File size: 36,030 Bytes
6d207e1
 
 
 
 
 
 
 
 
7aff545
6d207e1
 
 
 
 
37b2eb0
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
7df24ba
7da862f
d43f690
7da862f
d43f690
6d207e1
d43f690
6d207e1
 
7aff545
 
 
 
d5b8f89
 
 
 
 
 
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719c084
6d207e1
 
7aff545
 
 
 
 
 
 
 
 
d5b8f89
 
 
 
 
7aff545
 
 
 
 
 
 
 
 
 
9617ede
 
 
7aff545
 
 
9617ede
 
 
 
 
 
 
 
 
 
7aff545
9617ede
7aff545
 
 
 
 
 
 
 
 
 
9617ede
7aff545
 
 
 
 
9617ede
 
 
7aff545
d5b8f89
 
 
 
 
 
 
 
 
 
 
7aff545
 
719c084
 
7aff545
719c084
 
 
 
 
 
 
 
 
 
7aff545
6d207e1
719c084
 
 
 
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719c084
6d207e1
 
 
 
 
 
 
 
 
 
719c084
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719c084
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719c084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2eb0
 
719c084
 
 
37b2eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2eb0
 
 
 
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b2eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d207e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719c084
6d207e1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
import os
import json
import time
import random
from collections import defaultdict
from datetime import date, datetime, timedelta
import gradio as gr
import pandas as pd
import finnhub
from huggingface_hub import hf_hub_download, list_repo_files
from llama_cpp import Llama
from io import StringIO
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import platform

# Suppress Google Cloud warnings
os.environ['GRPC_VERBOSITY'] = 'ERROR'
os.environ['GRPC_TRACE'] = ''

# Suppress other warnings
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=FutureWarning)

# ---------- CẤU HÌNH ---------------------------------------------------------

# Local GGUF model config (CPU-only HF Spaces ~16GB RAM)
# Default to a non-Qwen LLaMA-arch model to ensure compatibility
GGUF_REPO = os.getenv("GGUF_REPO", "QuantFactory/Meta-Llama-3.1-8B-Instruct-GGUF")
# Default to lighter quant to reduce RAM (can override via env)
GGUF_FILENAME = os.getenv("GGUF_FILENAME", "Meta-Llama-3.1-8B-Instruct.Q4_K_S.gguf")
N_CTX = int(os.getenv("LLAMA_N_CTX", "2048"))
N_THREADS = int(os.getenv("LLAMA_N_THREADS", str(os.cpu_count() or 4)))
N_BATCH = int(os.getenv("LLAMA_N_BATCH", "128"))
LLM_TEMPERATURE = float(os.getenv("LLAMA_TEMPERATURE", "0.2"))

# KV-cache quantization override
LLAMA_KV_TYPE_K = os.getenv("LLAMA_KV_TYPE_K", "q5_0")
LLAMA_KV_TYPE_V = os.getenv("LLAMA_KV_TYPE_V", "q4_0")

# Optional: Use pre-mounted local GGUF path to avoid any downloads
GGUF_LOCAL_PATH = os.getenv("GGUF_LOCAL_PATH", "").strip() or None

# Optional: Alternate non-Qwen repo fallback (e.g. a repo that contains LLaMA-arch GGUFs)
GGUF_REPO_ALT = os.getenv("GGUF_REPO_ALT", "").strip() or None

# RapidAPI Configuration
RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com"

# Load Finnhub API keys from single secret (multiple keys separated by newlines)
FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "")
if FINNHUB_KEYS_RAW:
    FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()]
else:
    FINNHUB_KEYS = []

# Load RapidAPI keys from single secret (multiple keys separated by newlines)
RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "")
if RAPIDAPI_KEYS_RAW:
    RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()]
else:
    RAPIDAPI_KEYS = []

# Placeholder for compatibility; no Google keys needed with local model
GOOGLE_API_KEYS = []

# Filter out empty keys
FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()]
GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key.strip()]

# Validate that we have at least one key for each service
if not FINNHUB_KEYS:
    print("⚠️ Warning: No Finnhub API keys found in secrets")
if not RAPIDAPI_KEYS:
    print("⚠️ Warning: No RapidAPI keys found in secrets")
if not GOOGLE_API_KEYS:
    print("⚠️ Warning: No Google API keys found in secrets")

