Langcache-embed-v3
Collection
A collection of open embedding models for semantic caching.
•
7 items
•
Updated
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the LangCache Sentence Pairs (all) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3-small")
# Run inference
sentences = [
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would you be concerned?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
testir_evaluator.CustomInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6162 |
| cosine_precision@1 | 0.6162 |
| cosine_recall@1 | 0.5987 |
| cosine_ndcg@10 | 0.7883 |
| cosine_mrr@1 | 0.6162 |
| cosine_map@100 | 0.7416 |
anchor, positive, and negativelosses.ArcFaceInBatchLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
anchor, positive, and negativelosses.ArcFaceInBatchLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
| Epoch | Step | test_cosine_ndcg@10 |
|---|---|---|
| 4.0 | 40000 | 0.7880 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
sentence-transformers/all-MiniLM-L6-v2