|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
import warnings |
|
|
from dataclasses import dataclass |
|
|
from typing import Any, Callable, Optional, Union, List |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
|
from torchvision.ops import roi_align |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, filter_out_non_signature_kwargs |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from .configuration_fgclip2 import Fgclip2Config, Fgclip2TextConfig, Fgclip2VisionConfig |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. |
|
|
""" |
|
|
) |
|
|
class Fgclip2VisionOutput(ModelOutput): |
|
|
r""" |
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
|
""" |
|
|
|
|
|
image_embeds: Optional[torch.FloatTensor] = None |
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
""" |
|
|
) |
|
|
class Fgclip2TextOutput(ModelOutput): |
|
|
r""" |
|
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
|
The text embeddings obtained by applying the projection layer to the pooler_output. |
|
|
""" |
|
|
|
|
|
text_embeds: Optional[torch.FloatTensor] = None |
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring |
|
|
class Fgclip2Output(ModelOutput): |
|
|
r""" |
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
|
Contrastive loss for image-text similarity. |
|
|
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): |
|
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text |
|
|
similarity scores. |
|
|
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): |
|
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image |
|
|
similarity scores. |
|
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
|
The text embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2TextModel`]. |
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
|
The image embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2VisionModel`]. |
|
|
text_model_output (`BaseModelOutputWithPooling`): |
|
|
The output of the [`Fgclip2TextModel`]. |
|
|
vision_model_output (`BaseModelOutputWithPooling`): |
|
|
The output of the [`Fgclip2VisionModel`]. |
|
|
""" |
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
|
logits_per_image: Optional[torch.FloatTensor] = None |
|
|
logits_per_text: Optional[torch.FloatTensor] = None |
|
|
text_embeds: Optional[torch.FloatTensor] = None |
|
|
image_embeds: Optional[torch.FloatTensor] = None |
|
|
text_model_output: BaseModelOutputWithPooling = None |
|
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
|
|
def to_tuple(self) -> tuple[Any]: |
|
|
return tuple( |
|
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() |
|
|
for k in self.keys() |
|
|
) |
|
|
|
|
|
|
|
|
class Fgclip2VisionEmbeddings(nn.Module): |
|
|
def __init__(self, config: Fgclip2VisionConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.patch_size = config.patch_size |
|
|
|
|
|
self.patch_embedding = nn.Linear( |
|
|
in_features=config.num_channels * self.patch_size * self.patch_size, |
|
|
out_features=self.embed_dim, |
|
|
) |
|
|
|
|
|
self.num_patches = config.num_patches |
|
|
self.position_embedding_size = int(self.num_patches**0.5) |
|
|
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) |
|
|
|
|
|
@staticmethod |
|
|
def resize_positional_embeddings( |
|
|
positional_embeddings: torch.Tensor, |
|
|
spatial_shapes: torch.LongTensor, |
|
|
max_length: int, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Resize positional embeddings to image-specific size and pad to a fixed size. |
|
|
|
|
|
Args: |
|
|
positional_embeddings (`torch.Tensor`): |
|
|
Position embeddings of shape (height, width, embed_dim) |
|
|
spatial_shapes (`torch.LongTensor`): |
|
|
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to |
|
|
max_length (`int`): |
|
|
Maximum length of the positional embeddings to pad resized positional embeddings to |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) |
|
|
""" |
|
|
batch_size = spatial_shapes.shape[0] |
|
|
embed_dim = positional_embeddings.shape[-1] |
|
|
source_dtype = positional_embeddings.dtype |
|
|
|
|
|
resulted_positional_embeddings = torch.empty( |
|
|
(batch_size, max_length, embed_dim), |
|
|
device=positional_embeddings.device, |
|
|
dtype=source_dtype, |
|
|
) |
|
|
|
|
|
|
|
|
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) |
|
|
|
|
|
|
|
|
if positional_embeddings.device.type == "cpu": |
|
|
positional_embeddings = positional_embeddings.to(torch.float32) |
|
|
|
|
|
for i in range(batch_size): |
|
|
|
|
|
height, width = spatial_shapes[i] |
|
|
resized_embeddings = F.interpolate( |
|
|
positional_embeddings, |
|
|
size=(height, width), |
|
|
mode="bilinear", |
|
|
align_corners=False, |
|
|
antialias=True, |
|
|
) |
|
|
|
|
|
|
|
|
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) |
|
|
|
|
|
|
|
|
resized_embeddings = resized_embeddings.to(source_dtype) |
|
|
|
|
|
resulted_positional_embeddings[i, : height * width] = resized_embeddings |
|
|
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] |
|
|
|
|
|
return resulted_positional_embeddings |
|
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor`): |
|
|
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size) |
|
|
spatial_shapes (`list[tuple[int, int]]`): |
|
|
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to |
|
|
""" |
|
|
|
|
|
|
|
