266 |
if think:
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
img = self.gen_image(
|
| 272 |
-
image_shapes,
|
| 273 |
-
gen_context,
|
| 274 |
cfg_text_precontext=cfg_text_context,
|
| 275 |
cfg_img_precontext=cfg_img_context,
|
| 276 |
-
|
| 277 |
cfg_text_scale=cfg_text_scale,
|
| 278 |
cfg_img_scale=cfg_img_scale,
|
| 279 |
cfg_interval=cfg_interval,
|
|
@@ -282,34 +274,21 @@ class InterleaveInferencer:
|
|
| 282 |
cfg_renorm_min=cfg_renorm_min,
|
| 283 |
cfg_renorm_type=cfg_renorm_type,
|
| 284 |
)
|
|
|
|
| 285 |
|
| 286 |
-
output_list.append(img)
|
| 287 |
-
|
| 288 |
-
return output_list
|
| 289 |
-
|
| 290 |
def __call__(
|
| 291 |
self,
|
| 292 |
image: Optional[Image.Image] = None,
|
| 293 |
text: Optional[str] = None,
|
| 294 |
-
**kargs
|
| 295 |
-
) ->
|
| 296 |
-
output_dict = {'image': None, 'text': None}
|
| 297 |
-
|
| 298 |
-
if image is None and text is None:
|
| 299 |
-
print('Please provide at least one input: either an image or text.')
|
| 300 |
-
return output_dict
|
| 301 |
-
|
| 302 |
input_list = []
|
| 303 |
if image is not None:
|
| 304 |
input_list.append(image)
|
| 305 |
if text is not None:
|
| 306 |
input_list.append(text)
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
for i in output_list:
|
| 311 |
-
if isinstance(i, Image.Image):
|
| 312 |
-
output_dict['image'] = i
|
| 313 |
-
elif isinstance(i, str):
|
| 314 |
-
output_dict['text'] = i
|
| 315 |
-
return output_dict
|
|
|
|
| 2 |
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
|
| 4 |
from copy import deepcopy
|
| 5 |
+
from typing import List, Optional, Union, Any
|
|
|
|
| 6 |
|
| 7 |
from PIL import Image
|
| 8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from data.data_utils import pil_img2rgb
|
| 11 |
from modeling.bagel.qwen2_navit import NaiveCache
|
|
|
|
| 190 |
ropes = gen_context['ropes']
|
| 191 |
|
| 192 |
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
| 193 |
+
for unpacked_latent in self.model.generate_text(
|
| 194 |
past_key_values=past_key_values,
|
| 195 |
max_length=max_length,
|
| 196 |
do_sample=do_sample,
|
| 197 |
temperature=temperature,
|
| 198 |
end_token_id=self.new_token_ids['eos_token_id'],
|
| 199 |
**generation_input,
|
| 200 |
+
):
|
| 201 |
+
output = self.tokenizer.decode(unpacked_latent)
|
| 202 |
+
if output != "<|im_end|>":
|
| 203 |
+
yield output
|
| 204 |
|
| 205 |
@torch.no_grad()
|
| 206 |
def interleave_inference(
|
|
|
|
| 208 |
input_lists: List[Union[str, Image.Image]],
|
| 209 |
think=False,
|
| 210 |
understanding_output=False,
|
| 211 |
+
# for gen_text
|
| 212 |
max_think_token_n=1000,
|
| 213 |
do_sample=False,
|
| 214 |
text_temperature=0.3,
|
| 215 |
+
# for gen_image
|
| 216 |
cfg_text_scale=3.0,
|
| 217 |
cfg_img_scale=1.5,
|
| 218 |
cfg_interval=[0.4, 1.0],
|
|
|
|
| 220 |
num_timesteps=50,
|
| 221 |
cfg_renorm_min=0.0,
|
| 222 |
cfg_renorm_type="global",
|
| 223 |
+
image_shapes=(1024, 1024), # Default, can be overridden by actual input image
|
| 224 |
+
):
|
|
|
|
|
|
|
| 225 |
gen_context = self.init_gen_context()
|
| 226 |
cfg_text_context = deepcopy(gen_context)
|
| 227 |
cfg_img_context = deepcopy(gen_context)
|
| 228 |
|
| 229 |