# Chọn ngẫu nhiên một khóa API để bắt đầu (if available)
GOOGLE_API_KEY = random.choice(GOOGLE_API_KEYS) if GOOGLE_API_KEYS else None

print("=" * 50)
print("🚀 FinRobot Forecaster Starting Up...")
print("=" * 50)
if FINNHUB_KEYS:
    print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded")
else:
    print("📊 Finnhub API: Not configured")
if RAPIDAPI_KEYS:
    print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)")
else:
    print("📈 RapidAPI Alpha Vantage: Not configured")
print("🧠 Local LLM (llama.cpp) will be used: "+GGUF_REPO+"/"+GGUF_FILENAME)
print("✅ Application started successfully!")
print("=" * 50)

# Download GGUF model and initialize llama.cpp
_LLM = None
_TOKENS_PER_SECOND_INFO = None
def _resolve_and_download_gguf(repo_id: str, preferred_filename: str) -> str:
    """Resolve correct GGUF filename (case-sensitive) and download.

    Strategy:
    1) Try preferred filename directly
    2) List repo files; pick case-insensitive match
    3) Prefer files containing the same quant tag (e.g., Q5_K_M) ignoring case
    4) Fallback to any .gguf in the repo
    """
    # 0) If local path provided, use it directly
    if GGUF_LOCAL_PATH and os.path.exists(GGUF_LOCAL_PATH):
        print(f"➡️ Using local GGUF at {GGUF_LOCAL_PATH}")
        return GGUF_LOCAL_PATH

    # 1) Direct attempt
    try:
        return hf_hub_download(repo_id=repo_id, filename=preferred_filename, local_dir="/home/user/.cache/hf")
    except Exception:
        pass

    # 2) List repo files
    try:
        files = list_repo_files(repo_id=repo_id, repo_type="model")
        ggufs = [f for f in files if f.lower().endswith(".gguf")]
        # Prefer non-Qwen models to avoid unsupported 'qwen3' architecture in some builds
        ggufs_non_qwen = [f for f in ggufs if "qwen" not in f.lower()]
        preferred_pool = ggufs_non_qwen or ggufs
        if not ggufs:
            raise RuntimeError("No .gguf files found in repo")

        # Strong allowlist preference order (non-Qwen variants)
        strong_order = [
            "Fin-o1-14B.Q5_K_S.gguf",
            "Fin-o1-14B.Q6_K.gguf",
            "Fin-o1-14B.Q4_K_S.gguf",
        ]
        for fname in strong_order:
            if fname in preferred_pool:
                return hf_hub_download(repo_id=repo_id, filename=fname, local_dir="/home/user/.cache/hf")

        # Case-insensitive exact match
        lower_map = {f.lower(): f for f in preferred_pool}
        pref_lower = preferred_filename.lower()
        if pref_lower in lower_map:
            return hf_hub_download(repo_id=repo_id, filename=lower_map[pref_lower], local_dir="/home/user/.cache/hf")

        # Extract quant token from preferred, e.g., Q5_K_M or Q6_K
        import re
        m = re.search(r"q\d+[_a-z]*", pref_lower)
        quant = m.group(0) if m else None
        if quant:
            # Find any file containing that quant token (case-insensitive)
            candidates = [f for f in preferred_pool if quant in f.lower()]
            # Prefer Fin-o1-14B prefix if multiple
            candidates.sort(key=lambda s: (not s.startswith("Fin-o1-14B"), s))
            if candidates:
                return hf_hub_download(repo_id=repo_id, filename=candidates[0], local_dir="/home/user/.cache/hf")

        # 4) Fallback: first non-Qwen .gguf (alphabetical)
        preferred_pool.sort()
        return hf_hub_download(repo_id=repo_id, filename=preferred_pool[0], local_dir="/home/user/.cache/hf")
    except Exception as e:
        # As a final attempt, try alternate repo if provided
        if GGUF_REPO_ALT:
            try:
                print(f"ℹ️ Trying alternate repo: {GGUF_REPO_ALT}")
                files = list_repo_files(repo_id=GGUF_REPO_ALT, repo_type="model")
                ggufs = [f for f in files if f.lower().endswith(".gguf") and "qwen" not in f.lower()]
                ggufs.sort()
                if ggufs:
                    return hf_hub_download(repo_id=GGUF_REPO_ALT, filename=ggufs[0], local_dir="/home/user/.cache/hf")
            except Exception as ee:
                raise ee
        raise e

