AshenH commited on
Commit
68c51bb
·
verified ·
1 Parent(s): 500d236

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -22
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import os
2
  import json
3
  import gradio as gr
@@ -7,10 +8,11 @@ from tools.sql_tool import SQLTool
7
  from tools.predict_tool import PredictTool
8
  from tools.explain_tool import ExplainTool
9
  from tools.report_tool import ReportTool
 
 
 
10
  from utils.tracing import Tracer
11
  from utils.config import AppConfig
12
- from tools.ts_forecast_tool import TimeseriesForecastTool
13
- from tools.ts_preprocess import build_timeseries
14
 
15
  # Optional tiny CPU LLM for planning (can be disabled by not setting ORCHESTRATOR_MODEL)
16
  llm = None
@@ -31,17 +33,12 @@ sql_tool = SQLTool(cfg, tracer)
31
  predict_tool = PredictTool(cfg, tracer)
32
  explain_tool = ExplainTool(cfg, tracer)
33
  report_tool = ReportTool(cfg, tracer)
34
-
35
- ts_tool = TimeseriesForecastTool(cfg, tracer,
36
- context_length=512, forecast_length=96,
37
- target_cols=["portfolio_value"], # set after preprocessing
38
- control_cols=["rate_deposit", "rate_asset"] # optional exogenous
39
- )
40
 
41
  SYSTEM_PROMPT = (
42
  "You are an analytical assistant for tabular data. "
43
  "Decide which tools to call in order: "
44
- "1) SQL (retrieve) 2) Predict (score) 3) Explain (SHAP) 4) Report (document). "
45
  "Always disclose the steps taken."
46
  )
47
 
@@ -49,7 +46,7 @@ def plan_actions(message: str):
49
  if llm is not None:
50
  prompt = (
51
  f"{SYSTEM_PROMPT}\nUser: {message}\n"
52
- "Return JSON with fields: steps (array subset of ['sql','predict','explain','report']), rationale."
53
  )
54
  try:
55
  out = llm(prompt)[0]["generated_text"]
@@ -66,6 +63,7 @@ def plan_actions(message: str):
66
  if any(k in m for k in ["predict", "score", "risk", "propensity", "probability"]): steps.append("predict")
67
  if any(k in m for k in ["why", "explain", "shap", "feature", "attribution"]): steps.append("explain")
68
  if any(k in m for k in ["report", "download", "pdf", "summary"]): steps.append("report")
 
69
  if not steps: steps = ["sql"]
70
  return {"steps": steps, "rationale": "Rule-based plan."}
71
 
@@ -78,34 +76,43 @@ def run_agent(message: str, hitl_decision: str = "Approve", reviewer_note: str =
78
  predict_df = None
79
  explain_imgs = {}
80
  artifacts = {}
 
81
 
82
  if "sql" in plan["steps"]:
83
  sql_df = sql_tool.run(message)
84
- # 👉 Build the model-friendly time series (monthly)
 
 
 
 
 
 
85
  try:
86
  ts_df = build_timeseries(sql_df)
87
  except Exception:
88
  ts_df = None
89
-
90
- if "sql" in plan["steps"]:
91
- sql_df = sql_tool.run(message)
92
- artifacts["sql_rows"] = int(len(sql_df)) if isinstance(sql_df, pd.DataFrame) else 0
93
 
94
- if "predict" in plan["steps"]:
95
- predict_df = predict_tool.run(sql_df)
 
 
 
 
 
 
 
96
 
97
  if "explain" in plan["steps"]:
98
  explain_imgs = explain_tool.run(predict_df or sql_df)
99
 
100
- if "forecast" in plan["steps"] and ts_df is not None:
101
- fc = ts_tool.zeroshot_forecast(ts_df[["timestamp","portfolio_value","interest_rate"]].dropna())
102
-
103
  report_link = None
104
  if "report" in plan["steps"]:
 
 
105
  report_link = report_tool.render_and_save(
106
  user_query=message,
107
  sql_preview=sql_df.head(50) if isinstance(sql_df, pd.DataFrame) else None,
108
- predict_preview=predict_df.head(50) if isinstance(predict_df, pd.DataFrame) else None,
109
  explain_images=explain_imgs,
110
  plan=plan,
111
  )
@@ -118,13 +125,18 @@ def run_agent(message: str, hitl_decision: str = "Approve", reviewer_note: str =
118
  "plan": plan,
119
  })
120
 
 
121
  response = f"**Plan:** {plan['steps']}\n**Rationale:** {plan['rationale']}\n"
122
  if isinstance(sql_df, pd.DataFrame): response += f"\n**SQL rows:** {len(sql_df)}"
123
  if isinstance(predict_df, pd.DataFrame): response += f"\n**Predictions rows:** {len(predict_df)}"
 
 
124
  if report_link: response += f"\n**Report:** {report_link}"
125
  if tracer.trace_url: response += f"\n**Trace:** {tracer.trace_url}"
126
 
127
- preview_df = predict_df if isinstance(predict_df, pd.DataFrame) and len(predict_df) else sql_df
 
 
128
  return response, (preview_df if isinstance(preview_df, pd.DataFrame) else pd.DataFrame())
129
 
130
  with gr.Blocks() as demo:
 
