Add new SentenceTransformer model
Browse files- README.md +12 -12
- config.json +1 -1
- model.safetensors +2 -2
- sentence_bert_config.json +1 -1
README.md
CHANGED
|
@@ -87,19 +87,19 @@ model-index:
|
|
| 87 |
value: 0.5589816867630893
|
| 88 |
name: Cosine Recall@1
|
| 89 |
- type: cosine_ndcg@10
|
| 90 |
-
value: 0.
|
| 91 |
name: Cosine Ndcg@10
|
| 92 |
- type: cosine_mrr@1
|
| 93 |
value: 0.5763286334056399
|
| 94 |
name: Cosine Mrr@1
|
| 95 |
- type: cosine_map@100
|
| 96 |
-
value: 0.
|
| 97 |
name: Cosine Map@100
|
| 98 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 99 |
value: 0.3488530268041688
|
| 100 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 101 |
- type: cosine_auc_similarity_distribution
|
| 102 |
-
value: 0.
|
| 103 |
name: Cosine Auc Similarity Distribution
|
| 104 |
---
|
| 105 |
|
|
@@ -112,7 +112,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
| 112 |
### Model Description
|
| 113 |
- **Model Type:** Sentence Transformer
|
| 114 |
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
| 115 |
-
- **Maximum Sequence Length:**
|
| 116 |
- **Output Dimensionality:** 384 dimensions
|
| 117 |
- **Similarity Function:** Cosine Similarity
|
| 118 |
- **Training Dataset:**
|
|
@@ -130,7 +130,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
| 130 |
|
| 131 |
```
|
| 132 |
SentenceTransformer(
|
| 133 |
-
(0): Transformer({'max_seq_length':
|
| 134 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 135 |
(2): Normalize()
|
| 136 |
)
|
|
@@ -165,9 +165,9 @@ print(embeddings.shape)
|
|
| 165 |
# Get the similarity scores for the embeddings
|
| 166 |
similarities = model.similarity(embeddings, embeddings)
|
| 167 |
print(similarities)
|
| 168 |
-
# tensor([[1.0000, 1.0000, 0.
|
| 169 |
-
# [1.0000, 1.0000, 0.
|
| 170 |
-
# [0.
|
| 171 |
```
|
| 172 |
|
| 173 |
<!--
|
|
@@ -239,7 +239,7 @@ You can finetune this model on your own dataset.
|
|
| 239 |
| | anchor | positive | negative |
|
| 240 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 241 |
| type | string | string | string |
|
| 242 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 27.
|
| 243 |
* Samples:
|
| 244 |
| anchor | positive | negative |
|
| 245 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
|
@@ -266,7 +266,7 @@ You can finetune this model on your own dataset.
|
|
| 266 |
| | anchor | positive | negative |
|
| 267 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 268 |
| type | string | string | string |
|
| 269 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 27.
|
| 270 |
* Samples:
|
| 271 |
| anchor | positive | negative |
|
| 272 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
|
@@ -296,7 +296,7 @@ You can finetune this model on your own dataset.
|
|
| 296 |
- `warmup_ratio`: 0.05
|
| 297 |
- `bf16`: True
|
| 298 |
- `dataloader_num_workers`: 6
|
| 299 |
-
- `dataloader_prefetch_factor`:
|
| 300 |
- `load_best_model_at_end`: True
|
| 301 |
- `optim`: stable_adamw
|
| 302 |
- `ddp_find_unused_parameters`: False
|
|
@@ -359,7 +359,7 @@ You can finetune this model on your own dataset.