try:
    print("⬇️ Downloading GGUF model from Hugging Face Hub if not cached...")
    gguf_path = _resolve_and_download_gguf(GGUF_REPO, GGUF_FILENAME)
    print(f"✅ Model file ready: {gguf_path}")
    print("🚀 Initializing llama.cpp (CPU)")
    _LLM = Llama(
        model_path=gguf_path,
        n_ctx=N_CTX,
        n_threads=N_THREADS,
        n_batch=N_BATCH,
        use_mlock=False,
        use_mmap=True,
        logits_all=False,
        kv_overrides={"type_k": "q5_0", "type_v": "q4_0"},
    )
    print("✅ Llama initialized")
except Exception as e:
    print(f"❌ Failed to initialize local LLM: {e}")
    _LLM = None

# Cấu hình Finnhub client (if keys available)
if FINNHUB_KEYS:
    # Configure with first key for initial setup
    finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0])
    print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys")
else:
    finnhub_client = None
    print("⚠️ Finnhub not configured - will use mock news data")

# Tạo session với retry strategy cho requests
def create_session():
    session = requests.Session()
    retry_strategy = Retry(
        total=3,
        backoff_factor=1,
        status_forcelist=[429, 500, 502, 503, 504],
    )
    adapter = HTTPAdapter(max_retries=retry_strategy)
    session.mount("http://", adapter)
    session.mount("https://", adapter)
    return session

# Tạo session global
requests_session = create_session()

SYSTEM_PROMPT = (
    "You are a seasoned stock-market analyst. "
    "Given recent company news and optional basic financials, "
    "return:\n"
    "[Positive Developments] – 2-4 bullets\n"
    "[Potential Concerns] – 2-4 bullets\n"
    "[Prediction & Analysis] – a one-week price outlook with rationale."
)

# ---------- UTILITY HELPERS ----------------------------------------

def today() -> str:
    return date.today().strftime("%Y-%m-%d")

def n_weeks_before(date_string: str, n: int) -> str:
    return (datetime.strptime(date_string, "%Y-%m-%d") -
            timedelta(days=7 * n)).strftime("%Y-%m-%d")

# ---------- DATA FETCHING --------------------------------------------------

def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
    # Thử tất cả RapidAPI Alpha Vantage keys
    for rapidapi_key in RAPIDAPI_KEYS:
        try:
            print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)")
            
            # RapidAPI Alpha Vantage endpoint
            url = f"https://{RAPIDAPI_HOST}/query"
            
            headers = {
                "X-RapidAPI-Host": RAPIDAPI_HOST,
                "X-RapidAPI-Key": rapidapi_key
            }
        
            params = {
                "function": "TIME_SERIES_DAILY",
                "symbol": symbol,
                "outputsize": "full",
                "datatype": "csv"
            }
            
            # Thử lại 3 lần với RapidAPI key hiện tại
            for attempt in range(3):
                try:
                    resp = requests_session.get(url, headers=headers, params=params, timeout=30)
                    if not resp.ok:
                        print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
                        time.sleep(2 ** attempt)
                        continue
                        
                    text = resp.text.strip()
                    if text.startswith("{"):
                        info = resp.json()
                        msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info)
                        if "rate limit" in msg.lower() or "quota" in msg.lower():
                            print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key")
                            break  # Thử key tiếp theo
                        raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}")
                    
                    # Parse CSV data
                    df = pd.read_csv(StringIO(text))
                    date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
                    df[date_col] = pd.to_datetime(df[date_col])
                    df = df.sort_values(date_col).set_index(date_col)

                    data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
                    for i in range(len(steps) - 1):
                        s_date = pd.to_datetime(steps[i])
                        e_date = pd.to_datetime(steps[i+1])
                        seg = df.loc[s_date:e_date]
                        if seg.empty:
                            raise RuntimeError(
                                f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]}{steps[i+1]}"
                            )
                        data["Start Date"].append(seg.index[0])
                        data["Start Price"].append(seg["close"].iloc[0])
                        data["End Date"].append(seg.index[-1])
                        data["End Price"].append(seg["close"].iloc[-1])
                        time.sleep(1)  # RapidAPI has higher limits

                    print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)")
                    return pd.DataFrame(data)
                    
                except requests.exceptions.Timeout:
                    print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
                    if attempt < 2:
                        time.sleep(5 * (attempt + 1))
                        continue
                    else:
                        break
                except requests.exceptions.RequestException as e:
                    print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}")
                    if attempt < 2:
                        time.sleep(3)
                        continue
                    else:
                        break
                        
        except Exception as e:
            print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}")
            continue  # Thử key tiếp theo
    
    # Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail
    print("⚠️ All RapidAPI keys failed, using mock data for demonstration...")
    return create_mock_stock_data(symbol, steps)

def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
    """Tạo mock data để demo khi API không hoạt động"""
    import numpy as np
    
    data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
    
    # Giá cơ bản khác nhau cho các symbol khác nhau
    base_prices = {
        "AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0, 
        "TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0
    }
    base_price = base_prices.get(symbol.upper(), 150.0)
    
    for i in range(len(steps) - 1):
        s_date = pd.to_datetime(steps[i])
        e_date = pd.to_datetime(steps[i+1])
        
        # Tạo giá ngẫu nhiên với xu hướng tăng nhẹ
        start_price = base_price + np.random.normal(0, 5)
        end_price = start_price + np.random.normal(2, 8)  # Xu hướng tăng nhẹ
        
        data["Start Date"].append(s_date)
        data["Start Price"].append(round(start_price, 2))
        data["End Date"].append(e_date)
        data["End Price"].append(round(end_price, 2))
        
        base_price = end_price  # Cập nhật giá cơ bản cho tuần tiếp theo
    
    return pd.DataFrame(data)

def current_basics(symbol: str, curday: str) -> dict:
    # Check if Finnhub is configured
    if not FINNHUB_KEYS:
        print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}")
        return {}
    
    # Thử với tất cả các Finnhub API keys
    for api_key in FINNHUB_KEYS:
        try:
            client = finnhub.Client(api_key=api_key)
            # Thêm timeout cho Finnhub client
            raw = client.company_basic_financials(symbol, "all")
            if not raw["series"]:
                continue
            merged = defaultdict(dict)
            for metric, vals in raw["series"]["quarterly"].items():
                for v in vals:
                    merged[v["period"]][metric] = v["v"]

            latest = max((p for p in merged if p <= curday), default=None)
            if latest is None:
                continue
            d = dict(merged[latest])
            d["period"] = latest
            return d
        except Exception as e:
            print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}")
            time.sleep(2)  # Thêm delay trước khi thử key tiếp theo
            continue
    return {}

def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
    news_col = []
    for _, row in df.iterrows():
        start = row["Start Date"].strftime("%Y-%m-%d")
        end   = row["End Date"].strftime("%Y-%m-%d")
        time.sleep(2)  # Tăng delay để tránh rate limit
        
        # Check if Finnhub is configured
        if not FINNHUB_KEYS:
            print(f"⚠️ Finnhub not configured, using mock news for {symbol}")
            news_data = create_mock_news(symbol, start, end)
            news_col.append(json.dumps(news_data))
            continue
        
        # Thử với tất cả các Finnhub API keys
        news_data = []
        for api_key in FINNHUB_KEYS:
            try:
                client = finnhub.Client(api_key=api_key)
                weekly = client.company_news(symbol, _from=start, to=end)
                weekly_fmt = [
                    {
                        "date"    : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
                        "headline": n["headline"],
                        "summary" : n["summary"],
                    }
                    for n in weekly
                ]
                weekly_fmt.sort(key=lambda x: x["date"])
                news_data = weekly_fmt
                break  # Thành công, thoát khỏi loop
            except Exception as e:
                print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}")
                time.sleep(3)  # Thêm delay trước khi thử key tiếp theo
                continue
        
        # Nếu không có news data, tạo mock news
        if not news_data:
            news_data = create_mock_news(symbol, start, end)
        
        news_col.append(json.dumps(news_data))
    df["News"] = news_col
    return df

def create_mock_news(symbol: str, start: str, end: str) -> list:
    """Tạo mock news data khi API không hoạt động"""
    mock_news = [
        {
            "date": f"{start}120000",
            "headline": f"{symbol} Shows Strong Performance in Recent Trading",
            "summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment."
        },
        {
            "date": f"{end}090000", 
            "headline": f"Analysts Maintain Positive Outlook for {symbol}",
            "summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects."
        }
    ]
    return mock_news