1
+ # space/app.py
2
  import os
3
  import json
4
  import gradio as gr
 
8
  from tools.predict_tool import PredictTool
9
  from tools.explain_tool import ExplainTool
10
  from tools.report_tool import ReportTool
11
+ from tools.ts_preprocess import build_timeseries
12
+ from tools.ts_forecast_tool import TimeseriesForecastTool
13
+
14
  from utils.tracing import Tracer
15
  from utils.config import AppConfig
 
 
16
 
17
  # Optional tiny CPU LLM for planning (can be disabled by not setting ORCHESTRATOR_MODEL)
18
  llm = None
 
33
  predict_tool = PredictTool(cfg, tracer)
34
  explain_tool = ExplainTool(cfg, tracer)
35
  report_tool = ReportTool(cfg, tracer)
36
+ ts_tool = TimeseriesForecastTool(cfg, tracer) # Granite wrapper
 
 
 
 
 
37
 
38
  SYSTEM_PROMPT = (
39
  "You are an analytical assistant for tabular data. "
40
  "Decide which tools to call in order: "
41
+ "1) SQL (retrieve) 2) Predict (score) 3) Explain (SHAP) 4) Report (document) 5) Forecast (Granite TTM). "
42
  "Always disclose the steps taken."
43
  )
44
 
 
46
  if llm is not None:
47
  prompt = (
48
  f"{SYSTEM_PROMPT}\nUser: {message}\n"
49
+ "Return JSON with fields: steps (array subset of ['sql','predict','explain','report','forecast']), rationale."
50
  )
51
  try:
52
  out = llm(prompt)[0]["generated_text"]
 
63
  if any(k in m for k in ["predict", "score", "risk", "propensity", "probability"]): steps.append("predict")
64
  if any(k in m for k in ["why", "explain", "shap", "feature", "attribution"]): steps.append("explain")
65
  if any(k in m for k in ["report", "download", "pdf", "summary"]): steps.append("report")
66
+ if any(k in m for k in ["forecast", "next", "horizon", "granite"]): steps.append("forecast")
67
  if not steps: steps = ["sql"]
68
  return {"steps": steps, "rationale": "Rule-based plan."}
69
 
 
76
  predict_df = None
77
  explain_imgs = {}
78
  artifacts = {}
79
+ ts_forecast_df = None
80
 
81
  if "sql" in plan["steps"]:
82
  sql_df = sql_tool.run(message)
83
+ artifacts["sql_rows"] = int(len(sql_df)) if isinstance(sql_df, pd.DataFrame) else 0
84
+
85
+ if "predict" in plan["steps"]:
86
+ predict_df = predict_tool.run(sql_df)
87
+
88
+ ts_df = None
89
+ if sql_df is not None:
90
  try:
91
  ts_df = build_timeseries(sql_df)
92
  except Exception:
93
  ts_df = None
 
 
 
 
94
 
95
+ if "forecast" in plan["steps"] and ts_df is not None:
96
+ # Expect 'portfolio_value' after preprocessing
97
+ # Use the combined series — e.g., sum over instruments by timestamp
98
+ agg = ts_df.groupby("timestamp", as_index=True)["portfolio_value"].sum().sort_index()
99
+ try:
100
+ ts_forecast_df = ts_tool.zeroshot_forecast(agg, horizon=96)
101
+ except Exception as e:
102
+ # Surface a readable error in response
103
+ ts_forecast_df = pd.DataFrame({"error": [str(e)]})
104
 
105
  if "explain" in plan["steps"]:
106
  explain_imgs = explain_tool.run(predict_df or sql_df)
107
 
 
 
 
108
  report_link = None
109
  if "report" in plan["steps"]:
110
+ # Add forecast preview if available
111
+ forecast_preview = ts_forecast_df.head(50) if isinstance(ts_forecast_df, pd.DataFrame) else None
112
  report_link = report_tool.render_and_save(
113
  user_query=message,
114
  sql_preview=sql_df.head(50) if isinstance(sql_df, pd.DataFrame) else None,
115
+ predict_preview=predict_df.head(50) if isinstance(predict_df, pd.DataFrame) else forecast_preview,
116
  explain_images=explain_imgs,
117
  plan=plan,
118
  )
 
125
  "plan": plan,
126
  })
127
 
128
+ # Compose response
129
  response = f"**Plan:** {plan['steps']}\n**Rationale:** {plan['rationale']}\n"
130
  if isinstance(sql_df, pd.DataFrame): response += f"\n**SQL rows:** {len(sql_df)}"
131
  if isinstance(predict_df, pd.DataFrame): response += f"\n**Predictions rows:** {len(predict_df)}"
132
+ if isinstance(ts_forecast_df, pd.DataFrame) and "forecast" in ts_forecast_df.columns:
133
+ response += f"\n**Forecast horizon:** {len(ts_forecast_df)}"
134
  if report_link: response += f"\n**Report:** {report_link}"
135
  if tracer.trace_url: response += f"\n**Trace:** {tracer.trace_url}"
136
 
137
+ # Prefer to show forecast if present, else predictions, else raw query
138
+ preview_df = ts_forecast_df if isinstance(ts_forecast_df, pd.DataFrame) and not ts_forecast_df.empty else \
139
+ (predict_df if isinstance(predict_df, pd.DataFrame) and not predict_df.empty else sql_df)
140
  return response, (preview_df if isinstance(preview_df, pd.DataFrame) else pd.DataFrame())
141
 
142
  with gr.Blocks() as demo: