File size: 9,534 Bytes
faa102a 7eaf163 faa102a 2f1682d 7eaf163 0d8c9cc 7eaf163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:8000000
- loss:ArcFaceInBatchLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: '"How much would I need to narrate a ""Let''s Play"" video in order
to make money from it on YouTube?"'
sentences:
- How much money do people make from YouTube videos with 1 million views?
- '"How much would I need to narrate a ""Let''s Play"" video in order to make money
from it on YouTube?"'
- '"Does the sentence, ""I expect to be disappointed,"" make sense?"'
- source_sentence: '"I appreciate that.'
sentences:
- '"How is the Mariner rewarded in ""The Rime of the Ancient Mariner"" by Samuel
Taylor Coleridge?"'
- '"I appreciate that.'
- I can appreciate that.
- source_sentence: '"""It is very easy to defeat someone, but too hard to win some
one"". What does the previous sentence mean?"'
sentences:
- '"How can you use the word ""visceral"" in a sentence?"'
- '"""It is very easy to defeat someone, but too hard to win some one"". What does
the previous sentence mean?"'
- '"What does ""The loudest one in the room is the weakest one in the room."" Mean?"'
- source_sentence: '" We condemn this raid which is in our view illegal and morally
and politically unjustifiable , " London-based NCRI official Ali Safavi told Reuters
by telephone .'
sentences:
- 'London-based NCRI official Ali Safavi told Reuters : " We condemn this raid ,
which is in our view illegal and morally and politically unjustifiable . "'
- The social awkwardness is complicated by the fact that Marianne is a white girl
living with a black family .
- art's cause, this in my opinion
- source_sentence: '"If you click ""like"" on an old post that someone made on your
wall yet you''re no longer Facebook friends, will they still receive a notification?"'
sentences:
- '"Is there is any two wheeler having a gear box which has the feature ""automatic
neutral"" when the engine is off while it is in gear?"'
- '"If you click ""like"" on an old post that someone made on your wall yet you''re
no longer Facebook friends, will they still receive a notification?"'
- '"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would
you be concerned?"'
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: custom-information-retrieval
name: Custom Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.6162
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.6162
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5987
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.7883
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.6162
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7416
name: Cosine Map@100
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3-small")
# Run inference
sentences = [
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would you be concerned?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Custom Information Retrieval
* Dataset: `test`
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code>
| Metric | Value |
|:-------------------------------------|:-----------|
| cosine_accuracy@1 | 0.6162 |
| cosine_precision@1 | 0.6162 |
| cosine_recall@1 | 0.5987 |
| **cosine_ndcg@10** | **0.7883** |
| cosine_mrr@1 | 0.6162 |
| cosine_map@100 | 0.7416 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: ~8,000,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|:-----:|:----:|:-------------------:|
| 4.0 | 40000| 0.7880 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|