|
|
|
|
|
import os |
|
|
import json |
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
|
|
|
from tools.sql_tool import SQLTool |
|
|
from tools.predict_tool import PredictTool |
|
|
from tools.explain_tool import ExplainTool |
|
|
from tools.report_tool import ReportTool |
|
|
from tools.ts_preprocess import build_timeseries |
|
|
from tools.ts_forecast_tool import TimeseriesForecastTool |
|
|
|
|
|
from utils.tracing import Tracer |
|
|
from utils.config import AppConfig |
|
|
|
|
|
|
|
|
llm = None |
|
|
LLM_ID = os.getenv("ORCHESTRATOR_MODEL") |
|
|
if LLM_ID: |
|
|
try: |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
_tok = AutoTokenizer.from_pretrained(LLM_ID) |
|
|
_mdl = AutoModelForCausalLM.from_pretrained(LLM_ID) |
|
|
llm = pipeline("text-generation", model=_mdl, tokenizer=_tok, max_new_tokens=512) |
|
|
except Exception: |
|
|
llm = None |
|
|
|
|
|
cfg = AppConfig.from_env() |
|
|
tracer = Tracer.from_env() |
|
|
|
|
|
sql_tool = SQLTool(cfg, tracer) |
|
|
predict_tool = PredictTool(cfg, tracer) |
|
|
explain_tool = ExplainTool(cfg, tracer) |
|
|
report_tool = ReportTool(cfg, tracer) |
|
|
ts_tool = TimeseriesForecastTool(cfg, tracer) |
|
|
|
|
|
SYSTEM_PROMPT = ( |
|
|
"You are an analytical assistant for tabular data. " |
|
|
"Decide which tools to call in order: " |
|
|
"1) SQL (retrieve) 2) Predict (score) 3) Explain (SHAP) 4) Report (document) 5) Forecast (Granite TTM). " |
|
|
"Always disclose the steps taken." |
|
|
) |
|
|
|
|
|
def plan_actions(message: str): |
|
|
if llm is not None: |
|
|
prompt = ( |
|
|
f"{SYSTEM_PROMPT}\nUser: {message}\n" |
|
|
"Return JSON with fields: steps (array subset of ['sql','predict','explain','report','forecast']), rationale." |
|
|
) |
|
|
try: |
|
|
out = llm(prompt)[0]["generated_text"] |
|
|
last = out.split("\n")[-1].strip() |
|
|
obj = json.loads(last) if last.startswith("{") else json.loads(out[out.rfind("{"):]) |
|
|
if isinstance(obj, dict) and "steps" in obj: |
|
|
return obj |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
m = message.lower() |
|
|
steps = [] |
|
|
if any(k in m for k in ["show", "average", "count", "trend", "top", "sql", "query", "kpi"]): steps.append("sql") |
|
|
if any(k in m for k in ["predict", "score", "risk", "propensity", "probability"]): steps.append("predict") |
|
|
if any(k in m for k in ["why", "explain", "shap", "feature", "attribution"]): steps.append("explain") |
|
|
if any(k in m for k in ["report", "download", "pdf", "summary"]): steps.append("report") |
|
|
if any(k in m for k in ["forecast", "next", "horizon", "granite"]): steps.append("forecast") |
|
|
if not steps: steps = ["sql"] |
|
|
return {"steps": steps, "rationale": "Rule-based plan."} |
|
|
|
|
|
def run_agent(message: str, hitl_decision: str = "Approve", reviewer_note: str = ""): |
|
|
tracer.trace_event("user_message", {"message": message}) |
|
|
plan = plan_actions(message) |
|
|
tracer.trace_event("plan", plan) |
|
|
|
|
|
sql_df = None |
|
|
predict_df = None |
|
|
explain_imgs = {} |
|
|
artifacts = {} |
