radoslavralev commited on
Commit
9775b0f
·
verified ·
1 Parent(s): dec7e48

Add new SentenceTransformer model

Browse files
Files changed (4) hide show
  1. README.md +12 -12
  2. config.json +1 -1
  3. model.safetensors +2 -2
  4. sentence_bert_config.json +1 -1
README.md CHANGED
@@ -87,19 +87,19 @@ model-index:
87
  value: 0.5589816867630893
88
  name: Cosine Recall@1
89
  - type: cosine_ndcg@10
90
- value: 0.7619419081029518
91
  name: Cosine Ndcg@10
92
  - type: cosine_mrr@1
93
  value: 0.5763286334056399
94
  name: Cosine Mrr@1
95
  - type: cosine_map@100
96
- value: 0.7107794631883741
97
  name: Cosine Map@100
98
  - type: cosine_auc_precision_cache_hit_ratio
99
  value: 0.3488530268041688
100
  name: Cosine Auc Precision Cache Hit Ratio
101
  - type: cosine_auc_similarity_distribution
102
- value: 0.1634818016054941
103
  name: Cosine Auc Similarity Distribution
104
  ---
105
 
@@ -112,7 +112,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
112
  ### Model Description
113
  - **Model Type:** Sentence Transformer
114
  - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
115
- - **Maximum Sequence Length:** 100 tokens
116
  - **Output Dimensionality:** 384 dimensions
117
  - **Similarity Function:** Cosine Similarity
118
  - **Training Dataset:**
@@ -130,7 +130,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
130
 
131
  ```
132
  SentenceTransformer(
133
- (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'BertModel'})
134
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
135
  (2): Normalize()
136
  )
@@ -165,9 +165,9 @@ print(embeddings.shape)
165
  # Get the similarity scores for the embeddings
166
  similarities = model.similarity(embeddings, embeddings)
167
  print(similarities)
168
- # tensor([[1.0000, 1.0000, 0.3432],
169
- # [1.0000, 1.0000, 0.3432],
170
- # [0.3432, 0.3432, 1.0001]])
171
  ```
172
 
173
  <!--
@@ -239,7 +239,7 @@ You can finetune this model on your own dataset.
239
  | | anchor | positive | negative |
240
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
241
  | type | string | string | string |
242
- | details | <ul><li>min: 4 tokens</li><li>mean: 27.15 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.59 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
243
  * Samples:
244
  | anchor | positive | negative |
245
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
@@ -266,7 +266,7 @@ You can finetune this model on your own dataset.
266
  | | anchor | positive | negative |
267
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
268
  | type | string | string | string |
269
- | details | <ul><li>min: 4 tokens</li><li>mean: 27.15 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.59 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
270
  * Samples:
271
  | anchor | positive | negative |
272
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
@@ -296,7 +296,7 @@ You can finetune this model on your own dataset.
296
  - `warmup_ratio`: 0.05
297
  - `bf16`: True
298
  - `dataloader_num_workers`: 6
299
- - `dataloader_prefetch_factor`: 2
300
  - `load_best_model_at_end`: True
301
  - `optim`: stable_adamw
302
  - `ddp_find_unused_parameters`: False
@@ -359,7 +359,7 @@ You can finetune this model on your own dataset.
359
  - `debug`: []
360
  - `dataloader_drop_last`: False
361
  - `dataloader_num_workers`: 6
362
- - `dataloader_prefetch_factor`: 2
363
  - `past_index`: -1
364
  - `disable_tqdm`: False
365
  - `remove_unused_columns`: True
 
87
  value: 0.5589816867630893
88
  name: Cosine Recall@1
89
  - type: cosine_ndcg@10
90
+ value: 0.7619433934524245
91
  name: Cosine Ndcg@10
92
  - type: cosine_mrr@1
93
  value: 0.5763286334056399
94
  name: Cosine Mrr@1
95
  - type: cosine_map@100
96
+ value: 0.7107811578738404
97
  name: Cosine Map@100
98
  - type: cosine_auc_precision_cache_hit_ratio
99
  value: 0.3488530268041688
100
  name: Cosine Auc Precision Cache Hit Ratio
101
  - type: cosine_auc_similarity_distribution
102
+ value: 0.16348145891100385
103
  name: Cosine Auc Similarity Distribution
104
  ---
105
 
 
112
  ### Model Description
113
  - **Model Type:** Sentence Transformer
114
  - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
115
+ - **Maximum Sequence Length:** 256 tokens
116
  - **Output Dimensionality:** 384 dimensions
117
  - **Similarity Function:** Cosine Similarity
118
  - **Training Dataset:**
 
130
 
131
  ```
132
  SentenceTransformer(
133
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
134
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
135
  (2): Normalize()
136
  )
 
165
  # Get the similarity scores for the embeddings
166
  similarities = model.similarity(embeddings, embeddings)
167
  print(similarities)
168
+ # tensor([[1.0000, 1.0000, 0.3433],
169
+ # [1.0000, 1.0000, 0.3433],
170
+ # [0.3433, 0.3433, 1.0000]])
171
  ```
172
 
173
  <!--
 
239
  | | anchor | positive | negative |
240
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
241
  | type | string | string | string |
242
+ | details | <ul><li>min: 4 tokens</li><li>mean: 27.17 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.61 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
243
  * Samples:
244
  | anchor | positive | negative |
245
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
 
266
  | | anchor | positive | negative |
267
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
268
  | type | string | string | string |
269
+ | details | <ul><li>min: 4 tokens</li><li>mean: 27.17 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.61 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
270
  * Samples:
271
  | anchor | positive | negative |
272
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
 
296
  - `warmup_ratio`: 0.05
297
  - `bf16`: True
298
  - `dataloader_num_workers`: 6
299
+ - `dataloader_prefetch_factor`: 1
300
  - `load_best_model_at_end`: True
301
  - `optim`: stable_adamw
302
  - `ddp_find_unused_parameters`: False
 
359
  - `debug`: []
360
  - `dataloader_drop_last`: False
361
  - `dataloader_num_workers`: 6
362
+ - `dataloader_prefetch_factor`: 1
363
  - `past_index`: -1
364
  - `disable_tqdm`: False
365
  - `remove_unused_columns`: True
config.json CHANGED
@@ -4,7 +4,7 @@
4
  ],
5
  "attention_probs_dropout_prob": 0.1,
6
  "classifier_dropout": null,
7
- "dtype": "bfloat16",
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
 
4
  ],
5
  "attention_probs_dropout_prob": 0.1,
6
  "classifier_dropout": null,
7
+ "dtype": "float32",
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ec3cf21b9dac967ed24a078c8554f9c345e2b737507a2bd9751787934fc0930f
3
- size 45437864
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcea1769de0d43888c0612653d804fb22f13517e64b92633b2c7436d1ee565ae
3
+ size 90864192
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 100,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 256,
3
  "do_lower_case": false
4
  }