Spaces:
Build error
Build error
Upload 2 files
Browse files- app1 - claude-4.1-opus.py +705 -0
- app2 - gpt-5-high.py +692 -0
app1 - claude-4.1-opus.py
ADDED
|
@@ -0,0 +1,705 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
App entry uses Fin-o1-14B GGUF via llama.cpp on CPU-only Spaces.
|
| 3 |
+
Removed heavy transformers/peft and Google Gemini imports.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import time
|
| 8 |
+
import random
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
from datetime import date, datetime, timedelta
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import finnhub
|
| 14 |
+
# Removed Google Generative AI and transformer-based imports (not used)
|
| 15 |
+
from io import StringIO
|
| 16 |
+
import requests
|
| 17 |
+
from requests.adapters import HTTPAdapter
|
| 18 |
+
from urllib3.util.retry import Retry
|
| 19 |
+
from transformers import AutoModel # kept minimal placeholder to avoid breaking any implicit refs
|
| 20 |
+
from huggingface_hub import hf_hub_download
|
| 21 |
+
from llama_cpp import Llama
|
| 22 |
+
|
| 23 |
+
# Suppress Google Cloud warnings
|
| 24 |
+
os.environ['GRPC_VERBOSITY'] = 'ERROR'
|
| 25 |
+
os.environ['GRPC_TRACE'] = ''
|
| 26 |
+
|
| 27 |
+
# Suppress other warnings
|
| 28 |
+
import warnings
|
| 29 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
| 30 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
| 31 |
+
|
| 32 |
+
# ---------- CẤU HÌNH ---------------------------------------------------------
|
| 33 |
+
|
| 34 |
+
GEMINI_MODEL = "gemini-2.5-pro"
|
| 35 |
+
|
| 36 |
+
# Fin-o1-14B GGUF via llama.cpp configuration (CPU-only)
|
| 37 |
+
FIN_O1_REPO = os.getenv("FIN_O1_REPO", "mradermacher/Fin-o1-14B-GGUF")
|
| 38 |
+
# Default to Q4_K_S (~8.7GB) for 16GB RAM Spaces; allow override via env
|
| 39 |
+
FIN_O1_QUANT = os.getenv("FIN_O1_QUANT", "Q6_K")
|
| 40 |
+
FIN_O1_FILENAME = os.getenv("FIN_O1_FILENAME", f"Fin-o1-14B.{FIN_O1_QUANT}.gguf")
|
| 41 |
+
LLAMA_CONTEXT_SIZE = int(os.getenv("LLAMA_CONTEXT_SIZE", "4096"))
|
| 42 |
+
LLAMA_THREADS = int(os.getenv("LLAMA_THREADS", str(os.cpu_count() or 2)))
|
| 43 |
+
LLAMA_N_GPU_LAYERS = int(os.getenv("LLAMA_N_GPU_LAYERS", "0")) # CPU-only on HF Spaces
|
| 44 |
+
|
| 45 |
+
# Singleton for llama.cpp model
|
| 46 |
+
_LLAMA_INSTANCE = None
|
| 47 |
+
|
| 48 |
+
def _resolve_fin_o1_gguf_path() -> str:
|
| 49 |
+
"""Download (if needed) and return local path to the desired GGUF."""
|
| 50 |
+
try:
|
| 51 |
+
model_path = hf_hub_download(
|
| 52 |
+
repo_id=FIN_O1_REPO,
|
| 53 |
+
filename=FIN_O1_FILENAME,
|
| 54 |
+
repo_type="model",
|
| 55 |
+
)
|
| 56 |
+
return model_path
|
| 57 |
+
except Exception as e:
|
| 58 |
+
raise RuntimeError(f"Failed to download GGUF {FIN_O1_FILENAME} from {FIN_O1_REPO}: {e}")
|
| 59 |
+
|
| 60 |
+
def _get_llama_instance() -> Llama:
|
| 61 |
+
global _LLAMA_INSTANCE
|
| 62 |
+
if _LLAMA_INSTANCE is not None:
|
| 63 |
+
return _LLAMA_INSTANCE
|
| 64 |
+
model_path = _resolve_fin_o1_gguf_path()
|
| 65 |
+
_LLAMA_INSTANCE = Llama(
|
| 66 |
+
model_path=model_path,
|
| 67 |
+
n_ctx=LLAMA_CONTEXT_SIZE,
|
| 68 |
+
n_threads=LLAMA_THREADS,
|
| 69 |
+
n_gpu_layers=LLAMA_N_GPU_LAYERS,
|
| 70 |
+
verbose=False,
|
| 71 |
+
)
|
| 72 |
+
return _LLAMA_INSTANCE
|
| 73 |
+
|
| 74 |
+
# RapidAPI Configuration
|
| 75 |
+
RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com"
|
| 76 |
+
|
| 77 |
+
# Load Finnhub API keys from single secret (multiple keys separated by newlines)
|
| 78 |
+
FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "")
|
| 79 |
+
if FINNHUB_KEYS_RAW:
|
| 80 |
+
FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()]
|
| 81 |
+
else:
|
| 82 |
+
FINNHUB_KEYS = []
|
| 83 |
+
|
| 84 |
+
# Load RapidAPI keys from single secret (multiple keys separated by newlines)
|
| 85 |
+
RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "")
|
| 86 |
+
if RAPIDAPI_KEYS_RAW:
|
| 87 |
+
RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()]
|
| 88 |
+
else:
|
| 89 |
+
RAPIDAPI_KEYS = []
|
| 90 |
+
|
| 91 |
+
# Load Google API keys from single secret (multiple keys separated by newlines)
|
| 92 |
+
GOOGLE_API_KEYS_RAW = os.getenv("GOOGLE_API_KEYS", "")
|
| 93 |
+
if GOOGLE_API_KEYS_RAW:
|
| 94 |
+
GOOGLE_API_KEYS = [key.strip() for key in GOOGLE_API_KEYS_RAW.split('\n') if key.strip()]
|
| 95 |
+
else:
|
| 96 |
+
GOOGLE_API_KEYS = []
|
| 97 |
+
|
| 98 |
+
# Filter out empty keys
|
| 99 |
+
FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()]
|
| 100 |
+
GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key.strip()]
|
| 101 |
+
|
| 102 |
+
# Validate that we have at least one key for each service
|
| 103 |
+
if not FINNHUB_KEYS:
|
| 104 |
+
print("⚠️ Warning: No Finnhub API keys found in secrets")
|
| 105 |
+
if not RAPIDAPI_KEYS:
|
| 106 |
+
print("⚠️ Warning: No RapidAPI keys found in secrets")
|
| 107 |
+
if not GOOGLE_API_KEYS:
|
| 108 |
+
print("⚠️ Warning: No Google API keys found in secrets")
|
| 109 |
+
|
| 110 |
+
# Chọn ngẫu nhiên một khóa API để bắt đầu (if available)
|
| 111 |
+
GOOGLE_API_KEY = random.choice(GOOGLE_API_KEYS) if GOOGLE_API_KEYS else None
|
| 112 |
+
|
| 113 |
+
print("=" * 50)
|
| 114 |
+
print("🚀 FinRobot Forecaster Starting Up...")
|
| 115 |
+
print("=" * 50)
|
| 116 |
+
if FINNHUB_KEYS:
|
| 117 |
+
print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded")
|
| 118 |
+
else:
|
| 119 |
+
print("📊 Finnhub API: Not configured")
|
| 120 |
+
if RAPIDAPI_KEYS:
|
| 121 |
+
print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)")
|
| 122 |
+
else:
|
| 123 |
+
print("📈 RapidAPI Alpha Vantage: Not configured")
|
| 124 |
+
if GOOGLE_API_KEYS:
|
| 125 |
+
print(f"🤖 Google Gemini API: {len(GOOGLE_API_KEYS)} keys loaded")
|
| 126 |
+
else:
|
| 127 |
+
print("🤖 Google Gemini API: Not configured")
|
| 128 |
+
print("✅ Application started successfully!")
|
| 129 |
+
print("=" * 50)
|
| 130 |
+
|
| 131 |
+
print("ℹ️ Fin-o1 via llama.cpp will be used for inference (no Google calls).")
|
| 132 |
+
|
| 133 |
+
# Cấu hình Finnhub client (if keys available)
|
| 134 |
+
if FINNHUB_KEYS:
|
| 135 |
+
# Configure with first key for initial setup
|
| 136 |
+
finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0])
|
| 137 |
+
print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys")
|
| 138 |
+
else:
|
| 139 |
+
finnhub_client = None
|
| 140 |
+
print("⚠️ Finnhub not configured - will use mock news data")
|
| 141 |
+
|
| 142 |
+
# Tạo session với retry strategy cho requests
|
| 143 |
+
def create_session():
|
| 144 |
+
session = requests.Session()
|
| 145 |
+
retry_strategy = Retry(
|
| 146 |
+
total=3,
|
| 147 |
+
backoff_factor=1,
|
| 148 |
+
status_forcelist=[429, 500, 502, 503, 504],
|
| 149 |
+
)
|
| 150 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
| 151 |
+
session.mount("http://", adapter)
|
| 152 |
+
session.mount("https://", adapter)
|
| 153 |
+
return session
|
| 154 |
+
|
| 155 |
+
# Tạo session global
|
| 156 |
+
requests_session = create_session()
|
| 157 |
+
|
| 158 |
+
SYSTEM_PROMPT = (
|
| 159 |
+
"You are a seasoned stock-market analyst. "
|
| 160 |
+
"Given recent company news and optional basic financials, "
|
| 161 |
+
"return:\n"
|
| 162 |
+
"[Positive Developments] – 2-4 bullets\n"
|
| 163 |
+
"[Potential Concerns] – 2-4 bullets\n"
|
| 164 |
+
"[Prediction & Analysis] – a one-week price outlook with rationale."
