File size: 12,825 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import Any, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge

from .constants import WAVELET_REDUCTIONS
from .waverec2d import waverec2d


class WaveFTLayer(BaseTunerLayer):
    # All names of layers that may contain (trainable) adapter weights
    adapter_layer_names = ("waveft_spectrum",)
    # All names of other parameters that may contain adapter-related parameters
    other_param_names = (
        "waveft_n_frequency",
        "waveft_scaling",
        "waveft_random_loc_seed",
        "waveft_wavelet_family",
        "waveft_indices",
        "waveft_use_idwt",
    )

    def __init__(self, base_layer: nn.Module, **kwargs) -> None:
        self.base_layer = base_layer
        self.waveft_n_frequency = {}
        self.waveft_scaling = {}
        self.waveft_spectrum = nn.ParameterDict({})
        self.waveft_wavelet_family = {}
        self.waveft_indices = {}
        self.waveft_random_loc_seed = {}
        self.waveft_use_idwt = {}
        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []
        self.kwargs = kwargs

        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            self.in_features, self.out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, Conv1D):
            self.in_features, self.out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )
        else:
            raise ValueError(f"Unsupported layer type {type(base_layer)}")

    def update_layer(
        self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family="db1", use_idwt=True
    ):
        if n_frequency <= 0:
            raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}")
        if n_frequency > self.in_features * self.out_features:
            raise ValueError(
                f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
                f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}"
            )

        self.waveft_n_frequency[adapter_name] = n_frequency
        self.waveft_random_loc_seed[adapter_name] = random_loc_seed
        self.waveft_wavelet_family[adapter_name] = wavelet_family
        self.waveft_use_idwt[adapter_name] = use_idwt

        # Get the expanded dimensions based on wavelet family
        reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family]

        # Generate random indices within the original dimensions
        # We handle padding separately in get_delta_weight
        generator = torch.Generator().manual_seed(self.waveft_random_loc_seed[adapter_name])
        indices = torch.randperm(self.out_features * self.in_features, generator=generator)[:n_frequency]

        # Convert to row, col format for the original dimensions
        self.waveft_indices[adapter_name] = torch.stack(
            [indices // self.in_features, indices % self.in_features], dim=0
        )

        self.waveft_scaling[adapter_name] = scaling

        # Actual trainable parameters
        # Initialize based on init_weights
        if init_weights:
            # Initialize with zeros later using reset_wave_parameters
            self.waveft_spectrum[adapter_name] = nn.Parameter(torch.empty(n_frequency), requires_grad=True)
            self.reset_wave_parameters(adapter_name)  # Initialize to zeros now
        else:
            # Initialize with randn scaled by a small std dev to prevent explosion
            std_dev = 0.01  # Using a small std dev for initial random weights
            self.waveft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency) * std_dev, requires_grad=True)

        self._move_adapter_to_device_of_base_layer(adapter_name)
        self.set_adapter(self.active_adapters)

    @torch.no_grad()
    def reset_wave_parameters(self, adapter_name):
        if adapter_name in self.waveft_spectrum.keys():
            nn.init.zeros_(self.waveft_spectrum[adapter_name])

    def get_delta_weight(self, adapter) -> torch.Tensor:
        spectrum = self.waveft_spectrum[adapter]
        indices = self.waveft_indices[adapter].to(spectrum.device)
        wavelet_family = self.waveft_wavelet_family[adapter]

        # Choose whether to use IDWT or direct spectrum based on adapter setting
        if self.waveft_use_idwt[adapter]:
            reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family]

            # Create a padded spectrum matrix with additional rows and columns
            # to account for the reduction during wavelet reconstruction
            padded_out_features = self.out_features + reduction_rows
            padded_in_features = self.in_features + reduction_cols

            # Make dimensions even if needed for wavelet processing
            if padded_out_features % 2 != 0:
                padded_out_features += 1
            if padded_in_features % 2 != 0:
                padded_in_features += 1

            # Create the padded dense spectrum matrix
            dense_spectrum = torch.zeros(
                padded_out_features, padded_in_features, device=spectrum.device, dtype=spectrum.dtype
            )

            # Calculate padding offsets to center the original data in the padded matrix
            row_offset = (padded_out_features - self.out_features) // 2
            col_offset = (padded_in_features - self.in_features) // 2

            # Adjust indices to account for padding offsets
            padded_indices = indices.clone()
            padded_indices[0, :] += row_offset
            padded_indices[1, :] += col_offset

            # Place spectrum values in the padded matrix
            # Filter out any indices that would be out of bounds
            valid_mask = (padded_indices[0, :] < padded_out_features) & (padded_indices[1, :] < padded_in_features)
            valid_indices = padded_indices[:, valid_mask]
            valid_spectrum = spectrum[valid_mask]

            # Set the spectrum values in the padded matrix
            dense_spectrum[valid_indices[0, :], valid_indices[1, :]] = valid_spectrum

            # Split into four sub-bands
            H, W = dense_spectrum.shape
            H2, W2 = H // 2, W // 2
            cA = dense_spectrum[:H2, :W2]  # top-left
            cH = dense_spectrum[:H2, W2:]  # top-right
            cV = dense_spectrum[H2:, :W2]  # bottom-left
            cD = dense_spectrum[H2:, W2:]  # bottom-right

            # Construct wavelet-coefficient tuple
            coeffs = (cA, (cH, cV, cD))

            # Reconstruct with the specified wavelet family
            delta_weight = waverec2d(coeffs, wavelet_family) * self.waveft_scaling[adapter]

            # Ensure the delta weight has exactly the correct dimensions
            if delta_weight.shape[0] != self.out_features or delta_weight.shape[1] != self.in_features:
                # Calculate where to start slicing to get a centered crop
                start_row = (delta_weight.shape[0] - self.out_features) // 2
                start_col = (delta_weight.shape[1] - self.in_features) // 2

                # Slice to the exact output size needed
                delta_weight = delta_weight[
                    start_row : start_row + self.out_features, start_col : start_col + self.in_features
                ]
        else:
            # Simple direct use of spectrum without IDWT
            dense_spectrum = torch.zeros(
                self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype
            )
            dense_spectrum[indices[0, :], indices[1, :]] = spectrum
            delta_weight = dense_spectrum * self.waveft_scaling[adapter]

        return delta_weight


class WaveFTLinear(nn.Module, WaveFTLayer):
    # WaveFT implemented in a dense layer
    def __init__(
        self,
        base_layer,
        adapter_name: str,
        n_frequency: int = 1000,
        scaling: float = 150.0,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        init_weights: Union[bool, str] = False,
        random_loc_seed: int = 777,
        wavelet_family: str = "db1",
        use_idwt: bool = True,
        **kwargs,
    ) -> None:
        super().__init__()
        WaveFTLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out
        self._active_adapter = adapter_name
        self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family, use_idwt)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.waveft_spectrum.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    orig_weights += self.get_delta_weight(active_adapter)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights
                else:
                    base_layer.weight.data += self.get_delta_weight(active_adapter)
                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.waveft_spectrum.keys():
                self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)

    def get_delta_weight(self, adapter) -> torch.Tensor:
        return super().get_delta_weight(adapter)

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            for active_adapter in self.active_adapters:
                if active_adapter not in self.waveft_spectrum.keys():
                    continue

                delta_w = self.get_delta_weight(active_adapter)
                x = self._cast_input_dtype(x, delta_w.dtype)
                result = result + F.linear(x, delta_w)

        result = result.to(previous_dtype)
        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "waveft." + rep