File size: 7,924 Bytes
f9e5067 d37823f f9e5067 d37823f 7b8adb3 d37823f 7b8adb3 d37823f 8e6a841 d37823f 8e6a841 d37823f c061c41 d37823f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
license: apache-2.0
language:
- en
base_model:
- robotics-diffusion-transformer/rdt-1b
pipeline_tag: robotics
library_name: transformers
tags:
- RDT
- rdt
- RDT 2
- Vision-Language-Action
- Bimanual
- Manipulation
- Zero-shot
- UMI
- Flowmatching
- Diffusion
- Action Expert
---
# RDT2-FM: Flow-Matching Action Expert for RDT 2
<!-- RDT2-FM conditions on a vision-language backbone ([RDT2-VQ](https://huggingface.co/robotics-diffusion-transformer/RDT2-VQ)) and predicts short-horizon **relative action chunks** with an action expert with improved RDT architecture and flow-matching objective.
Using a **flow-matching** objective, RDT2-FM delivering **lower inference latency** while preserving strong instruction following and cross-embodiment generalization on UMI-style bimanual setups.
Concretely, This repository contains the **action expert** for RDT2-FM. -->
RDT2-FM builds on a vision-language backbone (RDT2-VQ) and predicts short-horizon relative action chunks through an action expert that integrates an improved RDT architecture with a flow-matching objective.
By leveraging flow matching, RDT2-FM achieves lower inference latency while maintaining strong instruction following and cross-embodiment generalization on UMI-style bimanual setups.
This repository specifically provides the action expert component of RDT2-FM.
[**Home**](https://rdt-robotics.github.io/rdt2/) - [**Github**](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file) - [**Discord**](https://discord.gg/vsZS3zmf9A)
---
## Table of contents
* [Highlights](#highlights)
* [Model details](#model-details)
* [Hardware & software requirements](#hardware--software-requirements)
* [Quickstart (inference)](#quickstart-inference)
* [Precision settings](#precision-settings)
* [Intended uses & limitations](#intended-uses--limitations)
* [Troubleshooting](#troubleshooting)
* [Changelog](#changelog)
* [Citation](#citation)
* [Contact](#contact)
---
## Highlights
* **Low-latency control**: Flow-matching policy head (no iterative denoising) for fast closed-loop actions.
* **Zero-shot cross-embodiment**: Designed to work with any bimanual platforms (e.g., **UR5e**, **Franka FR3**) after proper calibration.
* **Scales with RDT2-VQ**: Pairs with the VLM backbone (**[RDT2-VQ](https://huggingface.co/robotics-diffusion-transformer/RDT2-VQ)**) trained on **10k+ hours** and **100+ scenes** of UMI manipulation.
---
## Model details
### Architecture
* **Backbone**: Vision-language backbone such as **RDT2-VQ** (Qwen2.5-VL-7B based).
* **Action head**: **Flow-Matching (FM)** expert mapping observations + instruction → continuous actions.
* **Observation**: Two wrist-camera RGB images (right/left), 384×384, JPEG-like statistics.
* **Instruction**: Short imperative text, recommended format **“Verb + Object.”** (e.g., “Pick up the apple.”).
### Action representation (UMI bimanual, per 24-step chunk)
* 20-D per step = right (10) + left (10):
* pos (x,y,z): 3
* rot (6D rotation): 6
* gripper width: 1
* Output tensor shape: **(T=24, D=20)**, relative deltas, `float32`.
---
## Hardware & software requirements
Approximate **single-GPU** requirements:
| Mode | RAM | VRAM | Example GPU |
| ------------------------- | ------: | ------: | ----------------------- |
| Inference (FM head + VLM) | ≥ 32 GB | ~ 16 GB | RTX 4090 |
| Fine-tuning FM head | – | ~ 16 GB | RTX 4090 |
> For **deployment on real robots**, follow your platform’s **end-effector + camera** choices and perform **[hardware setup & calibration](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration)** (camera stand/pose, flange, etc.) before running closed-loop policies.