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# ---------- UTILITY HELPERS ----------------------------------------
|
| 168 |
+
|
| 169 |
+
def today() -> str:
|
| 170 |
+
return date.today().strftime("%Y-%m-%d")
|
| 171 |
+
|
| 172 |
+
def n_weeks_before(date_string: str, n: int) -> str:
|
| 173 |
+
return (datetime.strptime(date_string, "%Y-%m-%d") -
|
| 174 |
+
timedelta(days=7 * n)).strftime("%Y-%m-%d")
|
| 175 |
+
|
| 176 |
+
# ---------- DATA FETCHING --------------------------------------------------
|
| 177 |
+
|
| 178 |
+
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
|
| 179 |
+
# Thử tất cả RapidAPI Alpha Vantage keys
|
| 180 |
+
for rapidapi_key in RAPIDAPI_KEYS:
|
| 181 |
+
try:
|
| 182 |
+
print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)")
|
| 183 |
+
|
| 184 |
+
# RapidAPI Alpha Vantage endpoint
|
| 185 |
+
url = f"https://{RAPIDAPI_HOST}/query"
|
| 186 |
+
|
| 187 |
+
headers = {
|
| 188 |
+
"X-RapidAPI-Host": RAPIDAPI_HOST,
|
| 189 |
+
"X-RapidAPI-Key": rapidapi_key
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
params = {
|
| 193 |
+
"function": "TIME_SERIES_DAILY",
|
| 194 |
+
"symbol": symbol,
|
| 195 |
+
"outputsize": "full",
|
| 196 |
+
"datatype": "csv"
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
# Thử lại 3 lần với RapidAPI key hiện tại
|
| 200 |
+
for attempt in range(3):
|
| 201 |
+
try:
|
| 202 |
+
resp = requests_session.get(url, headers=headers, params=params, timeout=30)
|
| 203 |
+
if not resp.ok:
|
| 204 |
+
print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
|
| 205 |
+
time.sleep(2 ** attempt)
|
| 206 |
+
continue
|
| 207 |
+
|
| 208 |
+
text = resp.text.strip()
|
| 209 |
+
if text.startswith("{"):
|
| 210 |
+
info = resp.json()
|
| 211 |
+
msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info)
|
| 212 |
+
if "rate limit" in msg.lower() or "quota" in msg.lower():
|
| 213 |
+
print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key")
|
| 214 |
+
break # Thử key tiếp theo
|
| 215 |
+
raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}")
|
| 216 |
+
|
| 217 |
+
# Parse CSV data
|
| 218 |
+
df = pd.read_csv(StringIO(text))
|
| 219 |
+
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
|
| 220 |
+
df[date_col] = pd.to_datetime(df[date_col])
|
| 221 |
+
df = df.sort_values(date_col).set_index(date_col)
|
| 222 |
+
|
| 223 |
+
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
|
| 224 |
+
for i in range(len(steps) - 1):
|
| 225 |
+
s_date = pd.to_datetime(steps[i])
|
| 226 |
+
e_date = pd.to_datetime(steps[i+1])
|
| 227 |
+
seg = df.loc[s_date:e_date]
|
| 228 |
+
if seg.empty:
|
| 229 |
+
raise RuntimeError(
|
| 230 |
+
f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]} – {steps[i+1]}"
|
| 231 |
+
)
|
| 232 |
+
data["Start Date"].append(seg.index[0])
|
| 233 |
+
data["Start Price"].append(seg["close"].iloc[0])
|
| 234 |
+
data["End Date"].append(seg.index[-1])
|
| 235 |
+
data["End Price"].append(seg["close"].iloc[-1])
|
| 236 |
+
time.sleep(1) # RapidAPI has higher limits
|
| 237 |
+
|
| 238 |
+
print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)")
|
| 239 |
+
return pd.DataFrame(data)
|
| 240 |
+
|
| 241 |
+
except requests.exceptions.Timeout:
|
| 242 |
+
print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
|
| 243 |
+
if attempt < 2:
|
| 244 |
+
time.sleep(5 * (attempt + 1))
|
| 245 |
+
continue
|
| 246 |
+
else:
|
| 247 |
+
break
|
| 248 |
+
except requests.exceptions.RequestException as e:
|
| 249 |
+
print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}")
|
| 250 |
+
if attempt < 2:
|
| 251 |
+
time.sleep(3)
|
| 252 |
+
continue
|
| 253 |
+
else:
|
| 254 |
+
break
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}")
|
| 258 |
+
continue # Thử key tiếp theo
|
| 259 |
+
|
| 260 |
+
# Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail
|
| 261 |
+
print("⚠️ All RapidAPI keys failed, using mock data for demonstration...")
|
| 262 |
+
return create_mock_stock_data(symbol, steps)
|
| 263 |
+
|
| 264 |
+
def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
|
| 265 |
+
"""Tạo mock data để demo khi API không hoạt động"""
|
| 266 |
+
import numpy as np
|
| 267 |
+
|
| 268 |
+
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
|
| 269 |
+
|
| 270 |
+
# Giá cơ bản khác nhau cho các symbol khác nhau
|
| 271 |
+
base_prices = {
|
| 272 |
+
"AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0,
|
| 273 |
+
"TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0
|
| 274 |
+
}
|
| 275 |
+
base_price = base_prices.get(symbol.upper(), 150.0)
|
| 276 |
+
|
| 277 |
+
for i in range(len(steps) - 1):
|
| 278 |
+
s_date = pd.to_datetime(steps[i])
|
| 279 |
+
e_date = pd.to_datetime(steps[i+1])
|
| 280 |
+
|
| 281 |
+
# Tạo giá ngẫu nhiên với xu hướng tăng nhẹ
|
| 282 |
+
start_price = base_price + np.random.normal(0, 5)
|
| 283 |
+
end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ
|
| 284 |
+
|
| 285 |
+
data["Start Date"].append(s_date)
|
| 286 |
+
data["Start Price"].append(round(start_price, 2))
|
| 287 |
+
data["End Date"].append(e_date)
|
| 288 |
+
data["End Price"].append(round(end_price, 2))
|
| 289 |
+
|
| 290 |
+
base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo
|
| 291 |
+
|
| 292 |
+
return pd.DataFrame(data)
|
| 293 |
+
|
| 294 |
+
def current_basics(symbol: str, curday: str) -> dict:
|
| 295 |
+
# Check if Finnhub is configured
|
| 296 |
+
if not FINNHUB_KEYS:
|
| 297 |
+
print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}")
|
| 298 |
+
return {}
|
| 299 |
+
|
| 300 |
+
# Thử với tất cả các Finnhub API keys
|
| 301 |
+
for api_key in FINNHUB_KEYS:
|
| 302 |
+
try:
|
| 303 |
+
client = finnhub.Client(api_key=api_key)
|
| 304 |
+
# Thêm timeout cho Finnhub client
|
| 305 |
+
raw = client.company_basic_financials(symbol, "all")
|
| 306 |
+
if not raw["series"]:
|
| 307 |
+
continue
|
| 308 |
+
merged = defaultdict(dict)
|
| 309 |
+
for metric, vals in raw["series"]["quarterly"].items():
|
| 310 |
+
for v in vals:
|
| 311 |
+
merged[v["period"]][metric] = v["v"]
|
| 312 |
+
|
| 313 |
+
latest = max((p for p in merged if p <= curday), default=None)
|
| 314 |
+
if latest is None:
|
| 315 |
+
continue
|
| 316 |
+
d = dict(merged[latest])
|
| 317 |
+
d["period"] = latest
|
| 318 |
+
return d
|
| 319 |
+
except Exception as e:
|
| 320 |
+
print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}")
|
| 321 |
+
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
|
| 322 |
+
continue
|
| 323 |
+
return {}
|
| 324 |
+
|
| 325 |
+
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
|
| 326 |
+
news_col = []
|
| 327 |
+
for _, row in df.iterrows():
|
| 328 |
+
start = row["Start Date"].strftime("%Y-%m-%d")
|
| 329 |
+
end = row["End Date"].strftime("%Y-%m-%d")
|
| 330 |
+
time.sleep(2) # Tăng delay để tránh rate limit
|
| 331 |
+
|
| 332 |
+
# Check if Finnhub is configured
|
| 333 |
+
if not FINNHUB_KEYS:
|
| 334 |
+
print(f"⚠️ Finnhub not configured, using mock news for {symbol}")
|
| 335 |
+
news_data = create_mock_news(symbol, start, end)
|
| 336 |
+
news_col.append(json.dumps(news_data))
|
| 337 |
+
continue
|
| 338 |
+
|
| 339 |
+
# Thử với tất cả các Finnhub API keys
|
| 340 |
+
news_data = []
|
| 341 |
+
for api_key in FINNHUB_KEYS:
|
| 342 |
+
try:
|
| 343 |
+
client = finnhub.Client(api_key=api_key)
|
| 344 |
+
weekly = client.company_news(symbol, _from=start, to=end)
|
| 345 |
+
weekly_fmt = [
|
| 346 |
+
{
|
| 347 |
+
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
|
| 348 |
+
"headline": n["headline"],
|
| 349 |
+
"summary" : n["summary"],
|
| 350 |
+
}
|
| 351 |
+
for n in weekly
|
| 352 |
+
]
|
| 353 |
+
weekly_fmt.sort(key=lambda x: x["date"])
|
| 354 |
+
news_data = weekly_fmt
|
| 355 |
+
break # Thành công, thoát khỏi loop
|
| 356 |
+
except Exception as e:
|
| 357 |
+
print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}")
|
| 358 |
+
time.sleep(3) # Thêm delay trước khi thử key tiếp theo
|
| 359 |
+
continue
|
| 360 |
+
|
| 361 |
+
# Nếu không có news data, tạo mock news
|
| 362 |
+
if not news_data:
|
| 363 |
+
news_data = create_mock_news(symbol, start, end)
|
| 364 |
+
|
| 365 |
+
news_col.append(json.dumps(news_data))
|
| 366 |
+
df["News"] = news_col
|
| 367 |
+
return df
|
| 368 |
+
|
| 369 |
+
def create_mock_news(symbol: str, start: str, end: str) -> list:
|
| 370 |
+
"""Tạo mock news data khi API không hoạt động"""
|
| 371 |
+
mock_news = [
|
| 372 |
+
{
|
| 373 |
+
"date": f"{start}120000",
|
| 374 |
+
"headline": f"{symbol} Shows Strong Performance in Recent Trading",
|
| 375 |
+
"summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment."