|
target_dtype = self.patch_embedding.weight.dtype |
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
|
|
|
|
|
|
|
positional_embeddings = self.position_embedding.weight.reshape( |
|
|
self.position_embedding_size, self.position_embedding_size, -1 |
|
|
) |
|
|
resized_positional_embeddings = self.resize_positional_embeddings( |
|
|
positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1] |
|
|
) |
|
|
|
|
|
|
|
|
embeddings = patch_embeds + resized_positional_embeddings |
|
|
return embeddings |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling |
|
|
if attention_mask is not None: |
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Fgclip2Attention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.embed_dim // self.num_heads |
|
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
|
raise ValueError( |
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
|
f" {self.num_heads})." |
|
|
) |
|
|
self.scale = self.head_dim**-0.5 |
|
|
self.dropout = config.attention_dropout |
|
|
self.is_causal = False |
|
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
**kwargs, |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
batch_size, seq_length, embed_dim = hidden_states.shape |
|
|
|
|
|
queries = self.q_proj(hidden_states) |
|
|
keys = self.k_proj(hidden_states) |
|
|
values = self.v_proj(hidden_states) |
|
|
|
|
|
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
queries, |
|
|
keys, |
|
|
values, |
|
|
attention_mask, |
|
|
is_causal=self.is_causal, |
|
|
scaling=self.scale, |
|
|
dropout=0.0 if not self.training else self.dropout, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() |
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Fgclip2MLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
hidden_states = self.fc1(hidden_states) |
|
|
hidden_states = self.activation_fn(hidden_states) |
|
|
hidden_states = self.fc2(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Fgclip2EncoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: Union[Fgclip2VisionConfig, Fgclip2TextConfig]): |
|
|
super().__init__() |
|
|
self.embed_dim = config.hidden_size |
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
self.self_attn = Fgclip2Attention(config) |
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
self.mlp = Fgclip2MLP(config) |
|
|
|
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> torch.FloatTensor: |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.layer_norm2(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Fgclip2Encoder(nn.Module): |
|
|
""" |
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
|
[`Fgclip2EncoderLayer`]. |
|
|
|
|
|
Args: |
|
|
config: Fgclip2Config |
|
|
""" |
|
|
|
|
|
def __init__(self, config: Fgclip2Config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layers = nn.ModuleList([Fgclip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
inputs_embeds, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutput: |
|
|
hidden_states = inputs_embeds |
|
|
for encoder_layer in self.layers: |
|
|
hidden_states = encoder_layer( |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
return BaseModelOutput(last_hidden_state=hidden_states) |
|
|
|
|
|
|
|
|
class Fgclip2VisionTransformer(nn.Module): |
|
|
def __init__(self, config: Fgclip2VisionConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
embed_dim = config.hidden_size |
|
|
|
|
|
self.embeddings = Fgclip2VisionEmbeddings(config) |
|
|
self.encoder = Fgclip2Encoder(config) |
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head |
|
|
if self.use_head: |
|
|
self.head = Fgclip2MultiheadAttentionPoolingHead(config) |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
attention_mask: torch.Tensor, |
|
|
spatial_shapes: torch.LongTensor, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
) -> BaseModelOutputWithPooling: |
|
|
r""" |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
""" |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
hidden_states = self.embeddings(pixel_values, spatial_shapes) |
|
|
|
|
|
if attention_mask is not None and self.config._attn_implementation != "flash_attention_2": |
|
|
|
|
|
encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) |
|
|
else: |
|
|
encoder_attention_mask = attention_mask |
|
|
|
|
|
encoder_outputs: BaseModelOutput = self.encoder( |
|
|
inputs_embeds=hidden_states, |
|
|
attention_mask=encoder_attention_mask, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
) |
|
|
|
|
|
last_hidden_state = encoder_outputs.last_hidden_state |
|
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
|
|
pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None |
|
|
|
|
|
return BaseModelOutputWithPooling( |
|
|
last_hidden_state=last_hidden_state, |
|
|
pooler_output=pooler_output, |
|
|
hidden_states=encoder_outputs.hidden_states, |
|
|
attentions=encoder_outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
|
|
|
def norm_cdf(x): |
|
|
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
|
warnings.warn( |
|
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
|
"The distribution of values may be incorrect.", |
|
|
stacklevel=2, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
|
tensor.add_(mean) |
|
|
|
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
|
|
|
|
|
|
|
def trunc_normal_tf_( |
|