|
|
ts_forecast_df = None |
|
|
|
|
|
if "sql" in plan["steps"]: |
|
|
sql_df = sql_tool.run(message) |
|
|
artifacts["sql_rows"] = int(len(sql_df)) if isinstance(sql_df, pd.DataFrame) else 0 |
|
|
|
|
|
if "predict" in plan["steps"]: |
|
|
predict_df = predict_tool.run(sql_df) |
|
|
|
|
|
ts_df = None |
|
|
if sql_df is not None: |
|
|
try: |
|
|
ts_df = build_timeseries(sql_df) |
|
|
except Exception: |
|
|
ts_df = None |
|
|
|
|
|
if "forecast" in plan["steps"] and ts_df is not None: |
|
|
|
|
|
|
|
|
agg = ts_df.groupby("timestamp", as_index=True)["portfolio_value"].sum().sort_index() |
|
|
try: |
|
|
ts_forecast_df = ts_tool.zeroshot_forecast(agg, horizon=96) |
|
|
except Exception as e: |
|
|
|
|
|
ts_forecast_df = pd.DataFrame({"error": [str(e)]}) |
|
|
|
|
|
if "explain" in plan["steps"]: |
|
|
explain_imgs = explain_tool.run(predict_df or sql_df) |
|
|
|
|
|
report_link = None |
|
|
if "report" in plan["steps"]: |
|
|
|
|
|
forecast_preview = ts_forecast_df.head(50) if isinstance(ts_forecast_df, pd.DataFrame) else None |
|
|
report_link = report_tool.render_and_save( |
|
|
user_query=message, |
|
|
sql_preview=sql_df.head(50) if isinstance(sql_df, pd.DataFrame) else None, |
|
|
predict_preview=predict_df.head(50) if isinstance(predict_df, pd.DataFrame) else forecast_preview, |
|
|
explain_images=explain_imgs, |
|
|
plan=plan, |
|
|
) |
|
|
|
|
|
tracer.trace_event("hitl", { |
|
|
"message": message, |
|
|
"decision": hitl_decision, |
|
|
"reviewer_note": reviewer_note, |
|
|
"artifacts": artifacts, |
|
|
"plan": plan, |
|
|
}) |
|
|
|
|
|
|
|
|
response = f"**Plan:** {plan['steps']}\n**Rationale:** {plan['rationale']}\n" |
|
|
if isinstance(sql_df, pd.DataFrame): response += f"\n**SQL rows:** {len(sql_df)}" |
|
|
if isinstance(predict_df, pd.DataFrame): response += f"\n**Predictions rows:** {len(predict_df)}" |
|
|
if isinstance(ts_forecast_df, pd.DataFrame) and "forecast" in ts_forecast_df.columns: |
|
|
response += f"\n**Forecast horizon:** {len(ts_forecast_df)}" |
|
|
if report_link: response += f"\n**Report:** {report_link}" |
|
|
if tracer.trace_url: response += f"\n**Trace:** {tracer.trace_url}" |
|
|
|
|
|
|
|
|
preview_df = ts_forecast_df if isinstance(ts_forecast_df, pd.DataFrame) and not ts_forecast_df.empty else \ |
|
|
(predict_df if isinstance(predict_df, pd.DataFrame) and not predict_df.empty else sql_df) |
|
|
return response, (preview_df if isinstance(preview_df, pd.DataFrame) else pd.DataFrame()) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Tabular Agentic XAI (Free-Tier)") |
|
|
with gr.Row(): |
|
|
msg = gr.Textbox(label="Ask your question") |
|
|
with gr.Row(): |
|
|
hitl = gr.Radio(["Approve", "Needs Changes"], value="Approve", label="Human Review") |
|
|
note = gr.Textbox(label="Reviewer note (optional)") |
|
|
out_md = gr.Markdown() |
|
|
out_df = gr.Dataframe(interactive=False) |
|
|
ask = gr.Button("Run") |
|
|
ask.click(run_agent, inputs=[msg, hitl, note], outputs=[out_md, out_df]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|