Spaces:
Sleeping
Sleeping
Jordi Catafal
commited on
Commit
路
909d9bf
1
Parent(s):
0a6cb95
Add Catalan RoBERTa model - now supporting 5 models
Browse files- Dockerfile +5 -2
- README.md +44 -10
- app.py +17 -7
- models/schemas.py +2 -2
- requirements.txt +2 -1
- utils/__init__.py +0 -1
- utils/helpers.py +29 -2
Dockerfile
CHANGED
|
@@ -5,9 +5,12 @@ ENV PYTHONUNBUFFERED=1
|
|
| 5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
| 6 |
ENV HF_HOME=/app/cache
|
| 7 |
ENV PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128
|
| 8 |
-
#
|
| 9 |
ENV TRANSFORMERS_OFFLINE=0
|
| 10 |
ENV HF_HUB_ENABLE_HF_TRANSFER=1
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Install system dependencies for better performance
|
| 13 |
RUN apt-get update && apt-get install -y \
|
|
@@ -39,4 +42,4 @@ RUN mkdir -p /app/cache
|
|
| 39 |
EXPOSE 7860
|
| 40 |
|
| 41 |
# Run the application
|
| 42 |
-
CMD ["python", "app.py"]
|
|
|
|
| 5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
| 6 |
ENV HF_HOME=/app/cache
|
| 7 |
ENV PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128
|
| 8 |
+
# Optimize for multiple large models
|
| 9 |
ENV TRANSFORMERS_OFFLINE=0
|
| 10 |
ENV HF_HUB_ENABLE_HF_TRANSFER=1
|
| 11 |
+
ENV TOKENIZERS_PARALLELISM=false
|
| 12 |
+
# Reduce memory fragmentation
|
| 13 |
+
ENV MALLOC_TRIM_THRESHOLD_=100000
|
| 14 |
|
| 15 |
# Install system dependencies for better performance
|
| 16 |
RUN apt-get update && apt-get install -y \
|
|
|
|
| 42 |
EXPOSE 7860
|
| 43 |
|
| 44 |
# Run the application
|
| 45 |
+
CMD ["python", "-u", "app.py"]
|
README.md
CHANGED
|
@@ -10,10 +10,9 @@ pinned: false
|
|
| 10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 11 |
|
| 12 |
--------------------------------
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
A high-performance API for generating embeddings from Spanish, English, and multilingual text using state-of-the-art models. This API provides access to four specialized models optimized for different use cases and languages.
|
| 17 |
|
| 18 |
## 馃殌 Quick Start
|
| 19 |
|
|
@@ -29,6 +28,7 @@ A high-performance API for generating embeddings from Spanish, English, and mult
|
|
| 29 |
| **robertalex** | 512 | Spanish | 768 | Spanish legal documents, formal Spanish |
|
| 30 |
| **jina-v3** | 8,192 | Multilingual (30+ languages) | 1,024 | Superior multilingual embeddings, long context |
|
| 31 |
| **legal-bert** | 512 | English | 768 | English legal documents, contracts, law texts |
|
|
|
|
| 32 |
|
| 33 |
## 馃敆 API Endpoints
|
| 34 |
|
|
@@ -96,7 +96,22 @@ multilingual_response = requests.post(
|
|
| 96 |
)
|
| 97 |
print(f"Jina v3 dimensions: {multilingual_response.json()['dimensions']}") # 1024 dims
|
| 98 |
|
| 99 |
-
# Example 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
spanish_legal_response = requests.post(
|
| 101 |
f"{API_URL}/embed",
|
| 102 |
json={
|
|
@@ -109,7 +124,7 @@ spanish_legal_response = requests.post(
|
|
| 109 |
}
|
| 110 |
)
|
| 111 |
|
| 112 |
-
# Example
|
| 113 |
english_legal_response = requests.post(
|
| 114 |
f"{API_URL}/embed",
|
| 115 |
json={
|
|
@@ -122,11 +137,12 @@ english_legal_response = requests.post(
|
|
| 122 |
}
|
| 123 |
)
|
| 124 |
|
| 125 |
-
# Example
|
| 126 |
-
|
|
|
|
| 127 |
models_comparison = {}
|
| 128 |
|
| 129 |
-
for model in ["jina", "
|
| 130 |
resp = requests.post(
|
| 131 |
f"{API_URL}/embed",
|
| 132 |
json={"texts": [text], "model": model, "normalize": True}
|
|
@@ -148,6 +164,15 @@ curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed" \
|
|
| 148 |
"normalize": true
|
| 149 |
}'
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# Using Jina v3 for multilingual embeddings
|
| 152 |
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed" \
|
| 153 |
-H "Content-Type: application/json" \
|
|
@@ -234,7 +259,7 @@ class MultilingualEmbeddings(Embeddings):
|
|
| 234 |
Initialize embeddings
|
| 235 |
|
| 236 |
Args:
|
| 237 |
-
model: One of "jina", "robertalex", "jina-v3", "legal-bert"
|
| 238 |
"""
|
| 239 |
self.api_url = "https://aurasystems-spanish-embeddings-api.hf.space/embed"
|
| 240 |
self.model = model
|
|
@@ -262,12 +287,21 @@ spanish_docs = spanish_embeddings.embed_documents([
|
|
| 262 |
"Segundo documento en espa帽ol"
|
| 263 |
])
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
# Multilingual embeddings with Jina v3
|
| 266 |
multilingual_embeddings = MultilingualEmbeddings(model="jina-v3")
|
| 267 |
mixed_docs = multilingual_embeddings.embed_documents([
|
| 268 |
"English document",
|
| 269 |
"Documento en espa帽ol",
|
| 270 |
-
"Document en fran莽ais"
|
|
|
|
| 271 |
])
|
| 272 |
|
| 273 |
# Legal embeddings for English
|
|
|
|
| 10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 11 |
|
| 12 |
--------------------------------
|
| 13 |
+
# Multilingual & Legal Embeddings API
|
| 14 |
|
| 15 |
+
A high-performance API for generating embeddings from Spanish, Catalan, English, and multilingual text using state-of-the-art models. This API provides access to five specialized models optimized for different use cases and languages.
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## 馃殌 Quick Start
|
| 18 |
|
|
|
|
| 28 |
| **robertalex** | 512 | Spanish | 768 | Spanish legal documents, formal Spanish |
|
| 29 |
| **jina-v3** | 8,192 | Multilingual (30+ languages) | 1,024 | Superior multilingual embeddings, long context |
|
| 30 |
| **legal-bert** | 512 | English | 768 | English legal documents, contracts, law texts |
|
| 31 |
+
| **roberta-ca** | 512 | Catalan | 1,024 | Catalan text, general purpose, RoBERTa-large architecture |
|
| 32 |
|
| 33 |
## 馃敆 API Endpoints
|
| 34 |
|
|
|
|
| 96 |
)
|
| 97 |
print(f"Jina v3 dimensions: {multilingual_response.json()['dimensions']}") # 1024 dims
|
| 98 |
|
| 99 |
+
# Example 3: Catalan text with RoBERTa-ca
|
| 100 |
+
catalan_response = requests.post(
|
| 101 |
+
f"{API_URL}/embed",
|
| 102 |
+
json={
|
| 103 |
+
"texts": [
|
| 104 |
+
"Bon dia, com est脿s?",
|
| 105 |
+
"M'agrada programar en Python",
|
| 106 |
+
"Barcelona 茅s una ciutat meravellosa"
|
| 107 |
+
],
|
| 108 |
+
"model": "roberta-ca",
|
| 109 |
+
"normalize": True
|
| 110 |
+
}
|
| 111 |
+
)
|
| 112 |
+
print(f"Catalan RoBERTa dimensions: {catalan_response.json()['dimensions']}") # 1024 dims
|
| 113 |
+
|
| 114 |
+
# Example 4: Legal text with RoBERTalex (Spanish)
|
| 115 |
spanish_legal_response = requests.post(
|
| 116 |
f"{API_URL}/embed",
|
| 117 |
json={
|
|
|
|
| 124 |
}
|
| 125 |
)
|
| 126 |
|
| 127 |
+
# Example 5: Legal text with Legal-BERT (English)
|
| 128 |
english_legal_response = requests.post(
|
| 129 |