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"date": f"{end}090000",
|
| 379 |
+
"headline": f"Analysts Maintain Positive Outlook for {symbol}",
|
| 380 |
+
"summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects."
|
| 381 |
+
}
|
| 382 |
+
]
|
| 383 |
+
return mock_news
|
| 384 |
+
|
| 385 |
+
# ---------- PROMPT CONSTRUCTION -------------------------------------------
|
| 386 |
+
|
| 387 |
+
def sample_news(news: list[str], k: int = 5) -> list[str]:
|
| 388 |
+
if len(news) <= k:
|
| 389 |
+
return news
|
| 390 |
+
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
|
| 391 |
+
|
| 392 |
+
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
|
| 393 |
+
# Thử với tất cả các Finnhub API keys để lấy company profile
|
| 394 |
+
company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n"
|
| 395 |
+
|
| 396 |
+
if FINNHUB_KEYS:
|
| 397 |
+
for api_key in FINNHUB_KEYS:
|
| 398 |
+
try:
|
| 399 |
+
client = finnhub.Client(api_key=api_key)
|
| 400 |
+
prof = client.company_profile2(symbol=symbol)
|
| 401 |
+
company_blurb = (
|
| 402 |
+
f"[Company Introduction]:\n{prof['name']} operates in the "
|
| 403 |
+
f"{prof['finnhubIndustry']} sector ({prof['country']}). "
|
| 404 |
+
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
|
| 405 |
+
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
|
| 406 |
+
)
|
| 407 |
+
break # Thành công, thoát khỏi loop
|
| 408 |
+
except Exception as e:
|
| 409 |
+
print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}")
|
| 410 |
+
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
|
| 411 |
+
continue
|
| 412 |
+
else:
|
| 413 |
+
print(f"⚠️ Finnhub not configured, using basic company info for {symbol}")
|
| 414 |
+
|
| 415 |
+
# Past weeks block
|
| 416 |
+
past_block = ""
|
| 417 |
+
for _, row in df.iterrows():
|
| 418 |
+
term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
|
| 419 |
+
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
|
| 420 |
+
f"{symbol}'s stock price {term} from "
|
| 421 |
+
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
|
| 422 |
+
news_items = json.loads(row["News"])
|
| 423 |
+
summaries = [
|
| 424 |
+
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
|
| 425 |
+
for n in news_items
|
| 426 |
+
if not n["summary"].startswith("Looking for stock market analysis")
|
| 427 |
+
]
|
| 428 |
+
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
|
| 429 |
+
|
| 430 |
+
# Optional basic financials
|
| 431 |
+
if use_basics:
|
| 432 |
+
basics = current_basics(symbol, curday)
|
| 433 |
+
if basics:
|
| 434 |
+
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
|
| 435 |
+
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
|
| 436 |
+
else:
|
| 437 |
+
basics_block = "\n[Basic Financials]: not available\n"
|
| 438 |
+
else:
|
| 439 |
+
basics_block = "\n[Basic Financials]: not requested\n"
|
| 440 |
+
|
| 441 |
+
horizon = f"{curday} to {n_weeks_before(curday, -1)}"
|
| 442 |
+
final_user_msg = (
|
| 443 |
+
company_blurb
|
| 444 |
+
+ past_block
|
| 445 |
+
+ basics_block
|
| 446 |
+
+ f"\nBased on all information before {curday}, analyse positive "
|
| 447 |
+
"developments and potential concerns for {symbol}, then predict its "
|
| 448 |
+
f"price movement for next week ({horizon})."
|
| 449 |
+
)
|
| 450 |
+
return final_user_msg
|
| 451 |
+
|
| 452 |
+
# ---------- LLM CALL -------------------------------------------------------
|
| 453 |
+
|
| 454 |
+
def chat_completion(prompt: str,
|
| 455 |
+
model: str = "Fin-o1-14B-GGUF",
|
| 456 |
+
temperature: float = 0.2,
|
| 457 |
+
stream: bool = False,
|
| 458 |
+
symbol: str = "STOCK") -> str:
|
| 459 |
+
"""Generate completion using Fin-o1-14B GGUF via llama.cpp.
|
| 460 |
+
|
| 461 |
+
Note: streaming is not implemented for llama.cpp in this app's UI path.
|
| 462 |
+
"""
|
| 463 |
+
try:
|
| 464 |
+
llama = _get_llama_instance()
|
| 465 |
+
full_prompt = f"{SYSTEM_PROMPT}\n\n{prompt}"
|
| 466 |
+
# Conservative defaults for CPU-only inference on 16GB RAM
|
| 467 |
+
max_tokens = int(os.getenv("LLAMA_MAX_TOKENS", "1024"))
|
| 468 |
+
top_p = float(os.getenv("LLAMA_TOP_P", "0.9"))
|
| 469 |
+
top_k = int(os.getenv("LLAMA_TOP_K", "40"))
|
| 470 |
+
repeat_penalty = float(os.getenv("LLAMA_REPEAT_PENALTY", "1.1"))
|
| 471 |
+
|
| 472 |
+
if stream:
|
| 473 |
+
print("ℹ️ Streaming not enabled for llama.cpp path; generating non-streaming output.")
|
| 474 |
+
|
| 475 |
+
result = llama.create_completion(
|
| 476 |
+
prompt=full_prompt,
|
| 477 |
+
temperature=temperature,
|
| 478 |
+
max_tokens=max_tokens,
|
| 479 |
+
top_p=top_p,
|
| 480 |
+
top_k=top_k,
|
| 481 |
+
repeat_penalty=repeat_penalty,
|
| 482 |
+
)
|
| 483 |
+
return result.get("choices", [{}])[0].get("text", "")
|
| 484 |
+
except Exception as e:
|
| 485 |
+
print(f"⚠️ Fin-o1 llama.cpp inference failed for {symbol}: {e}")
|
| 486 |
+
return create_mock_ai_response(symbol)
|
| 487 |
+
|
| 488 |
+
def create_mock_ai_response(symbol: str) -> str:
|
| 489 |
+
"""Tạo mock AI response khi Google API không hoạt động"""
|
| 490 |
+
return f"""
|
| 491 |
+
[Positive Developments]
|
| 492 |
+
• Strong market position and brand recognition for {symbol}
|
| 493 |
+
• Recent quarterly earnings showing growth potential
|
| 494 |
+
• Positive analyst sentiment and institutional investor interest
|
| 495 |
+
• Technological innovation and market expansion opportunities
|
| 496 |
+
|
| 497 |
+
[Potential Concerns]
|
| 498 |
+
• Market volatility and economic uncertainty
|
| 499 |
+
• Competitive pressures in the industry
|
| 500 |
+
• Regulatory changes that may impact operations
|
| 501 |
+
• Global economic factors affecting stock performance
|
| 502 |
+
|
| 503 |
+
[Prediction & Analysis]
|
| 504 |
+
Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns.
|
| 505 |
+
|
| 506 |
+
Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals.
