File size: 12,825 Bytes
302920f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from .constants import WAVELET_REDUCTIONS
from .waverec2d import waverec2d
class WaveFTLayer(BaseTunerLayer):
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("waveft_spectrum",)
# All names of other parameters that may contain adapter-related parameters
other_param_names = (
"waveft_n_frequency",
"waveft_scaling",
"waveft_random_loc_seed",
"waveft_wavelet_family",
"waveft_indices",
"waveft_use_idwt",
)
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
self.base_layer = base_layer
self.waveft_n_frequency = {}
self.waveft_scaling = {}
self.waveft_spectrum = nn.ParameterDict({})
self.waveft_wavelet_family = {}
self.waveft_indices = {}
self.waveft_random_loc_seed = {}
self.waveft_use_idwt = {}
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.kwargs = kwargs
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, Conv1D):
self.in_features, self.out_features = (
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
)
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
def update_layer(
self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family="db1", use_idwt=True
):
if n_frequency <= 0:
raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}")
if n_frequency > self.in_features * self.out_features:
raise ValueError(
f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}"
)
self.waveft_n_frequency[adapter_name] = n_frequency
self.waveft_random_loc_seed[adapter_name] = random_loc_seed
self.waveft_wavelet_family[adapter_name] = wavelet_family
self.waveft_use_idwt[adapter_name] = use_idwt
# Get the expanded dimensions based on wavelet family
reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family]
# Generate random indices within the original dimensions
# We handle padding separately in get_delta_weight
generator = torch.Generator().manual_seed(self.waveft_random_loc_seed[adapter_name])
indices = torch.randperm(self.out_features * self.in_features, generator=generator)[:n_frequency]
# Convert to row, col format for the original dimensions
self.waveft_indices[adapter_name] = torch.stack(
[indices // self.in_features, indices % self.in_features], dim=0
)
self.waveft_scaling[adapter_name] = scaling
# Actual trainable parameters
# Initialize based on init_weights
if init_weights:
# Initialize with zeros later using reset_wave_parameters
self.waveft_spectrum[adapter_name] = nn.Parameter(torch.empty(n_frequency), requires_grad=True)
self.reset_wave_parameters(adapter_name) # Initialize to zeros now
else:
# Initialize with randn scaled by a small std dev to prevent explosion
std_dev = 0.01 # Using a small std dev for initial random weights
self.waveft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency) * std_dev, requires_grad=True)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
@torch.no_grad()
def reset_wave_parameters(self, adapter_name):
if adapter_name in self.waveft_spectrum.keys():
nn.init.zeros_(self.waveft_spectrum[adapter_name])
def get_delta_weight(self, adapter) -> torch.Tensor:
spectrum = self.waveft_spectrum[adapter]
indices = self.waveft_indices[adapter].to(spectrum.device)
wavelet_family = self.waveft_wavelet_family[adapter]
# Choose whether to use IDWT or direct spectrum based on adapter setting
if self.waveft_use_idwt[adapter]:
reduction_rows, reduction_cols = WAVELET_REDUCTIONS[wavelet_family]
# Create a padded spectrum matrix with additional rows and columns
# to account for the reduction during wavelet reconstruction
padded_out_features = self.out_features + reduction_rows
padded_in_features = self.in_features + reduction_cols
# Make dimensions even if needed for wavelet processing
if padded_out_features % 2 != 0:
padded_out_features += 1
if padded_in_features % 2 != 0:
padded_in_features += 1
# Create the padded dense spectrum matrix
dense_spectrum = torch.zeros(
padded_out_features, padded_in_features, device=spectrum.device, dtype=spectrum.dtype
)
# Calculate padding offsets to center the original data in the padded matrix
row_offset = (padded_out_features - self.out_features) // 2
col_offset = (padded_in_features - self.in_features) // 2
# Adjust indices to account for padding offsets
padded_indices = indices.clone()
padded_indices[0, :] += row_offset
padded_indices[1, :] += col_offset
# Place spectrum values in the padded matrix
# Filter out any indices that would be out of bounds
valid_mask = (padded_indices[0, :] < padded_out_features) & (padded_indices[1, :] < padded_in_features)
valid_indices = padded_indices[:, valid_mask]
valid_spectrum = spectrum[valid_mask]
# Set the spectrum values in the padded matrix
dense_spectrum[valid_indices[0, :], valid_indices[1, :]] = valid_spectrum
# Split into four sub-bands
H, W = dense_spectrum.shape
H2, W2 = H // 2, W // 2
cA = dense_spectrum[:H2, :W2] # top-left
cH = dense_spectrum[:H2, W2:] # top-right
cV = dense_spectrum[H2:, :W2] # bottom-left
cD = dense_spectrum[H2:, W2:] # bottom-right
# Construct wavelet-coefficient tuple
coeffs = (cA, (cH, cV, cD))
# Reconstruct with the specified wavelet family
delta_weight = waverec2d(coeffs, wavelet_family) * self.waveft_scaling[adapter]
# Ensure the delta weight has exactly the correct dimensions
if delta_weight.shape[0] != self.out_features or delta_weight.shape[1] != self.in_features:
# Calculate where to start slicing to get a centered crop
start_row = (delta_weight.shape[0] - self.out_features) // 2
start_col = (delta_weight.shape[1] - self.in_features) // 2
# Slice to the exact output size needed
delta_weight = delta_weight[
start_row : start_row + self.out_features, start_col : start_col + self.in_features
]
else:
# Simple direct use of spectrum without IDWT
dense_spectrum = torch.zeros(
self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype
)
dense_spectrum[indices[0, :], indices[1, :]] = spectrum
delta_weight = dense_spectrum * self.waveft_scaling[adapter]
return delta_weight
class WaveFTLinear(nn.Module, WaveFTLayer):
# WaveFT implemented in a dense layer
def __init__(
self,
base_layer,
adapter_name: str,
n_frequency: int = 1000,
scaling: float = 150.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
init_weights: Union[bool, str] = False,
random_loc_seed: int = 777,
wavelet_family: str = "db1",
use_idwt: bool = True,
**kwargs,
) -> None:
super().__init__()
WaveFTLayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed, wavelet_family, use_idwt)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.waveft_spectrum.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.waveft_spectrum.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def get_delta_weight(self, adapter) -> torch.Tensor:
return super().get_delta_weight(adapter)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.waveft_spectrum.keys():
continue
delta_w = self.get_delta_weight(active_adapter)
x = self._cast_input_dtype(x, delta_w.dtype)
result = result + F.linear(x, delta_w)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "waveft." + rep
|