f"{API_URL}/embed",
|
| 130 |
json={
|
|
|
|
| 137 |
}
|
| 138 |
)
|
| 139 |
|
| 140 |
+
# Example 6: Compare similarity across models
|
| 141 |
+
text_es = "inteligencia artificial"
|
| 142 |
+
text_ca = "intel路lig猫ncia artificial"
|
| 143 |
models_comparison = {}
|
| 144 |
|
| 145 |
+
for model, text in [("jina", text_es), ("roberta-ca", text_ca), ("jina-v3", text_es)]:
|
| 146 |
resp = requests.post(
|
| 147 |
f"{API_URL}/embed",
|
| 148 |
json={"texts": [text], "model": model, "normalize": True}
|
|
|
|
| 164 |
"normalize": true
|
| 165 |
}'
|
| 166 |
|
| 167 |
+
# Catalan text with RoBERTa-ca
|
| 168 |
+
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed" \
|
| 169 |
+
-H "Content-Type: application/json" \
|
| 170 |
+
-d '{
|
| 171 |
+
"texts": ["Bon dia", "Com est脿 vost猫?", "Catalunya 茅s meravellosa"],
|
| 172 |
+
"model": "roberta-ca",
|
| 173 |
+
"normalize": true
|
| 174 |
+
}'
|
| 175 |
+
|
| 176 |
# Using Jina v3 for multilingual embeddings
|
| 177 |
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed" \
|
| 178 |
-H "Content-Type: application/json" \
|
|
|
|
| 259 |
Initialize embeddings
|
| 260 |
|
| 261 |
Args:
|
| 262 |
+
model: One of "jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"
|
| 263 |
"""
|
| 264 |
self.api_url = "https://aurasystems-spanish-embeddings-api.hf.space/embed"
|
| 265 |
self.model = model
|
|
|
|
| 287 |
"Segundo documento en espa帽ol"
|
| 288 |
])
|
| 289 |
|
| 290 |
+
# Catalan embeddings
|
| 291 |
+
catalan_embeddings = MultilingualEmbeddings(model="roberta-ca")
|
| 292 |
+
catalan_docs = catalan_embeddings.embed_documents([
|
| 293 |
+
"Primer document en catal脿",
|
| 294 |
+
"Segon document en catal脿",
|
| 295 |
+
"La cultura catalana 茅s rica i diversa"
|
| 296 |
+
])
|
| 297 |
+
|
| 298 |
# Multilingual embeddings with Jina v3
|
| 299 |
multilingual_embeddings = MultilingualEmbeddings(model="jina-v3")
|
| 300 |
mixed_docs = multilingual_embeddings.embed_documents([
|
| 301 |
"English document",
|
| 302 |
"Documento en espa帽ol",
|
| 303 |
+
"Document en fran莽ais",
|
| 304 |
+
"Document en catal脿"
|
| 305 |
])
|
| 306 |
|
| 307 |
# Legal embeddings for English
|
app.py
CHANGED
|
@@ -9,9 +9,9 @@ from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
|
| 9 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
| 10 |
|
| 11 |
app = FastAPI(
|
| 12 |
-
title="
|
| 13 |
-
description="Multi-model embedding API for Spanish and Legal texts",
|
| 14 |
-
version="
|
| 15 |
)
|
| 16 |
|
| 17 |
# Global model cache
|
|
@@ -27,10 +27,11 @@ async def startup_event():
|
|
| 27 |
@app.get("/")
|
| 28 |
async def root():
|
| 29 |
return {
|
| 30 |
-
"message": "
|
| 31 |
-
"models": ["jina", "robertalex", "jina-v3", "legal-bert"],
|
| 32 |
"status": "running",
|
| 33 |
-
"docs": "/docs"
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
@app.post("/embed", response_model=EmbeddingResponse)
|
|
@@ -106,6 +107,15 @@ async def list_models():
|
|
| 106 |
languages=["English"],
|
| 107 |
model_type="legal domain",
|
| 108 |
description="English legal domain BERT model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
]
|
| 111 |
|
|
@@ -114,7 +124,7 @@ async def health_check():
|
|
| 114 |
"""Health check endpoint"""
|
| 115 |
return {
|
| 116 |
"status": "healthy",
|
| 117 |
-
