Update README.md
Browse files
README.md
CHANGED
|
@@ -15,7 +15,187 @@ tags:
|
|
| 15 |
- Manipulation
|
| 16 |
- Zero-shot
|
| 17 |
- UMI
|
| 18 |
-
-
|
| 19 |
- Diffusion
|
| 20 |
- Action Expert
|
| 21 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
- Manipulation
|
| 16 |
- Zero-shot
|
| 17 |
- UMI
|
| 18 |
+
- Flowmatching
|
| 19 |
- Diffusion
|
| 20 |
- Action Expert
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# RDT2-FM: Flow-Matching Action Expert for RDT 2
|
| 25 |
+
|
| 26 |
+
RDT2-FM conditions on a vision-language backbone ([RDT2-VQ](https://huggingface.co/robotics-diffusion-transformer/RDT2-VQ)) and predicts short-horizon **relative action chunks** with an action expert with improved RDT architecture and flow-matching objective.
|
| 27 |
+
Using a **flow-matching** objective, RDT2-FM delivering **lower inference latency** while preserving strong instruction following and cross-embodiment generalization on UMI-style bimanual setups.
|
| 28 |
+
Concretely, This repository contains the **action expert** for RDT2-FM.
|
| 29 |
+
|
| 30 |
+
[**Home**](https://rdt-robotics.github.io/rdt2/) - [**Github**](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file) - [**Discord**](https://discord.gg/vsZS3zmf9A)
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## Table of contents
|
| 35 |
+
|
| 36 |
+
* [Highlights](#highlights)
|
| 37 |
+
* [Model details](#model-details)
|
| 38 |
+
* [Hardware & software requirements](#hardware--software-requirements)
|
| 39 |
+
* [Quickstart (inference)](#quickstart-inference)
|
| 40 |
+
* [Precision settings](#precision-settings)
|
| 41 |
+
* [Intended uses & limitations](#intended-uses--limitations)
|
| 42 |
+
* [Troubleshooting](#troubleshooting)
|
| 43 |
+
* [Changelog](#changelog)
|
| 44 |
+
* [Citation](#citation)
|
| 45 |
+
* [Contact](#contact)
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## Highlights
|
| 50 |
+
|
| 51 |
+
* **Low-latency control**: Flow-matching policy head (no iterative denoising) for fast closed-loop actions.
|
| 52 |
+
* **Zero-shot cross-embodiment**: Designed to work with any bimanual platforms (e.g., **UR5e**, **Franka FR3**) after proper calibration.
|
| 53 |
+
* **Scales with RDT2-VQ**: Pairs with the VLM backbone (**[RDT2-VQ](https://huggingface.co/robotics-diffusion-transformer/RDT2-VQ)**) trained on **10k+ hours** and **100+ scenes** of UMI manipulation.
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## Model details
|
| 58 |
+
|
| 59 |
+
### Architecture
|
| 60 |
+
|
| 61 |
+
* **Backbone**: Vision-language backbone such as **RDT2-VQ** (Qwen2.5-VL-7B based).
|
| 62 |
+
* **Action head**: **Flow-Matching (FM)** expert mapping observations + instruction → continuous actions.
|
| 63 |
+
* **Observation**: Two wrist-camera RGB images (right/left), 384×384, JPEG-like statistics.
|
| 64 |
+
* **Instruction**: Short imperative text, recommended format **“Verb + Object.”** (e.g., “Pick up the apple.”).
|
| 65 |
+
|
| 66 |
+
### Action representation (UMI bimanual, per 24-step chunk)
|
| 67 |
+
|
| 68 |
+
* 20-D per step = right (10) + left (10):
|
| 69 |
+
|
| 70 |
+
* pos (x,y,z): 3
|
| 71 |
+
* rot (6D rotation): 6
|
| 72 |
+
* gripper width: 1
|
| 73 |
+
* Output tensor shape: **(T=24, D=20)**, relative deltas, `float32`.
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
## Hardware & software requirements
|
| 78 |
+
|
| 79 |
+
Approximate **single-GPU** requirements:
|
| 80 |
+
|
| 81 |
+
| Mode | RAM | VRAM | Example GPU |
|
| 82 |
+
| ------------------------- | ------: | ------: | ----------------------- |
|
| 83 |
+
| Inference (FM head + VLM) | ≥ 32 GB | ~ 16 GB | RTX 4090 |
|
| 84 |
+
| Fine-tuning FM head | – | ~ 16 GB | RTX 4090 |
|
| 85 |
+
|
| 86 |
+
> For **deployment on real robots**, follow your platform’s **end-effector + camera** choices and perform **[hardware setup & calibration](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration)** (camera stand/pose, flange, etc.) before running closed-loop policies.