|
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 |
|
|
) -> torch.Tensor: |
|
|
"""Fills the input Tensor with values drawn from a truncated |
|
|
normal distribution. The values are effectively drawn from the |
|
|
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` |
|
|
with values outside :math:`[a, b]` redrawn until they are within |
|
|
the bounds. The method used for generating the random values works |
|
|
best when :math:`a \\leq \text{mean} \\leq b`. |
|
|
|
|
|
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the |
|
|
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 |
|
|
and the result is subsequently scaled and shifted by the mean and std args. |
|
|
|
|
|
Args: |
|
|
tensor: an n-dimensional `torch.Tensor` |
|
|
mean: the mean of the normal distribution |
|
|
std: the standard deviation of the normal distribution |
|
|
a: the minimum cutoff value |
|
|
b: the maximum cutoff value |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
_trunc_normal_(tensor, 0, 1.0, a, b) |
|
|
tensor.mul_(std).add_(mean) |
|
|
|
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): |
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
|
|
if mode == "fan_in": |
|
|
denom = fan_in |
|
|
elif mode == "fan_out": |
|
|
denom = fan_out |
|
|
elif mode == "fan_avg": |
|
|
denom = (fan_in + fan_out) / 2 |
|
|
|
|
|
variance = scale / denom |
|
|
|
|
|
if distribution == "truncated_normal": |
|
|
|
|
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) |
|
|
elif distribution == "normal": |
|
|
with torch.no_grad(): |
|
|
tensor.normal_(std=math.sqrt(variance)) |
|
|
elif distribution == "uniform": |
|
|
bound = math.sqrt(3 * variance) |
|
|
with torch.no_grad(): |
|
|
tensor.uniform_(-bound, bound) |
|
|
else: |
|
|
raise ValueError(f"invalid distribution {distribution}") |
|
|
|
|
|
|
|
|
def lecun_normal_(tensor): |
|
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") |
|
|
|
|
|
|
|
|
def default_flax_embed_init(tensor): |
|
|
variance_scaling_(tensor, mode="fan_in", distribution="normal") |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Fgclip2PreTrainedModel(PreTrainedModel): |
|
|
config: Fgclip2Config |
|
|
base_model_prefix = "fgclip2" |
|
|
supports_gradient_checkpointing = True |
|
|
|
|
|
_no_split_modules = [ |
|
|
"Fgclip2TextEmbeddings", |
|
|
"Fgclip2VisionEmbeddings", |
|
|
"Fgclip2EncoderLayer", |
|
|
"Fgclip2MultiheadAttentionPoolingHead", |
|
|
] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_attention_backend = True |
|
|
|
|
|
_can_record_outputs = { |
|
|
"hidden_states": Fgclip2EncoderLayer, |
|
|
"attentions": Fgclip2Attention, |
|
|
} |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
if isinstance(module, Fgclip2VisionEmbeddings): |
|
|
width = ( |
|
|
self.config.vision_config.hidden_size |
|
|
if isinstance(self.config, Fgclip2Config) |
|
|
else self.config.hidden_size |
|
|
) |
|
|
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) |
|
|
elif isinstance(module, nn.Embedding): |
|
|
default_flax_embed_init(module.weight) |
|
|
elif isinstance(module, Fgclip2Attention): |
|
|
nn.init.xavier_uniform_(module.q_proj.weight) |
|
|
nn.init.xavier_uniform_(module.k_proj.weight) |
|
|
nn.init.xavier_uniform_(module.v_proj.weight) |
|
|
nn.init.xavier_uniform_(module.out_proj.weight) |
|
|
nn.init.zeros_(module.q_proj.bias) |
|
|
nn.init.zeros_(module.k_proj.bias) |
|
|
nn.init.zeros_(module.v_proj.bias) |
|
|
nn.init.zeros_(module.out_proj.bias) |
|
|
elif isinstance(module, Fgclip2MLP): |
|
|
nn.init.xavier_uniform_(module.fc1.weight) |
|
|
nn.init.xavier_uniform_(module.fc2.weight) |
|
|
nn.init.normal_(module.fc1.bias, std=1e-6) |
|
|
nn.init.normal_(module.fc2.bias, std=1e-6) |
|
|
elif isinstance(module, Fgclip2MultiheadAttentionPoolingHead): |
|
|
nn.init.xavier_uniform_(module.probe.data) |
|
|
nn.init.xavier_uniform_(module.attention.in_proj_weight.data) |
|
|
nn.init.zeros_(module.attention.in_proj_bias.data) |
|
|
elif isinstance(module, Fgclip2Model): |
|
|
logit_scale_init = torch.log(torch.tensor(1.0)) |
|
|
module.logit_scale.data.fill_(logit_scale_init) |
|
|
module.logit_bias.data.zero_() |
|
|
elif isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
lecun_normal_(module.weight) |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
elif isinstance(module, nn.LayerNorm): |
|
|
module.bias.data.zero_() |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class Fgclip2TextEmbeddings(nn.Module): |
|
|
def __init__(self, config: Fgclip2TextConfig): |
|
|
super().__init__() |
|
|
embed_dim = config.hidden_size |
|
|
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) |
|
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) |
|
|
|
|
|
|
|
|
self.register_buffer( |
|
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
|
) |
|
|
|
|
|
keep_len = config.keep_len |
|
|
longtext_len = config.longtext_len |
|
|
|
|
|
self.position_embedding_res = nn.Embedding(longtext_len, embed_dim) |
|
|
self.position_embedding_ori = nn.Embedding(longtext_len, embed_dim) |
|
|
|
|
|
self.mask1 = torch.zeros([longtext_len, 1]) |
|
|
self.mask1[:keep_len, :] = 1 |
|
|
self.mask2 = torch.zeros([longtext_len, 1]) |
|
|
self.mask2[keep_len:, :] = 1 |
|
|
|
|
|
|
|
|
