|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
from typing import Any, Optional, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from transformers.pytorch_utils import Conv1D |
|
|
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
|
|
|
|
from .constants import WAVELET_REDUCTIONS |
|
|
from .waverec2d import waverec2d |
|
|
|
|
|
|
|
|
class WaveFTLayer(BaseTunerLayer): |
|
|
|
|
|
adapter_layer_names = ("waveft_spectrum",) |
|
|
|
|
|
other_param_names = ( |
|
|
"waveft_n_frequency", |
|
|
"waveft_scaling", |
|
|
"waveft_random_loc_seed", |
|
|
"waveft_wavelet_family", |
|
|
"waveft_indices", |
|
|
"waveft_use_idwt", |
|
|
) |
|
|
|
|
|
def __init__(self, base_layer: nn.Module, **kwargs) -> None: |
|
|
self.base_layer = base_layer |
|
|
self.waveft_n_frequency = {} |
|
|
self.waveft_scaling = {} |
|
|
self.waveft_spectrum = nn.ParameterDict({}) |
|
|
self.waveft_wavelet_family = {} |
|
|
self.waveft_indices = {} |
|
|
self.waveft_random_loc_seed = {} |
|
|
self.waveft_use_idwt = {} |
|
|
|
|
|
self._disable_adapters = False |
|
|
self.merged_adapters = [] |
|
|
self.kwargs = kwargs |
|
|
|
|
|
base_layer = self.get_base_layer() |
|
|
if isinstance(base_layer, nn.Linear): |
|
|
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features |
|
|
elif isinstance(base_layer, Conv1D): |
|
|
self.in_features, self.out_features = ( |
|
|
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Unsupported layer type {type(base_layer)}") |
|
|
|
|
|
def update_layer( |
|
|
self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family="db1", use_idwt=True |
|
|
): |
|
|
if n_frequency <= 0: |
|
|
raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}") |
|
|
if n_frequency > self.in_features * self.out_features: |
|
|
raise ValueError( |
|
|
f"`n_frequency` should be less than or equal to the product of the input and output dimensions " |
|
|
f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}" |
|
|
) |
|
|
|
|
|
self.waveft_n_frequency[adapter_name] = n_frequency |
|
|
self.waveft_random_loc_seed[adapter_name] = random_loc_seed |
|
|
self.waveft_wavelet_family[adapter_name] = wavelet_family |
|
|
self.waveft_use_idwt[adapter_name] = use_idwt |
|
|
|
|
|
|
|
|
reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family] |
|
|
|
|
|
|
|
|
|
|
|
generator = torch.Generator().manual_seed(self.waveft_random_loc_seed[adapter_name]) |
|
|
indices = torch.randperm(self.out_features * self.in_features, generator=generator)[:n_frequency] |
|
|
|
|
|
|
|
|
self.waveft_indices[adapter_name] = torch.stack( |
|
|
[indices // self.in_features, indices % self.in_features], dim=0 |
|
|
) |
|
|
|
|
|
self.waveft_scaling[adapter_name] = scaling |
|
|
|
|
|
|
|
|
|
|
|
if init_weights: |
|
|
|
|
|
self.waveft_spectrum[adapter_name] = nn.Parameter(torch.empty(n_frequency), requires_grad=True) |
|
|
self.reset_wave_parameters(adapter_name) |
|
|
else: |
|
|
|
|
|
std_dev = 0.01 |
|
|
self.waveft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency) * std_dev, requires_grad=True) |
|
|
|
|
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
|
self.set_adapter(self.active_adapters) |
|
|
|
|
|
@torch.no_grad() |
|
|
def reset_wave_parameters(self, adapter_name): |
|
|
if adapter_name in self.waveft_spectrum.keys(): |
|
|
nn.init.zeros_(self.waveft_spectrum[adapter_name]) |
|
|
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
|
spectrum = self.waveft_spectrum[adapter] |
|
|
indices = self.waveft_indices[adapter].to(spectrum.device) |
|
|
wavelet_family = self.waveft_wavelet_family[adapter] |
|
|
|
|
|
|
|
|
if self.waveft_use_idwt[adapter]: |
|
|
reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family] |
|
|
|
|
|
|
|
|
|
|
|
padded_out_features = self.out_features + reduction_rows |
|
|
padded_in_features = self.in_features + reduction_cols |
|
|
|
|
|
|
|
|
if padded_out_features % 2 != 0: |
|
|
padded_out_features += 1 |
|
|
if padded_in_features % 2 != 0: |
|
|
padded_in_features += 1 |
|
|
|
|
|
|
|
|
dense_spectrum = torch.zeros( |
|
|
padded_out_features, padded_in_features, device=spectrum.device, dtype=spectrum.dtype |
|
|
) |
|
|
|
|
|
|
|
|
row_offset = (padded_out_features - self.out_features) // 2 |
|
|
col_offset = (padded_in_features - self.in_features) // 2 |
|
|
|
|
|
|
|
|
padded_indices = indices.clone() |
|
|
padded_indices[0, :] += row_offset |
|
|
padded_indices[1, :] += col_offset |
|
|
|
|
|
|
|
|
|
|
|