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
| 230 |
+
|
| 231 |
if think:
|
| 232 |
+
system_prompt = VLM_THINK_SYSTEM_PROMPT if understanding_output else GEN_THINK_SYSTEM_PROMPT
|
|
|
|
|
|
|
|
|
|
| 233 |
gen_context = self.update_context_text(system_prompt, gen_context)
|
| 234 |
+
cfg_text_context = self.update_context_text(system_prompt, cfg_text_context)
|
| 235 |
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
|
| 236 |
+
|
| 237 |
for input_term in input_lists:
|
| 238 |
if isinstance(input_term, str):
|
| 239 |
cfg_text_context = deepcopy(gen_context)
|
|
|
|
| 243 |
elif isinstance(input_term, Image.Image):
|
| 244 |
input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term))
|
| 245 |
gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output)
|
|
|
|
| 246 |
image_shapes = input_term.size[::-1]
|
| 247 |
cfg_text_context = deepcopy(gen_context)
|
| 248 |
|
| 249 |
else:
|
| 250 |
raise ValueError(f"Unsupported input type: {type(input_term)}")
|
| 251 |
+
|
| 252 |
+
if understanding_output: # Generate text
|
| 253 |
+
yield from self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=text_temperature)
|
| 254 |
+
else: # Generate image
|
|
|
|
|
|
|
| 255 |
if think:
|
| 256 |
+
thought_text_parts = []
|
| 257 |
+
for part in self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=text_temperature):
|
| 258 |
+
yield part # Stream the thought
|
| 259 |
+
thought_text_parts.append(part)
|
| 260 |
+
full_thought_text = "".join(thought_text_parts)
|
| 261 |
+
if full_thought_text: # Only update if thought was generated
|
| 262 |
+
gen_context = self.update_context_text(full_thought_text, gen_context)
|
| 263 |
+
|
| 264 |
img = self.gen_image(
|
| 265 |
+
image_shape=image_shapes,
|
| 266 |
+
gen_context=gen_context,
|
| 267 |
cfg_text_precontext=cfg_text_context,
|
| 268 |
cfg_img_precontext=cfg_img_context,
|
|
|
|
| 269 |
cfg_text_scale=cfg_text_scale,
|
| 270 |
cfg_img_scale=cfg_img_scale,
|
| 271 |
cfg_interval=cfg_interval,
|
|
|
|
| 274 |
cfg_renorm_min=cfg_renorm_min,
|
| 275 |
cfg_renorm_type=cfg_renorm_type,
|
| 276 |
)
|
| 277 |
+
yield img
|
| 278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
def __call__(
|
| 280 |
self,
|
| 281 |
image: Optional[Image.Image] = None,
|
| 282 |
text: Optional[str] = None,
|
| 283 |
+
**kargs
|
| 284 |
+
) -> Any:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
input_list = []
|
| 286 |
if image is not None:
|
| 287 |
input_list.append(image)
|
| 288 |
if text is not None:
|
| 289 |
input_list.append(text)
|
| 290 |
+
|
| 291 |
+
if not input_list and not kargs.get('force_empty_input', False): # allow forcing for special cases if needed
|
| 292 |
+
return
|
| 293 |
|
| 294 |
+
yield from self.interleave_inference(input_list, **kargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/bagel/bagel.py
CHANGED
|
@@ -890,16 +890,21 @@ class Bagel(PreTrainedModel):
|
|
| 890 |
temperature: float = 1.0,
|
| 891 |
end_token_id: int = None,
|
| 892 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 893 |
step = 0
|
| 894 |
-
generated_sequence = []
|
| 895 |
curr_tokens = packed_start_tokens
|
| 896 |
while step < max_length:
|
| 897 |
-
generated_sequence.append(curr_tokens)
|