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
# ---------- MAIN PREDICTION FUNCTION -----------------------------------------
|
| 510 |
+
|
| 511 |
+
def predict(symbol: str = "AAPL",
|
| 512 |
+
curday: str = today(),
|
| 513 |
+
n_weeks: int = 3,
|
| 514 |
+
use_basics: bool = False,
|
| 515 |
+
stream: bool = False) -> tuple[str, str]:
|
| 516 |
+
try:
|
| 517 |
+
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
|
| 518 |
+
df = get_stock_data(symbol, steps)
|
| 519 |
+
df = attach_news(symbol, df)
|
| 520 |
+
|
| 521 |
+
prompt_info = make_prompt(symbol, df, curday, use_basics)
|
| 522 |
+
answer = chat_completion(prompt_info, stream=stream, symbol=symbol)
|
| 523 |
+
|
| 524 |
+
return prompt_info, answer
|
| 525 |
+
except Exception as e:
|
| 526 |
+
error_msg = f"Error in prediction: {str(e)}"
|
| 527 |
+
print(f"Prediction error: {e}") # Log the error for debugging
|
| 528 |
+
return error_msg, error_msg
|
| 529 |
+
|
| 530 |
+
# ---------- HUGGINGFACE SPACES INTERFACE -----------------------------------------
|
| 531 |
+
|
| 532 |
+
def hf_predict(symbol, n_weeks, use_basics):
|
| 533 |
+
# 1. get curday
|
| 534 |
+
curday = date.today().strftime("%Y-%m-%d")
|
| 535 |
+
# 2. call predict
|
| 536 |
+
prompt, answer = predict(
|
| 537 |
+
symbol=symbol.upper(),
|
| 538 |
+
curday=curday,
|
| 539 |
+
n_weeks=int(n_weeks),
|
| 540 |
+
use_basics=bool(use_basics),
|
| 541 |
+
stream=False
|
| 542 |
+
)
|
| 543 |
+
return prompt, answer
|
| 544 |
+
|
| 545 |
+
# ---------- GRADIO INTERFACE -----------------------------------------
|
| 546 |
+
|
| 547 |
+
def create_interface():
|
| 548 |
+
with gr.Blocks(
|
| 549 |
+
title="FinRobot Forecaster",
|
| 550 |
+
theme=gr.themes.Soft(),
|
| 551 |
+
css="""
|
| 552 |
+
.gradio-container {
|
| 553 |
+
max-width: 1200px !important;
|
| 554 |
+
margin: auto !important;
|
| 555 |
+
}
|
| 556 |
+
#model_prompt_textbox textarea {
|
| 557 |
+
overflow-y: auto !important;
|
| 558 |
+
max-height: none !important;
|
| 559 |
+
min-height: 400px !important;
|
| 560 |
+
resize: vertical !important;
|
| 561 |
+
white-space: pre-wrap !important;
|
| 562 |
+
word-wrap: break-word !important;
|
| 563 |
+
height: auto !important;
|
| 564 |
+
}
|
| 565 |
+
#model_prompt_textbox {
|
| 566 |
+
height: auto !important;
|
| 567 |
+
}
|
| 568 |
+
#analysis_results_textbox textarea {
|
| 569 |
+
overflow-y: auto !important;
|
| 570 |
+
max-height: none !important;
|
| 571 |
+
min-height: 400px !important;
|
| 572 |
+
resize: vertical !important;
|
| 573 |
+
white-space: pre-wrap !important;
|
| 574 |
+
word-wrap: break-word !important;
|
| 575 |
+
height: auto !important;
|
| 576 |
+
}
|
| 577 |
+
#analysis_results_textbox {
|
| 578 |
+
height: auto !important;
|
| 579 |
+
}
|
| 580 |
+
.textarea textarea {
|
| 581 |
+
overflow-y: auto !important;
|
| 582 |
+
max-height: 500px !important;
|
| 583 |
+
resize: vertical !important;
|
| 584 |
+
}
|
| 585 |
+
.textarea {
|
| 586 |
+
height: auto !important;
|
| 587 |
+
min-height: 300px !important;
|
| 588 |
+
}
|
| 589 |
+
.gradio-textbox {
|
| 590 |
+
height: auto !important;
|
| 591 |
+
max-height: none !important;
|
| 592 |
+
}
|
| 593 |
+
.gradio-textbox textarea {
|
| 594 |
+
height: auto !important;
|
| 595 |
+
max-height: none !important;
|
| 596 |
+
overflow-y: auto !important;
|
| 597 |
+
}
|
| 598 |
+
"""
|
| 599 |
+
) as demo:
|
| 600 |
+
gr.Markdown("""
|
| 601 |
+
# 🤖 FinRobot Forecaster
|
| 602 |
+
|
| 603 |
+
**AI-powered stock market analysis and prediction using advanced language models**
|
| 604 |
+
|
| 605 |
+
This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions.
|
| 606 |
+
|
| 607 |
+
⚠️ **Note**: Free API keys have daily rate limits. If you encounter errors, the app will use mock data for demonstration purposes.
|
| 608 |
+
""")
|
| 609 |
+
|
| 610 |
+
with gr.Row():
|
| 611 |
+
with gr.Column(scale=1):
|
| 612 |
+
symbol = gr.Textbox(
|
| 613 |
+
label="Stock Symbol",
|
| 614 |
+
value="AAPL",
|
| 615 |
+
placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)",
|
| 616 |
+
info="Enter the ticker symbol of the stock you want to analyze"
|
| 617 |
+
)
|
| 618 |
+
n_weeks = gr.Slider(
|
| 619 |
+
1, 6,
|
| 620 |
+
value=3,
|
| 621 |
+
step=1,
|
| 622 |
+
label="Historical Weeks to Analyze",
|
| 623 |
+
info="Number of weeks of historical data to include in analysis"
|
| 624 |
+
)
|
| 625 |
+
use_basics = gr.Checkbox(
|
| 626 |
+
label="Include Basic Financials",
|
| 627 |
+
value=True,
|
| 628 |
+
info="Include basic financial metrics in the analysis"
|
| 629 |
+
)
|
| 630 |
+
btn = gr.Button(
|
| 631 |
+
"🚀 Run Analysis",
|
| 632 |
+
variant="primary"
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
with gr.Column(scale=2):
|
| 636 |
+
with gr.Tabs():
|
| 637 |
+
with gr.Tab("📊 Analysis Results"):
|
| 638 |
+
gr.Markdown("**AI Analysis & Prediction**")
|
| 639 |
+
output_answer = gr.Textbox(
|
| 640 |
+
label="",
|
| 641 |
+
lines=40,
|
| 642 |
+
show_copy_button=True,
|
| 643 |
+
interactive=False,
|
| 644 |
+
placeholder="AI analysis and predictions will appear here...",
|
| 645 |
+
container=True,
|
| 646 |
+
scale=1,
|
| 647 |
+
elem_id="analysis_results_textbox"
|
| 648 |
+
)
|
| 649 |
+
with gr.Tab("🔍 Model Prompt"):
|
| 650 |
+
gr.Markdown("**Generated Prompt**")
|
| 651 |
+
output_prompt = gr.Textbox(
|
| 652 |
+
label="",
|
| 653 |
+
lines=40,
|
| 654 |
+
show_copy_button=True,
|
| 655 |
+
interactive=False,
|
| 656 |
+
placeholder="Generated prompt will appear here...",
|
| 657 |
+
container=True,
|
| 658 |
+
scale=1,
|
| 659 |
+
elem_id="model_prompt_textbox"
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
# Examples
|
| 663 |
+
gr.Examples(
|
| 664 |
+
examples=[
|
| 665 |
+
["AAPL", 3, False],
|
| 666 |
+
["MSFT", 4, True],
|
| 667 |
+
["GOOGL", 2, False],
|
| 668 |
+
["TSLA", 5, True],
|
| 669 |
+
["NVDA", 3, True]
|
| 670 |
+
],
|
| 671 |
+
inputs=[symbol, n_weeks, use_basics],
|
| 672 |
+
label="💡 Try these examples"
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
# Event handlers
|
| 676 |
+
btn.click(
|
| 677 |
+
fn=hf_predict,
|
| 678 |
+
inputs=[symbol, n_weeks, use_basics],
|
| 679 |
+
outputs=[output_prompt, output_answer],
|
| 680 |
+
show_progress=True
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
# Footer
|
| 685 |
+
gr.Markdown("""
|
| 686 |
+
---
|
| 687 |
+
**Disclaimer**: This application is for educational and research purposes only.
|
| 688 |
+
The predictions and analysis provided should not be considered as financial advice.