# ---------- PROMPT CONSTRUCTION -------------------------------------------

def sample_news(news: list[str], k: int = 5) -> list[str]:
    if len(news) <= k: 
        return news
    return [news[i] for i in sorted(random.sample(range(len(news)), k))]

def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
    # Thử với tất cả các Finnhub API keys để lấy company profile
    company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n"
    
    if FINNHUB_KEYS:
        for api_key in FINNHUB_KEYS:
            try:
                client = finnhub.Client(api_key=api_key)
                prof = client.company_profile2(symbol=symbol)
                company_blurb = (
                    f"[Company Introduction]:\n{prof['name']} operates in the "
                    f"{prof['finnhubIndustry']} sector ({prof['country']}). "
                    f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
                    f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
                )
                break  # Thành công, thoát khỏi loop
            except Exception as e:
                print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}")
                time.sleep(2)  # Thêm delay trước khi thử key tiếp theo
                continue
    else:
        print(f"⚠️ Finnhub not configured, using basic company info for {symbol}")

    # Past weeks block
    past_block = ""
    for _, row in df.iterrows():
        term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
        head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
                f"{symbol}'s stock price {term} from "
                f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
        news_items = json.loads(row["News"])
        summaries  = [
            f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
            for n in news_items
            if not n["summary"].startswith("Looking for stock market analysis")
        ]
        past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))

    # Optional basic financials
    if use_basics:
        basics = current_basics(symbol, curday)
        if basics:
            basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
            basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
        else:
            basics_block = "\n[Basic Financials]: not available\n"
    else:
        basics_block = "\n[Basic Financials]: not requested\n"

    horizon = f"{curday} to {n_weeks_before(curday, -1)}"
    final_user_msg = (
        company_blurb
        + past_block
        + basics_block
        + f"\nBased on all information before {curday}, analyse positive "
          "developments and potential concerns for {symbol}, then predict its "
          f"price movement for next week ({horizon})."
    )
    return final_user_msg

# ---------- LLM CALL -------------------------------------------------------

def chat_completion(prompt: str,
                    model: str = "local-llama-cpp",
                    temperature: float = LLM_TEMPERATURE,
                    stream: bool = False,
                    symbol: str = "STOCK") -> str:
    if _LLM is None:
        print(f"⚠️ Local LLM not available, using mock response for {symbol}")
        return create_mock_ai_response(symbol)

    # Build a simple chat-style prompt for Qwen-based SFT
    # Qwen-style chat can work with a plain system + user concatenation for inference
    full_prompt = f"<|im_start|>system\n{SYSTEM_PROMPT}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"

    try:
        if stream:
            out_text = []
            for tok in _LLM(
                full_prompt,
                max_tokens=1024,
                temperature=temperature,
                top_p=0.9,
                repeat_penalty=1.1,
                stop=["<|im_end|>", "</s>", "<|endoftext|>"],
                stream=True,
            ):
                delta = tok.get("choices", [{}])[0].get("text", "")
                if delta:
                    print(delta, end="", flush=True)
                    out_text.append(delta)
            print()
            return "".join(out_text)
        else:
            res = _LLM(
                full_prompt,
                max_tokens=1024,
                temperature=temperature,
                top_p=0.9,
                repeat_penalty=1.1,
                stop=["<|im_end|>", "</s>", "<|endoftext|>"]
            )
            return res["choices"][0]["text"].strip()
    except Exception as e:
        print(f"❌ LLM inference error: {e}")
        return create_mock_ai_response(symbol)

def create_mock_ai_response(symbol: str) -> str:
    """Tạo mock AI response khi Google API không hoạt động"""
    return f"""
[Positive Developments]
• Strong market position and brand recognition for {symbol}
• Recent quarterly earnings showing growth potential
• Positive analyst sentiment and institutional investor interest
• Technological innovation and market expansion opportunities

[Potential Concerns]
• Market volatility and economic uncertainty
• Competitive pressures in the industry
• Regulatory changes that may impact operations
• Global economic factors affecting stock performance

[Prediction & Analysis]
Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns.

Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals.
"""

# ---------- DEBUG / DIAGNOSTICS -----------------------------------------

def _safe_version(mod_name: str) -> str:
    try:
        mod = __import__(mod_name)
        ver = getattr(mod, "__version__", None)
        if ver is None and hasattr(mod, "version"):
            try:
                ver = mod.version.__version__  # type: ignore[attr-defined]
            except Exception:
                ver = None
        return str(ver) if ver is not None else "unknown"
    except Exception:
        return "not installed"

def collect_debug_info() -> dict:
    info = {}
    # Model / app
    info["model_repo"] = GGUF_REPO
    info["model_filename"] = GGUF_FILENAME
    info["llm_initialized"] = _LLM is not None
    info["llama_n_ctx"] = N_CTX
    info["llama_n_threads"] = N_THREADS
    info["llama_n_batch"] = N_BATCH

    # Runtime
    info["python_version"] = platform.python_version()
    info["platform"] = platform.platform()
    info["machine"] = platform.machine()
    info["processor"] = platform.processor()

    # Libraries
    info["libraries"] = {
        "gradio": _safe_version("gradio"),
        "pandas": _safe_version("pandas"),
        "requests": _safe_version("requests"),
        "finnhub": _safe_version("finnhub"),
        "huggingface_hub": _safe_version("huggingface_hub"),
        "llama_cpp": _safe_version("llama_cpp"),
        "torch": _safe_version("torch"),
    }

    # Torch details (if available)
    try:
        import torch  # type: ignore
        cuda_available = bool(getattr(torch.cuda, "is_available", lambda: False)())
        cuda_count = int(getattr(torch.cuda, "device_count", lambda: 0)())
        devices = []
        if cuda_available and cuda_count > 0:
            for i in range(cuda_count):
                dev = {"index": i}
                try:
                    dev["name"] = torch.cuda.get_device_name(i)
                except Exception:
                    dev["name"] = "unknown"
                try:
                    props = torch.cuda.get_device_properties(i)
                    dev["total_mem_gb"] = round(getattr(props, "total_memory", 0) / (1024**3), 2)
                    dev["multi_processor_count"] = getattr(props, "multi_processor_count", None)
                    dev["major"] = getattr(props, "major", None)
                    dev["minor"] = getattr(props, "minor", None)
                except Exception:
                    pass
                try:
                    # These require a context; guard individually
                    dev["mem_reserved_gb"] = round(torch.cuda.memory_reserved(i) / (1024**3), 3)
                    dev["mem_allocated_gb"] = round(torch.cuda.memory_allocated(i) / (1024**3), 3)
                except Exception:
                    pass
                devices.append(dev)
        info["torch"] = {
            "version": getattr(torch, "__version__", "unknown"),
            "cuda_available": cuda_available,
            "cuda_device_count": cuda_count,
            "devices": devices,
        }
    except Exception:
        info["torch"] = {"available": False}

    # CPU / RAM (prefer psutil)
    try:
        import psutil  # type: ignore
        vm = psutil.virtual_memory()
        info["system"] = {
            "cpu_percent": psutil.cpu_percent(interval=0.4),
            "ram_total_gb": round(vm.total / (1024**3), 2),
            "ram_used_gb": round((vm.total - vm.available) / (1024**3), 2),
            "ram_percent": vm.percent,
        }
    except Exception:
        info["system"] = {"cpu_percent": "n/a", "ram_percent": "n/a"}

    # API keys availability (counts only)
    info["api_keys"] = {
        "finnhub_keys_count": len(FINNHUB_KEYS),
        "rapidapi_keys_count": len(RAPIDAPI_KEYS),
    }

    return info

# ---------- MAIN PREDICTION FUNCTION -----------------------------------------

def predict(symbol: str = "AAPL",
            curday: str = today(),
            n_weeks: int = 3,
            use_basics: bool = False,
            stream: bool = False) -> tuple[str, str]:
    try:
        steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
        df    = get_stock_data(symbol, steps)
        df    = attach_news(symbol, df)

        prompt_info = make_prompt(symbol, df, curday, use_basics)
        answer      = chat_completion(prompt_info, stream=stream, symbol=symbol)

        return prompt_info, answer
    except Exception as e:
        error_msg = f"Error in prediction: {str(e)}"
        print(f"Prediction error: {e}")  # Log the error for debugging
        return error_msg, error_msg

# ---------- HUGGINGFACE SPACES INTERFACE -----------------------------------------

def hf_predict(symbol, n_weeks, use_basics):
    # 1. get curday
    curday = date.today().strftime("%Y-%m-%d")
    # 2. call predict
    prompt, answer = predict(
        symbol=symbol.upper(),
        curday=curday,
        n_weeks=int(n_weeks),
        use_basics=bool(use_basics),
        stream=False
    )
    return prompt, answer

# ---------- GRADIO INTERFACE -----------------------------------------

def create_interface():
    with gr.Blocks(
        title="FinRobot Forecaster",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
            margin: auto !important;
        }
        #model_prompt_textbox textarea {
            overflow-y: auto !important;
            max-height: none !important;
            min-height: 400px !important;
            resize: vertical !important;
            white-space: pre-wrap !important;
            word-wrap: break-word !important;
            height: auto !important;
        }
        #model_prompt_textbox {
            height: auto !important;
        }
        #analysis_results_textbox textarea {
            overflow-y: auto !important;
            max-height: none !important;
            min-height: 400px !important;
            resize: vertical !important;
            white-space: pre-wrap !important;
            word-wrap: break-word !important;
            height: auto !important;
        }
        #analysis_results_textbox {
            height: auto !important;
        }
        .textarea textarea {
            overflow-y: auto !important;
            max-height: 500px !important;
            resize: vertical !important;
        }
        .textarea {
            height: auto !important;
            min-height: 300px !important;
        }
        .gradio-textbox {
            height: auto !important;
            max-height: none !important;
        }
        .gradio-textbox textarea {
            height: auto !important;
            max-height: none !important;
            overflow-y: auto !important;
        }
        """
    ) as demo:
        gr.Markdown("""
        # 🤖 FinRobot Forecaster
        
        **AI-powered stock market analysis and prediction using advanced language models**
        
        This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions.
        
        ⚠️ **Note**: Free API keys have daily rate limits. If you encounter errors, the app will use mock data for demonstration purposes.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                symbol = gr.Textbox(
                    label="Stock Symbol", 
                    value="AAPL",
                    placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)",
                    info="Enter the ticker symbol of the stock you want to analyze"
                )
                n_weeks = gr.Slider(
                    1, 6, 
                    value=3, 
                    step=1, 
                    label="Historical Weeks to Analyze",
                    info="Number of weeks of historical data to include in analysis"
                )
                use_basics = gr.Checkbox(
                    label="Include Basic Financials", 
                    value=True,
                    info="Include basic financial metrics in the analysis"
                )
                btn = gr.Button(
                    "🚀 Run Analysis", 
                    variant="primary"
                )
            
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("📊 Analysis Results"):
                        gr.Markdown("**AI Analysis & Prediction**")
                        output_answer = gr.Textbox(
                            label="", 
                            lines=40,
                            show_copy_button=True,
                            interactive=False,
                            placeholder="AI analysis and predictions will appear here...",
                            container=True,
                            scale=1,
                            elem_id="analysis_results_textbox"
                        )
                    with gr.Tab("🔍 Model Prompt"):
                        gr.Markdown("**Generated Prompt**")
                        output_prompt = gr.Textbox(
                            label="", 
                            lines=40,
                            show_copy_button=True,
                            interactive=False,
                            placeholder="Generated prompt will appear here...",
                            container=True,
                            scale=1,
                            elem_id="model_prompt_textbox"
                        )
                    with gr.Tab("🛠️ Debug Info"):
                        gr.Markdown("**Runtime Diagnostics**")
                        debug_json = gr.JSON(label="Debug Data", value=None)
                        refresh_btn = gr.Button("🔄 Refresh Debug Info")
        
        # Examples
        gr.Examples(
            examples=[
                ["AAPL", 3, False],
                ["MSFT", 4, True],
                ["GOOGL", 2, False],
                ["TSLA", 5, True],
                ["NVDA", 3, True]
            ],
            inputs=[symbol, n_weeks, use_basics],
            label="💡 Try these examples"
        )
        
        # Event handlers
        btn.click(
            fn=hf_predict,
            inputs=[symbol, n_weeks, use_basics],
            outputs=[output_prompt, output_answer],
            show_progress=True
        )

        # Debug tab handlers
        def _collect_debug_info_wrapper():
            try:
                return collect_debug_info()
            except Exception as e:
                return {"error": str(e)}

        refresh_btn.click(
            fn=_collect_debug_info_wrapper,
            inputs=[],
            outputs=[debug_json],
            show_progress=False
        )

        # Populate on load
        demo.load(
            fn=_collect_debug_info_wrapper,
            inputs=None,
            outputs=[debug_json]
        )
        
        
        # Footer
        gr.Markdown("""
        ---
        **Disclaimer**: This application is for educational and research purposes only. 
        The predictions and analysis provided should not be considered as financial advice. 
        Always consult with qualified financial professionals before making investment decisions.
        """)
    
    return demo

# ---------- MAIN EXECUTION -----------------------------------------

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        debug=False,
        quiet=True
    )