valid_mask = (padded_indices[0, :] < padded_out_features) & (padded_indices[1, :] < padded_in_features) |
|
|
valid_indices = padded_indices[:, valid_mask] |
|
|
valid_spectrum = spectrum[valid_mask] |
|
|
|
|
|
|
|
|
dense_spectrum[valid_indices[0, :], valid_indices[1, :]] = valid_spectrum |
|
|
|
|
|
|
|
|
H, W = dense_spectrum.shape |
|
|
H2, W2 = H // 2, W // 2 |
|
|
cA = dense_spectrum[:H2, :W2] |
|
|
cH = dense_spectrum[:H2, W2:] |
|
|
cV = dense_spectrum[H2:, :W2] |
|
|
cD = dense_spectrum[H2:, W2:] |
|
|
|
|
|
|
|
|
coeffs = (cA, (cH, cV, cD)) |
|
|
|
|
|
|
|
|
delta_weight = waverec2d(coeffs, wavelet_family) * self.waveft_scaling[adapter] |
|
|
|
|
|
|
|
|
if delta_weight.shape[0] != self.out_features or delta_weight.shape[1] != self.in_features: |
|
|
|
|
|
start_row = (delta_weight.shape[0] - self.out_features) // 2 |
|
|
start_col = (delta_weight.shape[1] - self.in_features) // 2 |
|
|
|
|
|
|
|
|
delta_weight = delta_weight[ |
|
|
start_row : start_row + self.out_features, start_col : start_col + self.in_features |
|
|
] |
|
|
else: |
|
|
|
|
|
dense_spectrum = torch.zeros( |
|
|
self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype |
|
|
) |
|
|
dense_spectrum[indices[0, :], indices[1, :]] = spectrum |
|
|
delta_weight = dense_spectrum * self.waveft_scaling[adapter] |
|
|
|
|
|
return delta_weight |
|
|
|
|
|
|
|
|
class WaveFTLinear(nn.Module, WaveFTLayer): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
base_layer, |
|
|
adapter_name: str, |
|
|
n_frequency: int = 1000, |
|
|
scaling: float = 150.0, |
|
|
fan_in_fan_out: bool = False, |
|
|
init_weights: Union[bool, str] = False, |
|
|
random_loc_seed: int = 777, |
|
|
wavelet_family: str = "db1", |
|
|
use_idwt: bool = True, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
WaveFTLayer.__init__(self, base_layer, **kwargs) |
|
|
self.fan_in_fan_out = fan_in_fan_out |
|
|
self._active_adapter = adapter_name |
|
|
self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family, use_idwt) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
|
""" |
|
|
Merge the active adapter weights into the base weights |
|
|
|
|
|
Args: |
|
|
safe_merge (`bool`, *optional*): |
|
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
|
NaNs. Defaults to `False`. |
|
|
adapter_names (`List[str]`, *optional*): |
|
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
|
to `None`. |
|
|
""" |
|
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
|
if not adapter_names: |
|
|
|
|
|
return |
|
|
|
|
|
for active_adapter in adapter_names: |
|
|
if active_adapter in self.waveft_spectrum.keys(): |
|
|
base_layer = self.get_base_layer() |
|
|
if safe_merge: |
|
|
|
|
|
|
|
|
orig_weights = base_layer.weight.data.clone() |
|
|
orig_weights += self.get_delta_weight(active_adapter) |
|
|
|
|
|
if not torch.isfinite(orig_weights).all(): |
|
|
raise ValueError( |
|
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
|
) |
|
|
|
|
|
base_layer.weight.data = orig_weights |
|
|
else: |
|
|
base_layer.weight.data += self.get_delta_weight(active_adapter) |
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
|
|
def unmerge(self) -> None: |
|
|
""" |
|
|
This method unmerges all merged adapter layers from the base weights. |
|
|
""" |
|
|
if not self.merged: |
|
|
warnings.warn("Already unmerged. Nothing to do.") |
|
|
return |
|
|
while len(self.merged_adapters) > 0: |
|
|
active_adapter = self.merged_adapters.pop() |
|
|
if active_adapter in self.waveft_spectrum.keys(): |
|
|
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) |
|
|
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
|
return super().get_delta_weight(adapter) |
|
|
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: |
|
|
previous_dtype = x.dtype |
|
|
|
|
|
if self.disable_adapters: |
|
|
if self.merged: |
|
|
self.unmerge() |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
elif self.merged: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
else: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
for active_adapter in self.active_adapters: |
|
|
if active_adapter not in self.waveft_spectrum.keys(): |
|
|
continue |
|
|
|
|
|
delta_w = self.get_delta_weight(active_adapter) |
|
|
x = self._cast_input_dtype(x, delta_w.dtype) |
|
|
result = result + F.linear(x, delta_w) |
|
|
|
|
|
result = result.to(previous_dtype) |
|
|
return result |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
rep = super().__repr__() |
|
|
return "waveft." + rep |
|
|
|