| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						license: apache-2.0 | 
					
					
						
						| 
							 | 
						library_name: sentence-transformers | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- sentence-transformers | 
					
					
						
						| 
							 | 
						- feature-extraction | 
					
					
						
						| 
							 | 
						- sentence-similarity | 
					
					
						
						| 
							 | 
						- transformers | 
					
					
						
						| 
							 | 
						- text-embeddings-inference | 
					
					
						
						| 
							 | 
						pipeline_tag: sentence-similarity | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# sentence-transformers/paraphrase-mpnet-base-v2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Usage (Sentence-Transformers) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						pip install -U sentence-transformers | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Then you can use the model like this: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from sentence_transformers import SentenceTransformer | 
					
					
						
						| 
							 | 
						sentences = ["This is an example sentence", "Each sentence is converted"] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model = SentenceTransformer('sentence-transformers/paraphrase-mpnet-base-v2') | 
					
					
						
						| 
							 | 
						embeddings = model.encode(sentences) | 
					
					
						
						| 
							 | 
						print(embeddings) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Usage (HuggingFace Transformers) | 
					
					
						
						| 
							 | 
						Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer, AutoModel | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Mean Pooling - Take attention mask into account for correct averaging | 
					
					
						
						| 
							 | 
						def mean_pooling(model_output, attention_mask): | 
					
					
						
						| 
							 | 
						    token_embeddings = model_output[0] # First element of model_output contains all token embeddings | 
					
					
						
						| 
							 | 
						    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | 
					
					
						
						| 
							 | 
						    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Sentences we want sentence embeddings for | 
					
					
						
						| 
							 | 
						sentences = ['This is an example sentence', 'Each sentence is converted'] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Load model from HuggingFace Hub | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') | 
					
					
						
						| 
							 | 
						model = AutoModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Tokenize sentences | 
					
					
						
						| 
							 | 
						encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Compute token embeddings | 
					
					
						
						| 
							 | 
						with torch.no_grad(): | 
					
					
						
						| 
							 | 
						    model_output = model(**encoded_input) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Perform pooling. In this case, mean pooling. | 
					
					
						
						| 
							 | 
						sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						print("Sentence embeddings:") | 
					
					
						
						| 
							 | 
						print(sentence_embeddings) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Usage (Text Embeddings Inference (TEI)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- CPU: | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest \ | 
					
					
						
						| 
							 | 
						  --model-id sentence-transformers/paraphrase-mpnet-base-v2 \ | 
					
					
						
						| 
							 | 
						  --pooling mean \ | 
					
					
						
						| 
							 | 
						  --dtype float16 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- NVIDIA GPU: | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest \ | 
					
					
						
						| 
							 | 
						  --model-id sentence-transformers/paraphrase-mpnet-base-v2 \ | 
					
					
						
						| 
							 | 
						  --pooling mean \ | 
					
					
						
						| 
							 | 
						  --dtype float16 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						curl -s http://localhost:8080/v1/embeddings \ | 
					
					
						
						| 
							 | 
						  -H "Content-Type: application/json" \ | 
					
					
						
						| 
							 | 
						  -d '{ | 
					
					
						
						| 
							 | 
						    "model": "sentence-transformers/paraphrase-mpnet-base-v2", | 
					
					
						
						| 
							 | 
						    "input": "This is an example sentence" | 
					
					
						
						| 
							 | 
						  }' | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Full Model Architecture | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						SentenceTransformer( | 
					
					
						
						| 
							 | 
						  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel  | 
					
					
						
						| 
							 | 
						  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Citing & Authors | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model was trained by [sentence-transformers](https://www.sbert.net/).  | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): | 
					
					
						
						| 
							 | 
						```bibtex  | 
					
					
						
						| 
							 | 
						@inproceedings{reimers-2019-sentence-bert, | 
					
					
						
						| 
							 | 
						    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", | 
					
					
						
						| 
							 | 
						    author = "Reimers, Nils and Gurevych, Iryna", | 
					
					
						
						| 
							 | 
						    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", | 
					
					
						
						| 
							 | 
						    month = "11", | 
					
					
						
						| 
							 | 
						    year = "2019", | 
					
					
						
						| 
							 | 
						    publisher = "Association for Computational Linguistics", | 
					
					
						
						| 
							 | 
						    url = "http://arxiv.org/abs/1908.10084", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` |