|
|
| 359 |
- `debug`: []
|
| 360 |
- `dataloader_drop_last`: False
|
| 361 |
- `dataloader_num_workers`: 6
|
| 362 |
-
- `dataloader_prefetch_factor`:
|
| 363 |
- `past_index`: -1
|
| 364 |
- `disable_tqdm`: False
|
| 365 |
- `remove_unused_columns`: True
|
|
|
|
| 87 |
value: 0.5589816867630893
|
| 88 |
name: Cosine Recall@1
|
| 89 |
- type: cosine_ndcg@10
|
| 90 |
+
value: 0.7619433934524245
|
| 91 |
name: Cosine Ndcg@10
|
| 92 |
- type: cosine_mrr@1
|
| 93 |
value: 0.5763286334056399
|
| 94 |
name: Cosine Mrr@1
|
| 95 |
- type: cosine_map@100
|
| 96 |
+
value: 0.7107811578738404
|
| 97 |
name: Cosine Map@100
|
| 98 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 99 |
value: 0.3488530268041688
|
| 100 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 101 |
- type: cosine_auc_similarity_distribution
|
| 102 |
+
value: 0.16348145891100385
|
| 103 |
name: Cosine Auc Similarity Distribution
|
| 104 |
---
|
| 105 |
|
|
|
|
| 112 |
### Model Description
|
| 113 |
- **Model Type:** Sentence Transformer
|
| 114 |
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
| 115 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 116 |
- **Output Dimensionality:** 384 dimensions
|
| 117 |
- **Similarity Function:** Cosine Similarity
|
| 118 |
- **Training Dataset:**
|
|
|
|
| 130 |
|
| 131 |
```
|
| 132 |
SentenceTransformer(
|
| 133 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 134 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 135 |
(2): Normalize()
|
| 136 |
)
|
|
|
|
| 165 |
# Get the similarity scores for the embeddings
|
| 166 |
similarities = model.similarity(embeddings, embeddings)
|
| 167 |
print(similarities)
|
| 168 |
+
# tensor([[1.0000, 1.0000, 0.3433],
|
| 169 |
+
# [1.0000, 1.0000, 0.3433],
|
| 170 |
+
# [0.3433, 0.3433, 1.0000]])
|
| 171 |
```
|
| 172 |
|
| 173 |
<!--
|
|
|
|
| 239 |
| | anchor | positive | negative |
|
| 240 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 241 |
| type | string | string | string |
|
| 242 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.17 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.61 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
|
| 243 |
* Samples:
|
| 244 |
| anchor | positive | negative |
|
| 245 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
|
|
|
| 266 |
| | anchor | positive | negative |
|
| 267 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 268 |
| type | string | string | string |
|
| 269 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.17 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.61 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.39 tokens</li><li>max: 64 tokens</li></ul> |
|
| 270 |
* Samples:
|
| 271 |
| anchor | positive | negative |
|
| 272 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
|
|
|
|
| 296 |
- `warmup_ratio`: 0.05
|
| 297 |
- `bf16`: True
|
| 298 |
- `dataloader_num_workers`: 6
|
| 299 |
+
- `dataloader_prefetch_factor`: 1
|
| 300 |
- `load_best_model_at_end`: True
|
| 301 |
- `optim`: stable_adamw
|
| 302 |
- `ddp_find_unused_parameters`: False
|
|
|
|
| 359 |
- `debug`: []
|
| 360 |
- `dataloader_drop_last`: False
|
| 361 |
- `dataloader_num_workers`: 6
|
| 362 |
+
- `dataloader_prefetch_factor`: 1
|
| 363 |
- `past_index`: -1
|
| 364 |
- `disable_tqdm`: False
|
| 365 |
- `remove_unused_columns`: True
|
config.json
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
"classifier_dropout": null,
|
| 7 |
-
"dtype": "
|
| 8 |
"gradient_checkpointing": false,
|
| 9 |
"hidden_act": "gelu",
|
| 10 |
"hidden_dropout_prob": 0.1,
|
|
|
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
"gradient_checkpointing": false,
|
| 9 |
"hidden_act": "gelu",
|
| 10 |
"hidden_dropout_prob": 0.1,
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcea1769de0d43888c0612653d804fb22f13517e64b92633b2c7436d1ee565ae
|
| 3 |
+
size 90864192
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"max_seq_length":
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|