|
| 689 |
+
Always consult with qualified financial professionals before making investment decisions.
|
| 690 |
+
""")
|
| 691 |
+
|
| 692 |
+
return demo
|
| 693 |
+
|
| 694 |
+
# ---------- MAIN EXECUTION -----------------------------------------
|
| 695 |
+
|
| 696 |
+
if __name__ == "__main__":
|
| 697 |
+
demo = create_interface()
|
| 698 |
+
demo.launch(
|
| 699 |
+
server_name="0.0.0.0",
|
| 700 |
+
server_port=7860,
|
| 701 |
+
share=False,
|
| 702 |
+
show_error=True,
|
| 703 |
+
debug=False,
|
| 704 |
+
quiet=True
|
| 705 |
+
)
|
app2 - gpt-5-high.py
ADDED
|
@@ -0,0 +1,692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
import random
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
from datetime import date, datetime, timedelta
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import finnhub
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
from llama_cpp import Llama
|
| 12 |
+
from io import StringIO
|
| 13 |
+
import requests
|
| 14 |
+
from requests.adapters import HTTPAdapter
|
| 15 |
+
from urllib3.util.retry import Retry
|
| 16 |
+
|
| 17 |
+
# Suppress Google Cloud warnings
|
| 18 |
+
os.environ['GRPC_VERBOSITY'] = 'ERROR'
|
| 19 |
+
os.environ['GRPC_TRACE'] = ''
|
| 20 |
+
|
| 21 |
+
# Suppress other warnings
|
| 22 |
+
import warnings
|
| 23 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
| 24 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
| 25 |
+
|
| 26 |
+
# ---------- CẤU HÌNH ---------------------------------------------------------
|
| 27 |
+
|
| 28 |
+
# Local GGUF model config (CPU-only HF Spaces ~16GB RAM)
|
| 29 |
+
GGUF_REPO = os.getenv("GGUF_REPO", "mradermacher/Fin-o1-14B-GGUF")
|
| 30 |
+
# Default to Q6_K per user preference; override via env if needed
|
| 31 |
+
GGUF_FILENAME = os.getenv("GGUF_FILENAME", "fin-o1-14b.Q6_K.gguf")
|
| 32 |
+
N_CTX = int(os.getenv("LLAMA_N_CTX", "4096"))
|
| 33 |
+
N_THREADS = int(os.getenv("LLAMA_N_THREADS", str(os.cpu_count() or 4)))
|
| 34 |
+
N_BATCH = int(os.getenv("LLAMA_N_BATCH", "256"))
|
| 35 |
+
LLM_TEMPERATURE = float(os.getenv("LLAMA_TEMPERATURE", "0.2"))
|
| 36 |
+
|
| 37 |
+
# RapidAPI Configuration
|
| 38 |
+
RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com"
|
| 39 |
+
|
| 40 |
+
# Load Finnhub API keys from single secret (multiple keys separated by newlines)
|
| 41 |
+
FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "")
|
| 42 |
+
if FINNHUB_KEYS_RAW:
|
| 43 |
+
FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()]
|
| 44 |
+
else:
|
| 45 |
+
FINNHUB_KEYS = []
|
| 46 |
+
|
| 47 |
+
# Load RapidAPI keys from single secret (multiple keys separated by newlines)
|
| 48 |
+
RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "")
|
| 49 |
+
if RAPIDAPI_KEYS_RAW:
|
| 50 |
+
RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()]
|
| 51 |
+
else:
|
| 52 |
+
RAPIDAPI_KEYS = []
|
| 53 |
+
|
| 54 |
+
# Placeholder for compatibility; no Google keys needed with local model
|
| 55 |
+
GOOGLE_API_KEYS = []
|
| 56 |
+
|
| 57 |
+
# Filter out empty keys
|
| 58 |
+
FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()]
|
| 59 |
+
GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key.strip()]
|
| 60 |
+
|
| 61 |
+
# Validate that we have at least one key for each service
|
| 62 |
+
if not FINNHUB_KEYS:
|
| 63 |
+
print("⚠️ Warning: No Finnhub API keys found in secrets")
|
| 64 |
+
if not RAPIDAPI_KEYS:
|
| 65 |
+
print("⚠️ Warning: No RapidAPI keys found in secrets")
|
| 66 |
+
if not GOOGLE_API_KEYS:
|
| 67 |
+
print("⚠️ Warning: No Google API keys found in secrets")
|
| 68 |
+
|
| 69 |
+
# Chọn ngẫu nhiên một khóa API để bắt đầu (if available)
|
| 70 |
+
GOOGLE_API_KEY = random.choice(GOOGLE_API_KEYS) if GOOGLE_API_KEYS else None
|
| 71 |
+
|
| 72 |
+
print("=" * 50)
|
| 73 |
+
print("🚀 FinRobot Forecaster Starting Up...")
|
| 74 |
+
print("=" * 50)
|
| 75 |
+
if FINNHUB_KEYS:
|
| 76 |
+
print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded")
|
| 77 |
+
else:
|
| 78 |
+
print("📊 Finnhub API: Not configured")
|
| 79 |
+
if RAPIDAPI_KEYS:
|
| 80 |
+
print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)")
|
| 81 |
+
else:
|
| 82 |
+
print("📈 RapidAPI Alpha Vantage: Not configured")
|
| 83 |
+
print("🧠 Local LLM (llama.cpp) will be used: "+GGUF_REPO+"/"+GGUF_FILENAME)
|
| 84 |
+
print("✅ Application started successfully!")
|
| 85 |
+
print("=" * 50)
|
| 86 |
+
|
| 87 |
+
# Download GGUF model and initialize llama.cpp
|
| 88 |
+
_LLM = None
|
| 89 |
+
_TOKENS_PER_SECOND_INFO = None
|
| 90 |
+
try:
|
| 91 |
+
print("⬇️ Downloading GGUF model from Hugging Face Hub if not cached...")
|
| 92 |
+
gguf_path = hf_hub_download(repo_id=GGUF_REPO, filename=GGUF_FILENAME, local_dir="/home/user/.cache/hf")
|
| 93 |
+
print(f"✅ Model file ready: {gguf_path}")
|
| 94 |
+
print("🚀 Initializing llama.cpp (CPU)")
|
| 95 |
+
_LLM = Llama(
|
| 96 |
+
model_path=gguf_path,
|
| 97 |
+
n_ctx=N_CTX,
|
| 98 |
+
n_threads=N_THREADS,
|
| 99 |
+
n_batch=N_BATCH,
|
| 100 |
+
use_mlock=False,
|
| 101 |
+
use_mmap=True,
|
| 102 |
+
logits_all=False,
|
| 103 |
+
)
|
| 104 |
+
print("✅ Llama initialized")
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"❌ Failed to initialize local LLM: {e}")
|
| 107 |
+
_LLM = None
|
| 108 |
+
|
| 109 |
+
# Cấu hình Finnhub client (if keys available)
|
| 110 |
+
if FINNHUB_KEYS:
|
| 111 |
+
# Configure with first key for initial setup
|
| 112 |
+
finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0])
|
| 113 |
+
print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys")
|
| 114 |
+
else:
|
| 115 |
+
finnhub_client = None
|
| 116 |
+
print("⚠️ Finnhub not configured - will use mock news data")
|
| 117 |
+
|
| 118 |
+
# Tạo session với retry strategy cho requests
|
| 119 |
+
def create_session():
|
| 120 |
+
session = requests.Session()
|
| 121 |
+
retry_strategy = Retry(
|
| 122 |
+
total=3,
|
| 123 |
+
backoff_factor=1,
|
| 124 |
+
status_forcelist=[429, 500, 502, 503, 504],
|
| 125 |
+
)
|
| 126 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
| 127 |
+
session.mount("http://", adapter)
|
| 128 |
+
session.mount("https://", adapter)
|
| 129 |
+
return session
|
| 130 |
+
|
| 131 |
+
# Tạo session global
|
| 132 |
+
requests_session = create_session()
|
| 133 |
+
|
| 134 |
+
SYSTEM_PROMPT = (
|
| 135 |
+
"You are a seasoned stock-market analyst. "
|
| 136 |
+
"Given recent company news and optional basic financials, "
|
| 137 |
+
"return:\n"
|
| 138 |
+
"[Positive Developments] – 2-4 bullets\n"
|
| 139 |
+
"[Potential Concerns] – 2-4 bullets\n"
|
| 140 |
+
"[Prediction & Analysis] – a one-week price outlook with rationale."
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# ---------- UTILITY HELPERS ----------------------------------------
|
| 144 |
+
|
| 145 |
+
def today() -> str:
|
| 146 |
+
return date.today().strftime("%Y-%m-%d")
|
| 147 |
+
|
| 148 |
+
def n_weeks_before(date_string: str, n: int) -> str:
|
| 149 |
+
return (datetime.strptime(date_string, "%Y-%m-%d") -
|
| 150 |
+
timedelta(days=7 * n)).strftime("%Y-%m-%d")
|
| 151 |
+
|
| 152 |
+
# ---------- DATA FETCHING --------------------------------------------------
|
| 153 |
+
|
| 154 |
+
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
|
| 155 |
+
# Thử tất cả RapidAPI Alpha Vantage keys
|
| 156 |
+
for rapidapi_key in RAPIDAPI_KEYS:
|
| 157 |
+
try:
|
| 158 |
+
print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)")
|
| 159 |
+
|
| 160 |
+
# RapidAPI Alpha Vantage endpoint
|
| 161 |
+
url = f"https://{RAPIDAPI_HOST}/query"
|
| 162 |
+
|
| 163 |
+
headers = {
|
| 164 |
+
"X-RapidAPI-Host": RAPIDAPI_HOST,
|
| 165 |
+
"X-RapidAPI-Key": rapidapi_key
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
params = {
|
| 169 |
+
"function": "TIME_SERIES_DAILY",
|
| 170 |
+
"symbol": symbol,
|
| 171 |
+
"outputsize": "full",
|
| 172 |
+
"datatype": "csv"
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
# Thử lại 3 lần với RapidAPI key hiện tại
|
| 176 |
+
for attempt in range(3):
|
| 177 |
+
try:
|
| 178 |
+
resp = requests_session.get(url, headers=headers, params=params, timeout=30)
|
| 179 |
+
if not resp.ok:
|
| 180 |
+
print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
|
| 181 |
+
time.sleep(2 ** attempt)
|
| 182 |
+
continue
|
| 183 |
+
|
| 184 |
+
text = resp.text.strip()
|
| 185 |
+
if text.startswith("{"):
|
| 186 |
+
info = resp.json()
|
| 187 |
+
msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info)
|
| 188 |
+
if "rate limit" in msg.lower() or "quota" in msg.lower():
|
| 189 |
+
print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key")
|
| 190 |
+
break # Thử key tiếp theo
|
| 191 |
+
raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}")
|
| 192 |
+
|
| 193 |
+
# Parse CSV data
|
| 194 |
+
df = pd.read_csv(StringIO(text))
|
| 195 |
+
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
|
| 196 |
+
df[date_col] = pd.to_datetime(df[date_col])
|
| 197 |
+
df = df.sort_values(date_col).set_index(date_col)
|
| 198 |
+
|
| 199 |
+
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
|
| 200 |
+
for i in range(len(steps) - 1):
|
| 201 |
+
s_date = pd.to_datetime(steps[i])
|
| 202 |
+
e_date = pd.to_datetime(steps[i+1])
|
| 203 |
+
seg = df.loc[s_date:e_date]
|
| 204 |
+
if seg.empty:
|
| 205 |
+
raise RuntimeError(
|
| 206 |
+
f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]} – {steps[i+1]}"
|
| 207 |
+
)
|
| 208 |
+
data["Start Date"].append(seg.index[0])
|
| 209 |
+
data["Start Price"].append(seg["close"].iloc[0])
|
| 210 |
+
data["End Date"].append(seg.index[-1])
|
| 211 |
+
data["End Price"].append(seg["close"].iloc[-1])
|
| 212 |
+
time.sleep(1) # RapidAPI has higher limits
|
| 213 |
+
|
| 214 |
+
print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)")
|
| 215 |
+
return pd.DataFrame(data)
|
| 216 |
+
|
| 217 |
+
except requests.exceptions.Timeout:
|
| 218 |
+
print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
|
| 219 |
+
if attempt < 2:
|
| 220 |
+
time.sleep(5 * (attempt + 1))
|
| 221 |
+
continue
|
| 222 |
+
else:
|
| 223 |
+
break
|
| 224 |
+
except requests.exceptions.RequestException as e:
|
| 225 |
+
print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}")
|
| 226 |
+
if attempt < 2:
|
| 227 |
+
time.sleep(3)
|
| 228 |
+
continue
|
| 229 |
+
else:
|
| 230 |
+
break
|
| 231 |
+
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}")
|
| 234 |
+
continue # Thử key tiếp theo
|
| 235 |
+
|
| 236 |
+
# Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail
|
| 237 |
+
print("⚠️ All RapidAPI keys failed, using mock data for demonstration...")
|
| 238 |
+
return create_mock_stock_data(symbol, steps)
|
| 239 |
+
|
| 240 |
+
def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
|
| 241 |
+
"""Tạo mock data để demo khi API không hoạt động"""
|
| 242 |
+
import numpy as np
|
| 243 |
+
|
| 244 |
+
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
|
| 245 |
+
|
| 246 |
+
# Giá cơ bản khác nhau cho các symbol khác nhau
|
| 247 |
+
base_prices = {
|
| 248 |
+
"AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0,
|
| 249 |
+
"TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0
|
| 250 |
+
}
|
| 251 |
+
base_price = base_prices.get(symbol.upper(), 150.0)
|
| 252 |
+
|
| 253 |
+
for i in range(len(steps) - 1):
|
| 254 |
+
s_date = pd.to_datetime(steps[i])
|
| 255 |
+
e_date = pd.to_datetime(steps[i+1])
|
| 256 |
+
|
| 257 |
+
# Tạo giá ngẫu nhiên với xu hướng tăng nhẹ
|
| 258 |
+
start_price = base_price + np.random.normal(0, 5)
|
| 259 |
+
end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ
|
| 260 |
+
|
| 261 |
+
data["Start Date"].append(s_date)
|
| 262 |
+
data["Start Price"].append(round(start_price, 2))
|
| 263 |
+
data["End Date"].append(e_date)
|
| 264 |
+
data["End Price"].append(round(end_price, 2))
|
| 265 |
+
|
| 266 |
+
base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo
|
| 267 |
+
|
| 268 |
+
return pd.DataFrame(data)
|
| 269 |
+
|
| 270 |
+
def current_basics(symbol: str, curday: str) -> dict:
|
| 271 |
+
# Check if Finnhub is configured
|
| 272 |
+
if not FINNHUB_KEYS:
|
| 273 |
+
print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}")
|
| 274 |
+
return {}
|
| 275 |
+
|
| 276 |
+
# Thử với tất cả các Finnhub API keys
|
| 277 |
+
for api_key in FINNHUB_KEYS:
|
| 278 |
+
try:
|
| 279 |
+
client = finnhub.Client(api_key=api_key)
|
| 280 |
+
# Thêm timeout cho Finnhub client
|
| 281 |
+
raw = client.company_basic_financials(symbol, "all")
|
| 282 |
+
if not raw["series"]:
|
| 283 |
+
continue
|
| 284 |
+
merged = defaultdict(dict)
|
| 285 |
+
for metric, vals in raw["series"]["quarterly"].items():
|
| 286 |
+
for v in vals:
|
| 287 |
+
merged[v["period"]][metric] = v["v"]
|
| 288 |
+
|
| 289 |
+
latest = max((p for p in merged if p <= curday), default=None)
|
| 290 |
+
if latest is None:
|
| 291 |
+
continue
|
| 292 |
+
d = dict(merged[latest])
|
| 293 |
+
d["period"] = latest
|
| 294 |
+
return d
|
| 295 |
+
except Exception as e:
|
| 296 |
+
print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}")
|
| 297 |
+
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
|
| 298 |
+
continue
|
| 299 |
+
return {}
|
| 300 |
+
|
| 301 |
+
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
|
| 302 |
+
news_col = []
|
| 303 |
+
for _, row in df.iterrows():
|
| 304 |
+
start = row["Start Date"].strftime("%Y-%m-%d")
|
| 305 |
+
end = row["End Date"].strftime("%Y-%m-%d")
|
| 306 |
+
time.sleep(2) # Tăng delay để tránh rate limit
|
| 307 |
+
|
| 308 |
+
# Check if Finnhub is configured
|
| 309 |
+
if not FINNHUB_KEYS:
|
| 310 |
+
print(f"⚠️ Finnhub not configured, using mock news for {symbol}")
|
| 311 |
+
news_data = create_mock_news(symbol, start, end)
|
| 312 |
+
news_col.append(json.dumps(news_data))
|
| 313 |
+
continue
|
| 314 |
+
|
| 315 |
+
# Thử với tất cả các Finnhub API keys
|
| 316 |
+
news_data = []
|
| 317 |
+
for api_key in FINNHUB_KEYS:
|
| 318 |
+
try:
|
| 319 |
+
client = finnhub.Client(api_key=api_key)
|
| 320 |
+
weekly = client.company_news(symbol, _from=start, to=end)
|
| 321 |
+
weekly_fmt = [
|
| 322 |
+
{
|
| 323 |
+
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
|
| 324 |
+
"headline": n["headline"],
|
| 325 |
+
"summary" : n["summary"],
|
| 326 |
+
}
|
| 327 |
+
for n in weekly
|
| 328 |
+
]
|
| 329 |
+
weekly_fmt.sort(key=lambda x: x["date"])
|
| 330 |
+
news_data = weekly_fmt
|
| 331 |
+
break # Thành công, thoát khỏi loop
|
| 332 |
+
except Exception as e:
|
| 333 |
+
print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}")
|
| 334 |
+
time.sleep(3) # Thêm delay trước khi thử key tiếp theo
|
| 335 |
+
continue
|
| 336 |
+
|
| 337 |
+
# Nếu không có news data, tạo mock news
|
| 338 |
+
if not news_data:
|
| 339 |
+
news_data = create_mock_news(symbol, start, end)
|
| 340 |
+
|
| 341 |
+
news_col.append(json.dumps(news_data))
|
| 342 |
+
df["News"] = news_col
|
| 343 |
+
return df
|
| 344 |
+
|
| 345 |
+
def create_mock_news(symbol: str, start: str, end: str) -> list:
|
| 346 |
+
"""Tạo mock news data khi API không hoạt động"""
|
| 347 |
+
mock_news = [
|
| 348 |
+
{
|
| 349 |
+
"date": f"{start}120000",
|
| 350 |
+
"headline": f"{symbol} Shows Strong Performance in Recent Trading",
|
| 351 |
+
"summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment."