self.register_buffer("position_ids", torch.arange(longtext_len).expand((1, -1)), persistent=False) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_short_position_ids: Optional[bool] = True, |
|
|
) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
use_short_position_ids (`bool`, optional, defaults to `True`): |
|
|
If `True`, applies a positional encoding scheme optimized for **short-text processing** and **local-region description processing**, |
|
|
such as phrases or simple sentences. Corresponds to the `"short"` and `"box"` walk type. |
|
|
Assumes compact semantic structure and local dependency dominance. |
|
|
""" |
|
|
|
|
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = self.position_ids[:, :seq_length] |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.token_embedding(input_ids) |
|
|
|
|
|
if use_short_position_ids: |
|
|
position_embeddings = self.position_embedding(position_ids) |
|
|
embeddings = inputs_embeds + position_embeddings |
|
|
else: |
|
|
position_embeddings_res = self.position_embedding_res(position_ids) |
|
|
position_embeddings_ori = self.position_embedding_ori(position_ids) |
|
|
embeddings = ( |
|
|
inputs_embeds |
|
|
+ (position_embeddings_ori * self.mask1.to(inputs_embeds.device)) |
|
|
.type(inputs_embeds.dtype) |
|
|
.to(inputs_embeds.device) |
|
|
+ (position_embeddings_res * self.mask2.to(inputs_embeds.device)) |
|
|
.type(inputs_embeds.dtype) |
|
|
.to(inputs_embeds.device) |
|
|
) |
|
|
|
|
|
return embeddings |
|
|
|
|
|
|
|
|
class Fgclip2TextTransformer(nn.Module): |
|
|
def __init__(self, config: Fgclip2TextConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
embed_dim = config.hidden_size |
|
|
self.embeddings = Fgclip2TextEmbeddings(config) |
|
|
self.encoder = Fgclip2Encoder(config) |
|
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
|
|
self.head = nn.Linear(embed_dim, config.projection_size) |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
walk_type: str = "short", |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutputWithPooling: |
|
|
r""" |
|
|
Args: |
|
|
walk_type (`str`, optional, defaults to `"short"`): |
|
|
The traversal strategy used during feature extraction. Must be one of |
|
|
`"short"`, `"box"`, or `"long"`. This controls how contextual information |
|
|
is aggregated across the input: |
|
|
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence |
|
|
and direct word interactions. Suitable when the input is a phrase or brief sentence. |
|
|
- `"box"`: Designed for local-region description processing, such as grounding in vision-language |
|
|
models or processing localized textual descriptions (e.g., object regions or segments). |
|
|
Emphasizes dense features within bounded semantic units. |
|
|
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies |
|
|
and discourse structure. Uses strategies like chunking or hierarchical attention to handle |
|
|
longer sequences effectively. |
|
|
""" |
|
|
if input_ids is None: |
|
|
raise ValueError("You have to specify input_ids") |
|
|
|
|
|
|
|
|
walk_type = walk_type.lower() |
|
|
if walk_type not in ["short", "box", "long"]: |
|
|
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.") |
|
|
|
|
|
|
|
|
walk_short = walk_type == "short" |
|
|
walk_box = walk_type == "box" |
|
|
walk_long = walk_type == "long" |
|
|
|
|
|
input_shape = input_ids.size() |
|
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
hidden_states = self.embeddings( |
|
|
input_ids=input_ids, position_ids=position_ids, use_short_position_ids=(not walk_long) |
|
|
) |
|
|
|
|
|
|
|
|
uses_flash_attention = "flash" in self.config._attn_implementation |
|
|
if uses_flash_attention: |
|
|
attention_mask = None |
|
|
elif attention_mask is not None and not uses_flash_attention: |
|
|
|
|
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) |
|
|
encoder_outputs: BaseModelOutput = self.encoder( |
|
|
inputs_embeds=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
**kwargs, |
|
|
) |
|
|
last_hidden_state = encoder_outputs.last_hidden_state |
|
|
last_hidden_state = self.final_layer_norm(last_hidden_state) |
|
|
|
|
|
pooled_output = last_hidden_state[:, -1, :] |
|
|
if walk_short == True: |
|
|
assert walk_box == False |
|
|
assert walk_long == False |
|
|
temp_pool_out = [] |
|
|
for i in range(pooled_output.shape[0]): |
|
|
temp_pool_out.append(self.head(pooled_output[i : i + 1])) |
|
|
pooled_output = torch.cat(temp_pool_out, dim=0) |
|
|
|
|
|
if walk_box == True: |
|
|
assert walk_short == False |
|
|
assert walk_long == False |
|
|
pooled_output = pooled_output |
|
|
if walk_long == True: |
|
|
assert walk_short == False |
|
|
assert walk_box == False |
|
|
pooled_output = pooled_output |
|
|
return BaseModelOutputWithPooling( |
|
|
last_hidden_state=last_hidden_state, |
|
|
pooler_output=pooled_output, |
|
|
) |
|
|
|
|
|
|
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
The text model from Fgclip2 without any head or projection on top. |
|
|
""" |
|
|
) |
|
|
class Fgclip2TextModel(Fgclip2PreTrainedModel): |
|
|
config: Fgclip2TextConfig |
|
|
|
|
|
def __init__(self, config: Fgclip2TextConfig): |
|
|
super().__init__(config) |
|
|
self.text_model = Fgclip2TextTransformer(config) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
|
