Introduction
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
| Feature | Description | 
|---|---|
| Name | es_spacy_ner_cds | 
| Version | 0.0.1a | 
| spaCy | >=3.4.3,<3.5.0 | 
| Default Pipeline | tok2vec, ner | 
| Components | tok2vec, ner | 
Label Scheme
View label scheme (4 labels for 1 components)
| Component | Labels | 
|---|---|
ner | 
LOC, MISC, ORG, PER | 
Usage
You can use this model with the spaCy pipeline for NER.
import spacy
from spacy.pipeline import merge_entities
nlp = spacy.load("es_spacy_ner_cds")
nlp.add_pipe('sentencizer')
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
ner_pipe = nlp(example)
print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
    print(token.text, token.ent_type_)
Dataset
ToDo
Accuracy
| Type | Score | 
|---|---|
ENTS_F | 
96.26 | 
ENTS_P | 
96.49 | 
ENTS_R | 
96.04 | 
TOK2VEC_LOSS | 
62780.17 | 
NER_LOSS | 
34006.41 | 
- Downloads last month
 - 23
 
Evaluation results
- NER Precisionself-reported0.965
 - NER Recallself-reported0.960
 - NER F Scoreself-reported0.963