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"date": f"{end}090000",
|
| 355 |
+
"headline": f"Analysts Maintain Positive Outlook for {symbol}",
|
| 356 |
+
"summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects."
|
| 357 |
+
}
|
| 358 |
+
]
|
| 359 |
+
return mock_news
|
| 360 |
+
|
| 361 |
+
# ---------- PROMPT CONSTRUCTION -------------------------------------------
|
| 362 |
+
|
| 363 |
+
def sample_news(news: list[str], k: int = 5) -> list[str]:
|
| 364 |
+
if len(news) <= k:
|
| 365 |
+
return news
|
| 366 |
+
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
|
| 367 |
+
|
| 368 |
+
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
|
| 369 |
+
# Thử với tất cả các Finnhub API keys để lấy company profile
|
| 370 |
+
company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n"
|
| 371 |
+
|
| 372 |
+
if FINNHUB_KEYS:
|
| 373 |
+
for api_key in FINNHUB_KEYS:
|
| 374 |
+
try:
|
| 375 |
+
client = finnhub.Client(api_key=api_key)
|
| 376 |
+
prof = client.company_profile2(symbol=symbol)
|
| 377 |
+
company_blurb = (
|
| 378 |
+
f"[Company Introduction]:\n{prof['name']} operates in the "
|
| 379 |
+
f"{prof['finnhubIndustry']} sector ({prof['country']}). "
|
| 380 |
+
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
|
| 381 |
+
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
|
| 382 |
+
)
|
| 383 |
+
break # Thành công, thoát khỏi loop
|
| 384 |
+
except Exception as e:
|
| 385 |
+
print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}")
|
| 386 |
+
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
|
| 387 |
+
continue
|
| 388 |
+
else:
|
| 389 |
+
print(f"⚠️ Finnhub not configured, using basic company info for {symbol}")
|
| 390 |
+
|
| 391 |
+
# Past weeks block
|
| 392 |
+
past_block = ""
|
| 393 |
+
for _, row in df.iterrows():
|
| 394 |
+
term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
|
| 395 |
+
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
|
| 396 |
+
f"{symbol}'s stock price {term} from "
|
| 397 |
+
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
|
| 398 |
+
news_items = json.loads(row["News"])
|
| 399 |
+
summaries = [
|
| 400 |
+
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
|
| 401 |
+
for n in news_items
|
| 402 |
+
if not n["summary"].startswith("Looking for stock market analysis")
|
| 403 |
+
]
|
| 404 |
+
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
|
| 405 |
+
|
| 406 |
+
# Optional basic financials
|
| 407 |
+
if use_basics:
|
| 408 |
+
basics = current_basics(symbol, curday)
|
| 409 |
+
if basics:
|
| 410 |
+
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
|
| 411 |
+
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
|
| 412 |
+
else:
|
| 413 |
+
basics_block = "\n[Basic Financials]: not available\n"
|
| 414 |
+
else:
|
| 415 |
+
basics_block = "\n[Basic Financials]: not requested\n"
|
| 416 |
+
|
| 417 |
+
horizon = f"{curday} to {n_weeks_before(curday, -1)}"
|
| 418 |
+
final_user_msg = (
|
| 419 |
+
company_blurb
|
| 420 |
+
+ past_block
|
| 421 |
+
+ basics_block
|
| 422 |
+
+ f"\nBased on all information before {curday}, analyse positive "
|
| 423 |
+
"developments and potential concerns for {symbol}, then predict its "
|
| 424 |
+
f"price movement for next week ({horizon})."
|
| 425 |
+
)
|
| 426 |
+
return final_user_msg
|
| 427 |
+
|
| 428 |
+
# ---------- LLM CALL -------------------------------------------------------
|
| 429 |
+
|
| 430 |
+
def chat_completion(prompt: str,
|
| 431 |
+
model: str = "local-llama-cpp",
|
| 432 |
+
temperature: float = LLM_TEMPERATURE,
|
| 433 |
+
stream: bool = False,
|
| 434 |
+
symbol: str = "STOCK") -> str:
|
| 435 |
+
if _LLM is None:
|
| 436 |
+
print(f"⚠️ Local LLM not available, using mock response for {symbol}")
|
| 437 |
+
return create_mock_ai_response(symbol)
|
| 438 |
+
|
| 439 |
+
# Build a simple chat-style prompt for Qwen-based SFT
|
| 440 |
+
# Qwen-style chat can work with a plain system + user concatenation for inference
|
| 441 |
+
full_prompt = f"<|im_start|>system\n{SYSTEM_PROMPT}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
| 442 |
+
|
| 443 |
+
try:
|
| 444 |
+
if stream:
|
| 445 |
+
out_text = []
|
| 446 |
+
for tok in _LLM(
|
| 447 |
+
full_prompt,
|
| 448 |
+
max_tokens=1024,
|
| 449 |
+
temperature=temperature,
|
| 450 |
+
top_p=0.9,
|
| 451 |
+
repeat_penalty=1.1,
|
| 452 |
+
stop=["<|im_end|>", "</s>", "<|endoftext|>"],
|
| 453 |
+
stream=True,
|
| 454 |
+
):
|
| 455 |
+
delta = tok.get("choices", [{}])[0].get("text", "")
|
| 456 |
+
if delta:
|
| 457 |
+
print(delta, end="", flush=True)
|
| 458 |
+
out_text.append(delta)
|
| 459 |
+
print()
|
| 460 |
+
return "".join(out_text)
|
| 461 |
+
else:
|
| 462 |
+
res = _LLM(
|
| 463 |
+
full_prompt,
|
| 464 |
+
max_tokens=1024,
|
| 465 |
+
temperature=temperature,
|
| 466 |
+
top_p=0.9,
|
| 467 |
+
repeat_penalty=1.1,
|
| 468 |
+
stop=["<|im_end|>", "</s>", "<|endoftext|>"]
|
| 469 |
+
)
|
| 470 |
+
return res["choices"][0]["text"].strip()
|
| 471 |
+
except Exception as e:
|
| 472 |
+
print(f"❌ LLM inference error: {e}")
|
| 473 |
+
return create_mock_ai_response(symbol)
|
| 474 |
+
|
| 475 |
+
def create_mock_ai_response(symbol: str) -> str:
|
| 476 |
+
"""Tạo mock AI response khi Google API không hoạt động"""
|
| 477 |
+
return f"""
|
| 478 |
+
[Positive Developments]
|
| 479 |
+
• Strong market position and brand recognition for {symbol}
|
| 480 |
+
• Recent quarterly earnings showing growth potential
|
| 481 |
+
• Positive analyst sentiment and institutional investor interest
|
| 482 |
+
• Technological innovation and market expansion opportunities
|
| 483 |
+
|
| 484 |
+
[Potential Concerns]
|
| 485 |
+
• Market volatility and economic uncertainty
|
| 486 |
+
• Competitive pressures in the industry
|
| 487 |
+
• Regulatory changes that may impact operations
|
| 488 |
+
• Global economic factors affecting stock performance
|
| 489 |
+
|
| 490 |
+
[Prediction & Analysis]
|
| 491 |
+
Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns.
|
| 492 |
+
|
| 493 |
+
Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals.