|
| 87 |
+
|
| 88 |
+
**Tested OS**: Ubuntu 24.04.
|
| 89 |
+
|
| 90 |
+
---
|
| 91 |
+
|
| 92 |
+
## Quickstart (inference)
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
# Run under root directory of RDT2 GitHub Repo: https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration
|
| 96 |
+
import yaml
|
| 97 |
+
|
| 98 |
+
from models.rdt_inferencer import RDTInferencer
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
with open("configs/rdt/post_train.yaml", "r") as f:
|
| 102 |
+
model_config = yaml.safe_load(f)
|
| 103 |
+
|
| 104 |
+
model = RDTInferencer(
|
| 105 |
+
config=model_config,
|
| 106 |
+
pretrained_path="robotics-diffusion-transformer/RDT2-FM",
|
| 107 |
+
# TODO: modify `normalizer_path` to your own downloaded normalizer path
|
| 108 |
+
# download from http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt
|
| 109 |
+
normalizer_path="umi_normalizer_wo_downsample_indentity_rot.pt",
|
| 110 |
+
pretrained_vision_language_model_name_or_path="robotics-diffusion-transformer/RDT2-VQ", # use RDT2-VQ as the VLM backbone
|
| 111 |
+
device="cuda:0",
|
| 112 |
+
dtype=torch.bfloat16,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
result = model.step(
|
| 116 |
+
observations={
|
| 117 |
+
'images': {
|
| 118 |
+
# 'exterior_rs': np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8),
|
| 119 |
+
'left_stereo': ..., # left arm RGB image in np.ndarray of shape (384, 384, 3) with dtype=np.uint8
|
| 120 |
+
'right_stereo': ..., # right arm RGB image in np.ndarray of shape (384, 384, 3) with dtype=np.uint8
|
| 121 |
+
},
|
| 122 |
+
# use zero input current state for currently
|
| 123 |
+
# preserve input interface for future fine-tuning
|
| 124 |
+
'state': np.zeros(model_config["common"]["state_dim"]).astype(np.float32)
|
| 125 |
+
},
|
| 126 |
+
instruction=instruction # Language instruction
|
| 127 |
+
# We suggest using Instruction in format "verb + object" with Capitalized First Letter and trailing period
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# relative action chunk in np.ndarray of shape (24, 20) with dtype=np.float32
|
| 132 |
+
# with the same format as RDT2-VQ
|
| 133 |
+
action_chunk = result.detach().cpu().numpy()
|
| 134 |
+
|
| 135 |
+
# rescale gripper width from [0, 0.088] to [0, 0.1]
|
| 136 |
+
for robot_idx in range(2):
|
| 137 |
+
action_chunk[:, robot_idx * 10 + 9] = action_chunk[:, robot_idx * 10 + 9] / 0.088 * 0.1
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
> For **installation and fine-tuning instructions**, please refer to the official [GitHub repository](https://github.com/thu-ml/RDT2).
|
| 141 |
+
|
| 142 |
+
---
|
| 143 |
+
|
| 144 |
+
## Precision settings
|
| 145 |
+
|
| 146 |
+
* **RDT2-FM (action expert)**: `bfloat16` for training and inference.
|
| 147 |
+
* **RDT2-VQ (VLM backbone)**: `bfloat16` by default (Qwen2.5-VL practices).
|
| 148 |
+
|
| 149 |
+
---
|
| 150 |
+
|
| 151 |
+
## Intended uses & limitations
|
| 152 |
+
|
| 153 |
+
**Intended uses**
|
| 154 |
+
|
| 155 |
+
* Research in **robot manipulation** and **VLA modeling**.
|
| 156 |
+
* Low-latency, short-horizon control on bimanual systems following **hardware calibration** steps.
|
| 157 |
+
|
| 158 |
+
**Limitations**
|
| 159 |
+
|
| 160 |
+
* Performance depends on **calibration quality**, camera placement, and correct normalization.
|
| 161 |
+
* Dataset/action-stat shift can degrade behavior—verify bounds and reconstruction when adapting.
|
| 162 |
+
|
| 163 |
+
**Safety & responsible use**
|
| 164 |
+
|
| 165 |
+
* Always test with **hardware limits** engaged (reduced speed, gravity compensation, E-stop within reach).
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
+
|
| 169 |
+
## Troubleshooting
|
| 170 |
+
|
| 171 |
+
| Symptom | Likely cause | Suggested fix |
|
| 172 |
+
| ---------------------------------- | ------------------------------- | ---------------------------------------------------------------------- |
|
| 173 |
+
| Drifting / unstable gripper widths | Scale mismatch | Apply **LinearNormalizer**; rescale widths ([0,0.088] → [0,0.1]). |
|
| 174 |
+
| Poor instruction following | Prompt format / backbone config | Use “**Verb + Object.**”; ensure backbone is loaded on same device. |
|
| 175 |
+
|
| 176 |
+
---
|
| 177 |
+
|
| 178 |
+
## Changelog
|
| 179 |
+
|
| 180 |
+
* **2025-09**: Initial release of **RDT2-FM** on Hugging Face.
|
| 181 |
+
|
| 182 |
+
---
|
| 183 |
+
|
| 184 |
+
## Citation
|
| 185 |
+
|
| 186 |
+
```bibtex
|
| 187 |
+
@misc{rdt2_2025,
|
| 188 |
+
title = {RDT 2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data},
|
| 189 |
+
author = {RDT Robotics Team},
|
| 190 |
+
year = {2025},
|
| 191 |
+
url = {https://rdt-robotics.github.io/rdt2/}
|
| 192 |
+
}
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
---
|
| 196 |
+
|
| 197 |
+
## Contact
|
| 198 |
+
|
| 199 |
+
* Project page: [https://rdt-robotics.github.io/rdt2/](https://rdt-robotics.github.io/rdt2/)
|
| 200 |
+
* Organization: [https://huggingface.co/robotics-diffusion-transformer](https://huggingface.co/robotics-diffusion-transformer)
|
| 201 |
+
* Discord: [https://discord.gg/vsZS3zmf9A](https://discord.gg/vsZS3zmf9A)
|