| 898 |
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
|
| 899 |
query_lens = torch.ones_like(curr_tokens)
|
| 900 |
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
|
| 901 |
-
0, len(key_values_lens),
|
| 902 |
-
device=key_values_lens.device,
|
| 903 |
dtype=key_values_lens.dtype
|
| 904 |
)
|
| 905 |
|
|
@@ -944,12 +949,11 @@ class Bagel(PreTrainedModel):
|
|
| 944 |
packed_query_position_ids = packed_query_position_ids + 1
|
| 945 |
step += 1
|
| 946 |
|
|
|
|
|
|
|
| 947 |
if end_token_id is not None and curr_tokens[0] == end_token_id: # only support batch=1
|
| 948 |
break
|
| 949 |
|
| 950 |
-
output_device = generated_sequence[0].device
|
| 951 |
-
return torch.stack([i.to(output_device) for i in generated_sequence], dim=0)
|
| 952 |
-
|
| 953 |
# for evaluation
|
| 954 |
@torch.no_grad()
|
| 955 |
def chat(
|
|
@@ -1012,15 +1016,13 @@ class Bagel(PreTrainedModel):
|
|
| 1012 |
if torch.is_tensor(v):
|
| 1013 |
generation_input[k] = v.to(device)
|
| 1014 |
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 1015 |
-
unpacked_latent
|
| 1016 |
past_key_values=past_key_values,
|
| 1017 |
max_length=max_length,
|
| 1018 |
do_sample=do_sample,
|
| 1019 |
temperature=temperature,
|
| 1020 |
end_token_id=new_token_ids['eos_token_id'],
|
| 1021 |
**generation_input,
|
| 1022 |
-
)
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
return output
|
|
|
|
| 890 |
temperature: float = 1.0,
|
| 891 |
end_token_id: int = None,
|
| 892 |
):
|
| 893 |
+
"""
|
| 894 |
+
Generates text token by token in a streaming fashion.
|
| 895 |
+
|
| 896 |
+
This function is a generator that yields one token at a time. It replicates
|
| 897 |
+
the behavior of the original batch generation function, including the handling
|
| 898 |
+
of start tokens and the end-of-sequence token.
|
| 899 |
+
"""
|
| 900 |
step = 0
|
|
|
|
| 901 |
curr_tokens = packed_start_tokens
|
| 902 |
while step < max_length:
|
|
|
|
| 903 |
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
|
| 904 |
query_lens = torch.ones_like(curr_tokens)
|
| 905 |
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
|
| 906 |
+
0, len(key_values_lens),
|
| 907 |
+
device=key_values_lens.device,
|
| 908 |
dtype=key_values_lens.dtype
|
| 909 |
)
|
| 910 |
|
|
|
|
| 949 |
packed_query_position_ids = packed_query_position_ids + 1
|
| 950 |
step += 1
|
| 951 |
|
| 952 |
+
yield curr_tokens # Yield each token as it's generated
|
| 953 |
+
|
| 954 |
if end_token_id is not None and curr_tokens[0] == end_token_id: # only support batch=1
|
| 955 |
break
|
| 956 |
|
|
|
|
|
|
|
|
|
|
| 957 |
# for evaluation
|
| 958 |
@torch.no_grad()
|
| 959 |
def chat(
|
|
|
|
| 1016 |
if torch.is_tensor(v):
|
| 1017 |
generation_input[k] = v.to(device)
|
| 1018 |
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 1019 |
+
for unpacked_latent in self.generate_text(
|
| 1020 |
past_key_values=past_key_values,
|
| 1021 |
max_length=max_length,
|
| 1022 |
do_sample=do_sample,
|
| 1023 |
temperature=temperature,
|
| 1024 |
end_token_id=new_token_ids['eos_token_id'],
|
| 1025 |
**generation_input,
|
| 1026 |
+
):
|
| 1027 |
+
output = tokenizer.decode(unpacked_latent[:,0])
|
| 1028 |
+
yield output
|
|
|
|
|
|