|
| 494 |
+
"""
|
| 495 |
+
|
| 496 |
+
# ---------- MAIN PREDICTION FUNCTION -----------------------------------------
|
| 497 |
+
|
| 498 |
+
def predict(symbol: str = "AAPL",
|
| 499 |
+
curday: str = today(),
|
| 500 |
+
n_weeks: int = 3,
|
| 501 |
+
use_basics: bool = False,
|
| 502 |
+
stream: bool = False) -> tuple[str, str]:
|
| 503 |
+
try:
|
| 504 |
+
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
|
| 505 |
+
df = get_stock_data(symbol, steps)
|
| 506 |
+
df = attach_news(symbol, df)
|
| 507 |
+
|
| 508 |
+
prompt_info = make_prompt(symbol, df, curday, use_basics)
|
| 509 |
+
answer = chat_completion(prompt_info, stream=stream, symbol=symbol)
|
| 510 |
+
|
| 511 |
+
return prompt_info, answer
|
| 512 |
+
except Exception as e:
|
| 513 |
+
error_msg = f"Error in prediction: {str(e)}"
|
| 514 |
+
print(f"Prediction error: {e}") # Log the error for debugging
|
| 515 |
+
return error_msg, error_msg
|
| 516 |
+
|
| 517 |
+
# ---------- HUGGINGFACE SPACES INTERFACE -----------------------------------------
|
| 518 |
+
|
| 519 |
+
def hf_predict(symbol, n_weeks, use_basics):
|
| 520 |
+
# 1. get curday
|
| 521 |
+
curday = date.today().strftime("%Y-%m-%d")
|
| 522 |
+
# 2. call predict
|
| 523 |
+
prompt, answer = predict(
|
| 524 |
+
symbol=symbol.upper(),
|
| 525 |
+
curday=curday,
|
| 526 |
+
n_weeks=int(n_weeks),
|
| 527 |
+
use_basics=bool(use_basics),
|
| 528 |
+
stream=False
|
| 529 |
+
)
|
| 530 |
+
return prompt, answer
|
| 531 |
+
|
| 532 |
+
# ---------- GRADIO INTERFACE -----------------------------------------
|
| 533 |
+
|
| 534 |
+
def create_interface():
|
| 535 |
+
with gr.Blocks(
|
| 536 |
+
title="FinRobot Forecaster",
|
| 537 |
+
theme=gr.themes.Soft(),
|
| 538 |
+
css="""
|
| 539 |
+
.gradio-container {
|
| 540 |
+
max-width: 1200px !important;
|
| 541 |
+
margin: auto !important;
|
| 542 |
+
}
|
| 543 |
+
#model_prompt_textbox textarea {
|
| 544 |
+
overflow-y: auto !important;
|
| 545 |
+
max-height: none !important;
|
| 546 |
+
min-height: 400px !important;
|
| 547 |
+
resize: vertical !important;
|
| 548 |
+
white-space: pre-wrap !important;
|
| 549 |
+
word-wrap: break-word !important;
|
| 550 |
+
height: auto !important;
|
| 551 |
+
}
|
| 552 |
+
#model_prompt_textbox {
|
| 553 |
+
height: auto !important;
|
| 554 |
+
}
|
| 555 |
+
#analysis_results_textbox textarea {
|
| 556 |
+
overflow-y: auto !important;
|
| 557 |
+
max-height: none !important;
|
| 558 |
+
min-height: 400px !important;
|
| 559 |
+
resize: vertical !important;
|
| 560 |
+
white-space: pre-wrap !important;
|
| 561 |
+
word-wrap: break-word !important;
|
| 562 |
+
height: auto !important;
|
| 563 |
+
}
|
| 564 |
+
#analysis_results_textbox {
|
| 565 |
+
height: auto !important;
|
| 566 |
+
}
|
| 567 |
+
.textarea textarea {
|
| 568 |
+
overflow-y: auto !important;
|
| 569 |
+
max-height: 500px !important;
|
| 570 |
+
resize: vertical !important;
|
| 571 |
+
}
|
| 572 |
+
.textarea {
|
| 573 |
+
height: auto !important;
|
| 574 |
+
min-height: 300px !important;
|
| 575 |
+
}
|
| 576 |
+
.gradio-textbox {
|
| 577 |
+
height: auto !important;
|
| 578 |
+
max-height: none !important;
|
| 579 |
+
}
|
| 580 |
+
.gradio-textbox textarea {
|
| 581 |
+
height: auto !important;
|
| 582 |
+
max-height: none !important;
|
| 583 |
+
overflow-y: auto !important;
|
| 584 |
+
}
|
| 585 |
+
"""
|
| 586 |
+
) as demo:
|
| 587 |
+
gr.Markdown("""
|
| 588 |
+
# 🤖 FinRobot Forecaster
|
| 589 |
+
|
| 590 |
+
**AI-powered stock market analysis and prediction using advanced language models**
|
| 591 |
+
|
| 592 |
+
This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions.
|
| 593 |
+
|
| 594 |
+
⚠️ **Note**: Free API keys have daily rate limits. If you encounter errors, the app will use mock data for demonstration purposes.
|
| 595 |
+
""")
|
| 596 |
+
|
| 597 |
+
with gr.Row():
|
| 598 |
+
with gr.Column(scale=1):
|
| 599 |
+
symbol = gr.Textbox(
|
| 600 |
+
label="Stock Symbol",
|
| 601 |
+
value="AAPL",
|
| 602 |
+
placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)",
|
| 603 |
+
info="Enter the ticker symbol of the stock you want to analyze"
|
| 604 |
+
)
|
| 605 |
+
n_weeks = gr.Slider(
|
| 606 |
+
1, 6,
|
| 607 |
+
value=3,
|
| 608 |
+
step=1,
|
| 609 |
+
label="Historical Weeks to Analyze",
|
| 610 |
+
info="Number of weeks of historical data to include in analysis"
|
| 611 |
+
)
|
| 612 |
+
use_basics = gr.Checkbox(
|
| 613 |
+
label="Include Basic Financials",
|
| 614 |
+
value=True,
|
| 615 |
+
info="Include basic financial metrics in the analysis"
|
| 616 |
+
)
|
| 617 |
+
btn = gr.Button(
|
| 618 |
+
"🚀 Run Analysis",
|
| 619 |
+
variant="primary"
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
with gr.Column(scale=2):
|
| 623 |
+
with gr.Tabs():
|
| 624 |
+
with gr.Tab("📊 Analysis Results"):
|
| 625 |
+
gr.Markdown("**AI Analysis & Prediction**")
|
| 626 |
+
output_answer = gr.Textbox(
|
| 627 |
+
label="",
|
| 628 |
+
lines=40,
|
| 629 |
+
show_copy_button=True,
|
| 630 |
+
interactive=False,
|
| 631 |
+
placeholder="AI analysis and predictions will appear here...",
|
| 632 |
+
container=True,
|
| 633 |
+
scale=1,
|
| 634 |
+
elem_id="analysis_results_textbox"
|
| 635 |
+
)
|
| 636 |
+
with gr.Tab("🔍 Model Prompt"):
|
| 637 |
+
gr.Markdown("**Generated Prompt**")
|
| 638 |
+
output_prompt = gr.Textbox(
|
| 639 |
+
label="",
|
| 640 |
+
lines=40,
|
| 641 |
+
show_copy_button=True,
|
| 642 |
+
interactive=False,
|
| 643 |
+
placeholder="Generated prompt will appear here...",
|
| 644 |
+
container=True,
|
| 645 |
+
scale=1,
|
| 646 |
+
elem_id="model_prompt_textbox"
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
# Examples
|
| 650 |
+
gr.Examples(
|
| 651 |
+
examples=[
|
| 652 |
+
["AAPL", 3, False],
|
| 653 |
+
["MSFT", 4, True],
|
| 654 |
+
["GOOGL", 2, False],
|
| 655 |
+
["TSLA", 5, True],
|
| 656 |
+
["NVDA", 3, True]
|
| 657 |
+
],
|
| 658 |
+
inputs=[symbol, n_weeks, use_basics],
|
| 659 |
+
label="💡 Try these examples"
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
# Event handlers
|
| 663 |
+
btn.click(
|
| 664 |
+
fn=hf_predict,
|
| 665 |
+
inputs=[symbol, n_weeks, use_basics],
|
| 666 |
+
outputs=[output_prompt, output_answer],
|
| 667 |
+
show_progress=True
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
# Footer
|
| 672 |
+
gr.Markdown("""
|
| 673 |
+
---
|
| 674 |
+
**Disclaimer**: This application is for educational and research purposes only.
|
| 675 |
+
The predictions and analysis provided should not be considered as financial advice.
|
| 676 |
+
Always consult with qualified financial professionals before making investment decisions.
|
| 677 |
+
""")
|
| 678 |
+
|
| 679 |
+
return demo
|
| 680 |
+
|
| 681 |
+
# ---------- MAIN EXECUTION -----------------------------------------
|
| 682 |
+
|
| 683 |
+
if __name__ == "__main__":
|
| 684 |
+
demo = create_interface()
|
| 685 |
+
demo.launch(
|
| 686 |
+
server_name="0.0.0.0",
|
| 687 |
+
server_port=7860,
|
| 688 |
+
share=False,
|
| 689 |
+
show_error=True,
|
| 690 |
+
debug=False,
|
| 691 |
+
quiet=True
|
| 692 |
+
)
|