"models_loaded": len(models_cache) ==
|
| 118 |
"available_models": list(models_cache.keys())
|
| 119 |
}
|
| 120 |
|
|
|
|
| 9 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
| 10 |
|
| 11 |
app = FastAPI(
|
| 12 |
+
title="Multilingual & Legal Embedding API",
|
| 13 |
+
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
| 14 |
+
version="3.0.0"
|
| 15 |
)
|
| 16 |
|
| 17 |
# Global model cache
|
|
|
|
| 27 |
@app.get("/")
|
| 28 |
async def root():
|
| 29 |
return {
|
| 30 |
+
"message": "Multilingual & Legal Embedding API",
|
| 31 |
+
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
| 32 |
"status": "running",
|
| 33 |
+
"docs": "/docs",
|
| 34 |
+
"total_models": 5
|
| 35 |
}
|
| 36 |
|
| 37 |
@app.post("/embed", response_model=EmbeddingResponse)
|
|
|
|
| 107 |
languages=["English"],
|
| 108 |
model_type="legal domain",
|
| 109 |
description="English legal domain BERT model"
|
| 110 |
+
),
|
| 111 |
+
ModelInfo(
|
| 112 |
+
model_id="roberta-ca",
|
| 113 |
+
name="projecte-aina/roberta-large-ca-v2",
|
| 114 |
+
dimensions=1024,
|
| 115 |
+
max_sequence_length=512,
|
| 116 |
+
languages=["Catalan"],
|
| 117 |
+
model_type="general",
|
| 118 |
+
description="Catalan RoBERTa-large model trained on large corpus"
|
| 119 |
)
|
| 120 |
]
|
| 121 |
|
|
|
|
| 124 |
"""Health check endpoint"""
|
| 125 |
return {
|
| 126 |
"status": "healthy",
|
| 127 |
+
"models_loaded": len(models_cache) == 5,
|
| 128 |
"available_models": list(models_cache.keys())
|
| 129 |
}
|
| 130 |
|
models/schemas.py
CHANGED
|
@@ -11,7 +11,7 @@ class EmbeddingRequest(BaseModel):
|
|
| 11 |
description="List of texts to embed",
|
| 12 |
example=["Hola mundo", "驴C贸mo est谩s?"]
|
| 13 |
)
|
| 14 |
-
model: Literal["jina", "robertalex", "jina-v3", "legal-bert"] = Field(
|
| 15 |
default="jina",
|
| 16 |
description="Model to use for embeddings"
|
| 17 |
)
|
|
@@ -41,7 +41,7 @@ class EmbeddingRequest(BaseModel):
|
|
| 41 |
model = values.get('model', 'jina')
|
| 42 |
if model in ['jina', 'jina-v3'] and v > 8192:
|
| 43 |
raise ValueError(f"Max length for {model} model is 8192")
|
| 44 |
-
elif model in ['robertalex', 'legal-bert'] and v > 512:
|
| 45 |
raise ValueError(f"Max length for {model} model is 512")
|
| 46 |
if v < 1:
|
| 47 |
raise ValueError("Max length must be positive")
|
|
|
|
| 11 |
description="List of texts to embed",
|
| 12 |
example=["Hola mundo", "驴C贸mo est谩s?"]
|
| 13 |
)
|
| 14 |
+
model: Literal["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"] = Field(
|
| 15 |
default="jina",
|
| 16 |
description="Model to use for embeddings"
|
| 17 |
)
|
|
|
|
| 41 |
model = values.get('model', 'jina')
|
| 42 |
if model in ['jina', 'jina-v3'] and v > 8192:
|
| 43 |
raise ValueError(f"Max length for {model} model is 8192")
|
| 44 |
+
elif model in ['robertalex', 'legal-bert', 'roberta-ca'] and v > 512:
|
| 45 |
raise ValueError(f"Max length for {model} model is 512")
|
| 46 |
if v < 1:
|
| 47 |
raise ValueError("Max length must be positive")
|
requirements.txt
CHANGED
|
@@ -8,4 +8,5 @@ scikit-learn==1.3.2
|
|
| 8 |
pydantic==2.5.0
|
| 9 |
huggingface-hub==0.19.4
|
| 10 |
python-multipart==0.0.6
|
| 11 |
-
protobuf>=3.20.0
|
|
|
|
|
|
| 8 |
pydantic==2.5.0
|
| 9 |
huggingface-hub==0.19.4
|
| 10 |
python-multipart==0.0.6
|
| 11 |
+
protobuf>=3.20.0
|
| 12 |
+
