File size: 4,323 Bytes
c3aef13
 
 
 
 
 
 
 
 
 
 
909d9bf
 
 
c3aef13
 
 
 
 
 
 
 
 
 
0a6cb95
c3aef13
 
 
 
909d9bf
 
c3aef13
909d9bf
 
c3aef13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909d9bf
 
 
 
 
 
 
 
 
c3aef13
 
 
 
 
 
 
 
909d9bf
c3aef13
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from fastapi import FastAPI, HTTPException
from typing import List
import torch
import uvicorn
import gc
import os

from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory

app = FastAPI(
    title="Multilingual & Legal Embedding API",
    description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
    version="3.0.0"
)

# Global model cache
models_cache = {}

@app.on_event("startup")
async def startup_event():
    """Load models on startup"""
    global models_cache
    models_cache = load_models()
    print("All models loaded successfully!")

@app.get("/")
async def root():
    return {
        "message": "Multilingual & Legal Embedding API",
        "models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
        "status": "running",
        "docs": "/docs",
        "total_models": 5
    }

@app.post("/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
    """Generate embeddings for input texts"""
    try:
        if not request.texts:
            raise HTTPException(status_code=400, detail="No texts provided")
        
        if len(request.texts) > 50:  # Rate limiting
            raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
        
        embeddings = get_embeddings(
            request.texts,
            request.model,
            models_cache,
            request.normalize,
            request.max_length
        )
        
        # Cleanup memory after large batches
        if len(request.texts) > 20:
            cleanup_memory()
        
        return EmbeddingResponse(
            embeddings=embeddings,
            model_used=request.model,
            dimensions=len(embeddings[0]) if embeddings else 0,
            num_texts=len(request.texts)
        )
        
    except ValueError as e:
        raise HTTPException(status_code=400, detail=str(e))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")

@app.get("/models", response_model=List[ModelInfo])
async def list_models():
    """List available models and their specifications"""
    return [
        ModelInfo(
            model_id="jina",
            name="jinaai/jina-embeddings-v2-base-es",
            dimensions=768,
            max_sequence_length=8192,
            languages=["Spanish", "English"],
            model_type="bilingual",
            description="Bilingual Spanish-English embeddings with long context support"
        ),
        ModelInfo(
            model_id="robertalex",
            name="PlanTL-GOB-ES/RoBERTalex",
            dimensions=768,
            max_sequence_length=512,
            languages=["Spanish"],
            model_type="legal domain",
            description="Spanish legal domain specialized embeddings"
        ),
        ModelInfo(
            model_id="jina-v3",
            name="jinaai/jina-embeddings-v3",
            dimensions=1024,
            max_sequence_length=8192,
            languages=["Multilingual"],
            model_type="multilingual",
            description="Latest Jina v3 with superior multilingual performance"
        ),
        ModelInfo(
            model_id="legal-bert",
            name="nlpaueb/legal-bert-base-uncased",
            dimensions=768,
            max_sequence_length=512,
            languages=["English"],
            model_type="legal domain",
            description="English legal domain BERT model"
        ),
        ModelInfo(
            model_id="roberta-ca",
            name="projecte-aina/roberta-large-ca-v2",
            dimensions=1024,
            max_sequence_length=512,
            languages=["Catalan"],
            model_type="general",
            description="Catalan RoBERTa-large model trained on large corpus"
        )
    ]

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {
        "status": "healthy",
        "models_loaded": len(models_cache) == 5,
        "available_models": list(models_cache.keys())
    }

if __name__ == "__main__":
    # Set multi-threading for CPU
    torch.set_num_threads(8)
    torch.set_num_interop_threads(1)
    
    uvicorn.run(app, host="0.0.0.0", port=7860)