return self.text_model.embeddings.token_embedding |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.text_model.embeddings.token_embedding = value |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
walk_type: str = "short", |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutputWithPooling: |
|
|
r""" |
|
|
Args: |
|
|
walk_type (`str`, optional, defaults to `"short"`): |
|
|
The traversal strategy used during feature extraction. Must be one of |
|
|
`"short"`, `"box"`, or `"long"`. This controls how contextual information |
|
|
is aggregated across the input: |
|
|
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence |
|
|
and direct word interactions. Suitable when the input is a phrase or brief sentence. |
|
|
- `"box"`: Designed for local-region description processing, such as grounding in vision-language |
|
|
models or processing localized textual descriptions (e.g., object regions or segments). |
|
|
Emphasizes dense features within bounded semantic units. |
|
|
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies |
|
|
and discourse structure. Uses strategies like chunking or hierarchical attention to handle |
|
|
longer sequences effectively. |
|
|
""" |
|
|
return self.text_model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
walk_type=walk_type, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class Fgclip2MultiheadAttentionPoolingHead(nn.Module): |
|
|
"""Multihead Attention Pooling.""" |
|
|
|
|
|
def __init__(self, config: Fgclip2VisionConfig): |
|
|
super().__init__() |
|
|
|
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
|
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) |
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
self.mlp = Fgclip2MLP(config) |
|
|
self.num_heads = config.num_attention_heads |
|
|
|
|
|
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
batch_size = hidden_state.shape[0] |
|
|
probe = self.probe.repeat(batch_size, 1, 1) |
|
|
|
|
|
if attention_mask is not None: |
|
|
target_len, source_len = probe.shape[1], hidden_state.shape[1] |
|
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len) |
|
|
attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1) |
|
|
attention_mask = attention_mask.reshape(-1, target_len, source_len) |
|
|
|
|
|
group_size = self.num_heads |
|
|
outputs = [] |
|
|
for i in range(batch_size): |
|
|
start_idx = i * group_size |
|
|
end_idx = start_idx + group_size |
|
|
out_i = self.attention( |
|
|
probe[i : i + 1], |
|
|
hidden_state[i : i + 1], |
|
|
hidden_state[i : i + 1], |
|
|
attn_mask=attention_mask[start_idx:end_idx] if attention_mask is not None else None, |
|
|
)[0] |
|
|
outputs.append(out_i) |
|
|
|
|
|
hidden_state = torch.cat(outputs, dim=0) |
|
|
residual = hidden_state |
|
|
hidden_state = self.layernorm(hidden_state) |
|
|
|
|
|
temp_outs = [] |
|
|
for k in range(batch_size): |
|
|
out_k = self.mlp(hidden_state[k : k + 1]) |
|
|
temp_outs.append(out_k) |
|
|
hidden_state = residual + torch.cat(temp_outs, dim=0) |
|
|
|
|
|
return hidden_state[:, 0] |
|
|
|
|
|
|
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
The vision model from Fgclip2 without any head or projection on top. |
|
|
""" |
|
|
) |
|
|
class Fgclip2VisionModel(Fgclip2PreTrainedModel): |
|
|
config: Fgclip2VisionConfig |
|
|
main_input_name = "pixel_values" |
|
|
|
|
|
def __init__(self, config: Fgclip2VisionConfig): |
|
|
super().__init__(config) |
|
|
|
|
|
self.vision_model = Fgclip2VisionTransformer(config) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
pixel_attention_mask: torch.Tensor, |
|
|
spatial_shapes: torch.LongTensor, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
) -> BaseModelOutputWithPooling: |
|
|
r""" |
|
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): |
|
|
Mask to avoid performing attention on padding pixel indices. |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
|
|
|
Examples: |
|
|
|
|
|
```python |
|
|
>>> from PIL import Image |
|
|
>>> import requests |
|
|
>>> from transformers import AutoProcessor, Fgclip2VisionModel |
|
|
|
|
|
>>> model = Fgclip2VisionModel.from_pretrained("qihoo360/fg-clip2-base") |
|
|
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base") |
|
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
>>> outputs = model(**inputs) |
|
|
>>> last_hidden_state = outputs.last_hidden_state |
|
|
>>> pooled_output = outputs.pooler_output # pooled features |
|
|
```""" |
|
|
return self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
attention_mask=pixel_attention_mask, |
|
|
spatial_shapes=spatial_shapes, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Fgclip2Model(Fgclip2PreTrainedModel): |
|
|
config: Fgclip2Config |
|
|
|
|
|
def __init__(self, config: Fgclip2Config): |
|
|
super().__init__(config) |
|
|
|
|
|
if not isinstance(config.text_config, Fgclip2TextConfig): |
|
|
raise TypeError( |
|
|
"config.text_config is expected to be of type Fgclip2TextConfig but is of type" |
|
|
f" {type(config.text_config)}." |
|
|
) |
|
|
|
|
|
if not isinstance(config.vision_config, Fgclip2VisionConfig): |
|
|
raise TypeError( |
|
|
"config.vision_config is expected to be of type Fgclip2VisionConfig but is of type" |
|
|
f" {type(config.vision_config)}." |
|
|
) |
|
|
|
|
|
text_config = config.text_config |
|
|
vision_config = config.vision_config |
|
|
|
|
|
|
|
|
text_model = Fgclip2TextModel._from_config(text_config) |
|
|
vision_model = Fgclip2VisionModel._from_config(vision_config) |
|
|
|
|
|
|
|
|
self.text_model = text_model.text_model |
|
|
self.vision_model = vision_model.vision_model |
|
|
|
|
|
self.logit_scale = nn.Parameter(torch.randn(1)) |
|
|
self.logit_bias = nn.Parameter(torch.randn(1)) |
|
|
self.dense_feature_head = Fgclip2MultiheadAttentionPoolingHead(vision_config) |
|
|
self.embed_dim = text_config.hidden_size |
|
|
self.longtext_head = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.boxtext_head = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@filter_out_non_signature_kwargs() |
|
|
@auto_docstring |
|
|
def get_text_features( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
walk_type: str = "short", |
|
|
) -> torch.FloatTensor: |
|
|
r""" |
|
|
Extracts feature representations from the input text. |
|
|
|
|
|
Args: |
|
|
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): |
|
|
The token IDs of the input sequence, as generated by the tokenizer. |
|
|
attention_mask (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`): |
|
|
A mask indicating which tokens are valid (1) and which are padding (0). |
|
|
If not provided, all tokens are assumed to be valid. |
|
|
position_ids (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`): |
|
|
Position indices for each token in the sequence. If not provided, |
|
|
positions are automatically constructed based on `input_ids`. |
|
|
walk_type (`str`, optional, defaults to `"short"`): |
|
|
The traversal strategy used during feature extraction. Must be one of |
|
|
`"short"`, `"box"`, or `"long"`. This controls how contextual information |
|
|
is aggregated across the input: |
|
|
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence |
|
|
and direct word interactions. Suitable when the input is a phrase or brief sentence. |
|
|
- `"box"`: Designed for local-region description processing, such as grounding in vision-language |
|
|
models or processing localized textual descriptions (e.g., object regions or segments). |
|
|
Emphasizes dense features within bounded semantic units. |
|
|
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies |
|
|
and discourse structure. Uses strategies like chunking or hierarchical attention to handle |
|
|
longer sequences effectively. |
|
|
|
|
|
Returns: |
|
|
`torch.FloatTensor` of shape `(batch_size, hidden_size)` or `(batch_size, sequence_length, hidden_size)`: |
|
|
The extracted feature tensor representing the input text. The output shape depends on |
|
|
whether a pooled representation or per-token embeddings are returned. |
|
|
|
|
|
Examples: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, AutoModel |
|
|
>>> import torch |
|
|
|
|
|
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("qihoo360/fg-clip2-base") |
|
|
|
|
|
>>> # important: make sure to set padding="max_length" as that's how the model was trained |
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") |
|
|
>>> with torch.no_grad(): |
|
|
... text_features = model.get_text_features(**inputs, walk_type="short") |
|
|
```""" |
|
|
|
|
|
walk_type = walk_type.lower() |
|
|
|
|
|
if walk_type not in ["short", "box", "long"]: |
|
|
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.") |
|
|
|
|
|
walk_short = walk_type == "short" |
|
|
walk_box = walk_type == "box" |
|
|
walk_long = walk_type == "long" |
|
|
|
|
|
text_outputs: BaseModelOutputWithPooling = self.text_model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
walk_type=walk_type, |
|
|
) |
|
|
|
|
|
if walk_short: |
|
|
pooled_output = text_outputs.pooler_output |
|
|
|
|
|
if walk_box: |
|
|
pooled_output = self.boxtext_head(text_outputs.pooler_output) |
|
|
|
|
|
if walk_long: |
|
|
pooled_output = self.longtext_head(text_outputs.pooler_output) |
|
|
|
|
|
return pooled_output |
|
|
|
|
|
@filter_out_non_signature_kwargs() |
|
|
@auto_docstring |
|
|
def get_image_features( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
pixel_attention_mask: Optional[torch.Tensor] = None, |
|
|
spatial_shapes: Optional[torch.LongTensor] = None, |
|
|
) -> torch.FloatTensor: |
|
|
r""" |
|
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): |
|
|
Mask to avoid performing attention on padding pixel indices. |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
|
|
|
Returns: |
|
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by |
|
|
applying the projection layer to the pooled output of [`Fgclip2VisionModel`]. |
|
|
|
|
|
Examples: |
|
|
|
|
|
```python |
|
|
>>> import torch |
|
|
>>> from transformers import AutoProcessor, AutoModel |
|
|
>>> from transformers.image_utils import load_image |
|
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
|
>>> image = load_image(url) |
|
|
|
|
|
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base") |
|
|
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base") |
|
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
>>> with torch.no_grad(): |
|
|
... image_features = model.get_image_features(**inputs) |
|
|
``` |
|
|
""" |
|
|
vision_outputs: BaseModelOutputWithPooling = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
attention_mask=pixel_attention_mask, |
|
|
spatial_shapes=spatial_shapes, |
|
|
) |
|
|
pooled_output = vision_outputs.pooler_output |
|
|
|
|
|
return pooled_output |
|
|
|
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
pixel_attention_mask: Optional[torch.Tensor] = None, |
|
|
spatial_shapes: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
return_loss: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
walk_type: str = "short", |
|
|
) -> Fgclip2Output: |
|
|
r""" |
|
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): |
|
|
Mask to avoid performing attention on padding pixel indices. |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
return_loss (`bool`, *optional*): |
|
|
Whether or not to return the contrastive loss. |
|
|
walk_type (`str`, optional, defaults to `"short"`): |
|
|
The traversal strategy used during feature extraction. Must be one of |
|
|
`"short"`, `"box"`, or `"long"`. This controls how contextual information |
|
|
is aggregated across the input: |
|
|
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence |
|
|
and direct word interactions. Suitable when the input is a phrase or brief sentence. |
|
|
- `"box"`: Designed for local-region description processing, such as grounding in vision-language |
|
|
models or processing localized textual descriptions (e.g., object regions or segments). |
|
|
Emphasizes dense features within bounded semantic units. |
|
|
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies |
|
|
and discourse structure. Uses strategies like chunking or hierarchical attention to handle |
|
|
longer sequences effectively. |
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
|
```python |
|
|
>>> from PIL import Image |
|
|
>>> import requests |
|
|
>>> from transformers import AutoProcessor, AutoModel |
|
|
>>> import torch |
|
|
|
|
|
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base") |
|
|
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base") |
|
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
|
|
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] |
|
|
>>> # important: we pass `padding=max_length` since the model was trained with this |
|
|
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") |
|
|
|
|
|
>>> with torch.no_grad(): |
|
|
... outputs = model(**inputs) |
|
|
|
|
|
>>> logits_per_image = outputs.logits_per_image |
|
|
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities |
|
|
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") |
|
|
31.9% that image 0 is 'a photo of 2 cats' |
|
|
``` |
|
|
""" |
|
|
walk_type = walk_type.lower() |
|
|
|
|
|
if walk_type not in ["short", "box", "long"]: |
|
|
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.") |
|
|
|
|
|
walk_short = walk_type == "short" |
|
|
walk_box = walk_type == "box" |
|
|
walk_long = walk_type == "long" |
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
vision_outputs: BaseModelOutputWithPooling = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
attention_mask=pixel_attention_mask, |
|
|
spatial_shapes=spatial_shapes, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
) |
|
|
|
|
|
text_outputs: BaseModelOutputWithPooling = self.text_model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
walk_type=walk_type, |
|
|
) |
|
|
|
|
|
image_embeds = vision_outputs.pooler_output |
|
|
|
|
|
if walk_short: |
|
|
text_embeds = text_outputs.pooler_output |
|
|
|
|
|
if walk_box: |
|
|
text_embeds = self.boxtext_head(text_outputs.pooler_output) |
|
|
|
|
|
if walk_long: |
|
|
text_embeds = self.longtext_head(text_outputs.pooler_output) |
|
|
|
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) |
|
|
|
|
|
logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device) |
|
|
logits_per_text = logits_per_text * logit_scale.exp() + logit_bias |
|
|
|
|
|
logits_per_image = logits_per_text.t() |
|
|
|
|
|
loss = None |
|
|
if return_loss: |
|
|
|
|
|
eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) |
|
|
m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye |
|
|
loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) |
|
|
nll = -torch.sum(loglik, dim=-1) |
|
|
loss = nll.mean() |
|
|
|
|
|
return Fgclip2Output( |
|
|
loss=loss, |
|
|
logits_per_image=logits_per_image, |
|
|
logits_per_text=logits_per_text, |
|
|
text_embeds=text_embeds, |
|
|
image_embeds=image_embeds, |
|
|
text_model_output=text_outputs, |
|
|
vision_model_output=vision_outputs, |
|
|
) |
|
|
|
|
|
|
|
|
@filter_out_non_signature_kwargs() |
|
|
@auto_docstring |
|
|
def get_image_dense_feature( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
pixel_attention_mask: Optional[torch.Tensor] = None, |
|
|
spatial_shapes: Optional[torch.LongTensor] = None, |
|
|
) -> torch.FloatTensor: |
|
|
r""" |
|
|
Extract dense visual features from input images by forwarding through the vision backbone. |
|
|
|
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor`): |
|
|
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size) |
|
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): |
|
|
Mask to avoid performing attention on padding pixel indices. |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
|
|
|
Returns: |
|
|
`torch.FloatTensor` of shape `(batch_size, max_num_patches, hidden_size)`: |
|
|
|
|
|
""" |
|
|
|
|
|
vision_outputs: BaseModelOutputWithPooling = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
attention_mask=pixel_attention_mask, |
|
|
spatial_shapes=spatial_shapes, |