sentencepiece==0.1.99
|
utils/__init__.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
# utils/__init__.py
|
| 3 |
"""Utils package for helper functions"""
|
| 4 |
|
|
|
|
|
|
|
| 1 |
# utils/__init__.py
|
| 2 |
"""Utils package for helper functions"""
|
| 3 |
|
utils/helpers.py
CHANGED
|
@@ -69,6 +69,15 @@ def load_models() -> Dict:
|
|
| 69 |
).to(device)
|
| 70 |
legal_bert_model.eval()
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
models_cache = {
|
| 73 |
'jina': {
|
| 74 |
'tokenizer': jina_tokenizer,
|
|
@@ -93,6 +102,12 @@ def load_models() -> Dict:
|
|
| 93 |
'model': legal_bert_model,
|
| 94 |
'device': device,
|
| 95 |
'pooling': 'cls'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
}
|
| 97 |
}
|
| 98 |
|
|
@@ -152,11 +167,16 @@ def get_embeddings(
|
|
| 152 |
if max_length is None:
|
| 153 |
if model_name in ['jina', 'jina-v3']:
|
| 154 |
max_length = 8192
|
| 155 |
-
else: # robertalex, legal-bert
|
| 156 |
max_length = 512
|
| 157 |
|
| 158 |
# Process in batches for memory efficiency
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
all_embeddings = []
|
| 161 |
|
| 162 |
for i in range(0, len(texts), batch_size):
|
|
@@ -259,6 +279,13 @@ def get_model_info(model_name: str) -> Dict:
|
|
| 259 |
'max_length': 512,
|
| 260 |
'pooling': 'cls',
|
| 261 |
'languages': ['English']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
}
|
| 263 |
}
|
| 264 |
|
|
|
|
| 69 |
).to(device)
|
| 70 |
legal_bert_model.eval()
|
| 71 |
|
| 72 |
+
# Load Catalan RoBERTa model
|
| 73 |
+
print("Loading Catalan RoBERTa-large model...")
|
| 74 |
+
roberta_ca_tokenizer = AutoTokenizer.from_pretrained('projecte-aina/roberta-large-ca-v2')
|
| 75 |
+
roberta_ca_model = AutoModel.from_pretrained(
|
| 76 |
+
'projecte-aina/roberta-large-ca-v2',
|
| 77 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 78 |
+
).to(device)
|
| 79 |
+
roberta_ca_model.eval()
|
| 80 |
+
|
| 81 |
models_cache = {
|
| 82 |
'jina': {
|
| 83 |
'tokenizer': jina_tokenizer,
|
|
|
|
| 102 |
'model': legal_bert_model,
|
| 103 |
'device': device,
|
| 104 |
'pooling': 'cls'
|
| 105 |
+
},
|
| 106 |
+
'roberta-ca': {
|
| 107 |
+
'tokenizer': roberta_ca_tokenizer,
|
| 108 |
+
'model': roberta_ca_model,
|
| 109 |
+
'device': device,
|
| 110 |
+
'pooling': 'cls'
|
| 111 |
}
|
| 112 |
}
|
| 113 |
|
|
|
|
| 167 |
if max_length is None:
|
| 168 |
if model_name in ['jina', 'jina-v3']:
|
| 169 |
max_length = 8192
|
| 170 |
+
else: # robertalex, legal-bert, roberta-ca
|
| 171 |
max_length = 512
|
| 172 |
|
| 173 |
# Process in batches for memory efficiency
|
| 174 |
+
# Reduce batch size for large models
|
| 175 |
+
if model_name in ['jina-v3', 'roberta-ca']:
|
| 176 |
+
batch_size = 4 if len(texts) > 4 else len(texts)
|
| 177 |
+
else:
|
| 178 |
+
batch_size = 8 if len(texts) > 8 else len(texts)
|
| 179 |
+
|
| 180 |
all_embeddings = []
|
| 181 |
|
| 182 |
for i in range(0, len(texts), batch_size):
|
|
|
|
| 279 |
'max_length': 512,
|
| 280 |
'pooling': 'cls',
|
| 281 |
'languages': ['English']
|
| 282 |
+
},
|
| 283 |
+
'roberta-ca': {
|
| 284 |
+
'full_name': 'projecte-aina/roberta-large-ca-v2',
|
| 285 |
+
'dimensions': 1024,
|
| 286 |
+
'max_length': 512,
|
| 287 |
+
'pooling': 'cls',
|
| 288 |
+
'languages': ['Catalan']
|
| 289 |
}
|
| 290 |
}
|
| 291 |
|