**Tested OS**: Ubuntu 24.04.
---
## Quickstart (inference)
```python
# Run under root directory of RDT2 GitHub Repo: https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration
import yaml
from models.rdt_inferencer import RDTInferencer
with open("configs/rdt/post_train.yaml", "r") as f:
model_config = yaml.safe_load(f)
model = RDTInferencer(
config=model_config,
pretrained_path="robotics-diffusion-transformer/RDT2-FM",
# TODO: modify `normalizer_path` to your own downloaded normalizer path
# download from http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt
normalizer_path="umi_normalizer_wo_downsample_indentity_rot.pt",
pretrained_vision_language_model_name_or_path="robotics-diffusion-transformer/RDT2-VQ", # use RDT2-VQ as the VLM backbone
device="cuda:0",
dtype=torch.bfloat16,
)
result = model.step(
observations={
'images': {
# 'exterior_rs': np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8),
'left_stereo': ..., # left arm RGB image in np.ndarray of shape (384, 384, 3) with dtype=np.uint8
'right_stereo': ..., # right arm RGB image in np.ndarray of shape (384, 384, 3) with dtype=np.uint8
},
# use zero input current state for currently
# preserve input interface for future fine-tuning
'state': np.zeros(model_config["common"]["state_dim"]).astype(np.float32)
},
instruction=instruction # Language instruction
# We suggest using Instruction in format "verb + object" with Capitalized First Letter and trailing period
)
# relative action chunk in np.ndarray of shape (24, 20) with dtype=np.float32
# with the same format as RDT2-VQ
action_chunk = result.detach().cpu().numpy()
# rescale gripper width from [0, 0.088] to [0, 0.1]
for robot_idx in range(2):
action_chunk[:, robot_idx * 10 + 9] = action_chunk[:, robot_idx * 10 + 9] / 0.088 * 0.1
```
> For guides on **installation and fine-tuning**, please refer to the official [GitHub repository](https://github.com/thu-ml/RDT2).
---
## Precision settings
* **RDT2-FM (action expert)**: `bfloat16` for training and inference.
* **RDT2-VQ (VLM backbone)**: `bfloat16` by default (Qwen2.5-VL practices).
---
## Intended uses & limitations
**Intended uses**
* Research in **robot manipulation** and **VLA modeling**.
* Low-latency, short-horizon control on bimanual systems following **hardware calibration** steps.
**Limitations**
* Performance depends on **calibration quality**, camera placement, and correct normalization.
* Dataset/action-stat shift can degrade behavior—verify bounds and reconstruction when adapting.
**Safety & responsible use**
* Always test with **hardware limits** engaged (reduced speed, gravity compensation, E-stop within reach).
---
## Troubleshooting
| Symptom | Likely cause | Suggested fix |
| ---------------------------------- | ------------------------------- | ---------------------------------------------------------------------- |
| Drifting / unstable gripper widths | Scale mismatch | Apply **LinearNormalizer**; rescale widths ([0,0.088] → [0,0.1]). |
| Poor instruction following | Prompt format / backbone config | Use **“Verb + Object.”**; ensure backbone is loaded on same device. |
---
## Changelog
* **2025-09**: Initial release of **RDT2-FM** on Hugging Face.
---
## Citation
```bibtex
@software{rdt2,
title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data},
author={RDT Team},
url={https://github.com/thu-ml/RDT2},
month={September},
year={2025}
}
```
---
## Contact
* Project page: [https://rdt-robotics.github.io/rdt2/](https://rdt-robotics.github.io/rdt2/)
* Organization: [https://huggingface.co/robotics-diffusion-transformer](https://huggingface.co/robotics-diffusion-transformer)
* Discord: [https://discord.gg/vsZS3zmf9A](https://discord.gg/vsZS3zmf9A)
|