|
|
) |
|
|
|
|
|
probe = vision_outputs.last_hidden_state |
|
|
hidden_state = vision_outputs.last_hidden_state |
|
|
attention_mask = pixel_attention_mask |
|
|
|
|
|
if attention_mask is not None: |
|
|
target_len, source_len = probe.shape[1], hidden_state.shape[1] |
|
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len) |
|
|
attention_mask = attention_mask.repeat(1, self.dense_feature_head.num_heads, 1, 1) |
|
|
attention_mask = attention_mask.reshape(-1, target_len, source_len) |
|
|
|
|
|
hidden_state = self.dense_feature_head.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[ |
|
|
0 |
|
|
] |
|
|
residual = hidden_state |
|
|
hidden_state = self.dense_feature_head.layernorm(hidden_state) |
|
|
hidden_state = residual + self.dense_feature_head.mlp(hidden_state) |
|
|
feature_map = hidden_state |
|
|
|
|
|
return feature_map |
|
|
|
|
|
|
|
|
@filter_out_non_signature_kwargs() |
|
|
@auto_docstring |
|
|
def get_image_region_features( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
pixel_attention_mask: Optional[torch.Tensor] = None, |
|
|
spatial_shapes: Optional[torch.LongTensor] = None, |
|
|
image_sizes: Optional[list[tuple]] = None, |
|
|
region_infos: Optional[list[list[list[float]]]] = None, |
|
|
) -> list[torch.FloatTensor]: |
|
|
r""" |
|
|
Extract region-of-interest (RoI) features from images using RoI Align. |
|
|
This method supports batched processing of variable-sized images and allows feature extraction |
|
|
from user-specified image regions. |
|
|
|
|
|
The input can be either a full image with corresponding region coordinates. |
|
|
Features are extracted per region (e.g., bounding boxes), making this function suitable for tasks such as |
|
|
object detection, referring expression grounding, or vision-language alignment. |
|
|
|
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor`): |
|
|
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size) |
|
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): |
|
|
Mask to avoid performing attention on padding pixel indices. |
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
|
image_sizes (`List[tuple]`, optional, each tuple of form `(int, int)`): |
|
|
Original size (height, width) of each image in the batch before padding or resizing. |
|
|
Required for accurate coordinate projection when region_infos are defined in original image space. |
|
|
region_infos (`List[List[List[float]]]`, optional): |
|
|
Bounding box coordinates for regions of interest in each image. Format: |
|
|
- Outer list: length `batch_size` |
|
|
- Middle list: number of regions per image |
|
|
- Inner list: each contains `[x_min, y_min, x_max, y_max]` in **absolute pixel coordinates** |
|
|
relative to the original image size (as specified in `image_sizes`). |
|
|
These boxes are projected to feature map space using `image_sizes` and `spatial_shapes`, |
|
|
then used to pool features via RoI Align or equivalent. |
|
|
|
|
|
Returns: |
|
|
`List[torch.FloatTensor]`: |
|
|
A list of length `batch_size`, where each element is a tensor of shape |
|
|
`(num_boxes, hidden_dim)` containing the extracted visual features for each region |
|
|
in the corresponding image. |
|
|
Example:: |
|
|
>>> # For a batch of 2 images |
|
|
>>> region_features = model.get_image_region_features( |
|
|
>>> pixel_values=pixel_values, |
|
|
>>> image_sizes=[(640, 480), (480, 640)], |
|
|
>>> region_infos=[ |
|
|
>>> [[100, 100, 200, 200], [300, 300, 400, 400]], # 2 boxes in first image |
|
|
>>> [[50, 50, 150, 150]] # 1 box in second image |
|
|
>>> ] |
|
|
>>> ) |
|
|
>>> print(region_features[0].shape) # torch.Size([2, hidden_dim]) |
|
|
>>> print(region_features[1].shape) # torch.Size([1, hidden_dim]) |
|
|
|
|
|
""" |
|
|
if region_infos is None or len(region_infos) == 0: |
|
|
return [] |
|
|
|
|
|
|
|
|
dense_feature_map = self.get_image_dense_feature( |
|
|
pixel_values=pixel_values, |
|
|
pixel_attention_mask=pixel_attention_mask, |
|
|
spatial_shapes=spatial_shapes, |
|
|
) |
|
|
bs, _, hidden_dim = dense_feature_map.shape |
|
|
|
|
|
all_region_features = [] |
|
|
|
|
|
for i in range(bs): |
|
|
h, w = spatial_shapes[i].tolist() |
|
|
img_h, img_w = image_sizes[i] |
|
|
bboxes = region_infos[i] |
|
|
|
|
|
if not bboxes: |
|
|
all_region_features.append(torch.empty(0, hidden_dim, device=dense_feature_map.device)) |
|
|
continue |
|
|
|
|
|
|
|
|
num_valid = h * w |
|
|
feat_seq = dense_feature_map[i, :num_valid] |
|
|
feat_map = feat_seq.view(h, w, hidden_dim).permute(2, 0, 1).unsqueeze(0) |
|
|
|
|
|
|
|
|
rois = [] |
|
|
for x1, y1, x2, y2 in bboxes: |
|
|
nx1 = (x1 / img_w) * w |
|
|
ny1 = (y1 / img_h) * h |
|
|
nx2 = (x2 / img_w) * w |
|
|
ny2 = (y2 / img_h) * h |
|
|
rois.append([0, nx1, ny1, nx2, ny2]) |
|
|
rois_tensor = torch.tensor(rois, dtype=torch.float32, device=feat_map.device) |
|
|
|
|
|
|
|
|
pooled = roi_align( |
|
|
input=feat_map, |
|
|
boxes=rois_tensor, |
|
|
output_size=(1, 1), |
|
|
spatial_scale=1.0, |
|
|
sampling_ratio=-1, |
|
|
aligned=True, |
|
|
) |
|
|
region_feats = pooled.squeeze(-1).squeeze(-1) |
|
|
|
|
|
all_region_features.append(region_feats) |
|
|
|
|
|
return all_region_features |
|
|
|
|
|
|
|
|
__all__ = ["Fgclip2Model", "Fgclip2PreTrainedModel", "Fgclip2TextModel", "Fgclip2VisionModel"] |
|
|
|