File size: 60,139 Bytes
82acf81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_fgclip2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Optional, Union, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import _calculate_fan_in_and_fan_out
from torchvision.ops import roi_align
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, filter_out_non_signature_kwargs
from transformers.utils.generic import check_model_inputs
from .configuration_fgclip2 import Fgclip2Config, Fgclip2TextConfig, Fgclip2VisionConfig
@dataclass
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
"""
)
class Fgclip2VisionOutput(ModelOutput):
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
@dataclass
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
"""
)
class Fgclip2TextOutput(ModelOutput):
r"""
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
"""
text_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
@dataclass
@auto_docstring
class Fgclip2Output(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2TextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2VisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`Fgclip2TextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`Fgclip2VisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class Fgclip2VisionEmbeddings(nn.Module):
def __init__(self, config: Fgclip2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Linear(
in_features=config.num_channels * self.patch_size * self.patch_size,
out_features=self.embed_dim,
)
self.num_patches = config.num_patches
self.position_embedding_size = int(self.num_patches**0.5)
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
@staticmethod
def resize_positional_embeddings(
positional_embeddings: torch.Tensor,
spatial_shapes: torch.LongTensor,
max_length: int,
) -> torch.Tensor:
"""
Resize positional embeddings to image-specific size and pad to a fixed size.
Args:
positional_embeddings (`torch.Tensor`):
Position embeddings of shape (height, width, embed_dim)
spatial_shapes (`torch.LongTensor`):
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
max_length (`int`):
Maximum length of the positional embeddings to pad resized positional embeddings to
Returns:
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
"""
batch_size = spatial_shapes.shape[0]
embed_dim = positional_embeddings.shape[-1]
source_dtype = positional_embeddings.dtype
resulted_positional_embeddings = torch.empty(
(batch_size, max_length, embed_dim),
device=positional_embeddings.device,
dtype=source_dtype,
)
# (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
# Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
if positional_embeddings.device.type == "cpu":
positional_embeddings = positional_embeddings.to(torch.float32)
for i in range(batch_size):
# (1, dim, height, width) -> (1, dim, target_height, target_width)
height, width = spatial_shapes[i]
resized_embeddings = F.interpolate(
positional_embeddings,
size=(height, width),
mode="bilinear",
align_corners=False,
antialias=True,
)
# (1, dim, target_height, target_width) -> (target_height * target_width, dim)
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
# Cast to original dtype
resized_embeddings = resized_embeddings.to(source_dtype)
resulted_positional_embeddings[i, : height * width] = resized_embeddings
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
return resulted_positional_embeddings
def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
spatial_shapes (`list[tuple[int, int]]`):
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
"""
# Apply patch embeddings to already patchified pixel values
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
# Get positional resized and padded positional embeddings
positional_embeddings = self.position_embedding.weight.reshape(
self.position_embedding_size, self.position_embedding_size, -1
)
resized_positional_embeddings = self.resize_positional_embeddings(
positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1]
)
# Add positional embeddings to patch embeddings
embeddings = patch_embeds + resized_positional_embeddings
return embeddings
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Fgclip2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Fgclip2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Fgclip2EncoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Union[Fgclip2VisionConfig, Fgclip2TextConfig]):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Fgclip2Attention(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Fgclip2MLP(config)
@auto_docstring
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
**kwargs: Unpack[TransformersKwargs],
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
**kwargs,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Fgclip2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Fgclip2EncoderLayer`].
Args:
config: Fgclip2Config
"""
def __init__(self, config: Fgclip2Config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Fgclip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
@auto_docstring
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutput:
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states,
attention_mask,
**kwargs,
)
return BaseModelOutput(last_hidden_state=hidden_states)
class Fgclip2VisionTransformer(nn.Module):
def __init__(self, config: Fgclip2VisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Fgclip2VisionEmbeddings(config)
self.encoder = Fgclip2Encoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head
if self.use_head:
self.head = Fgclip2MultiheadAttentionPoolingHead(config)
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values: torch.FloatTensor,
attention_mask: torch.Tensor,
spatial_shapes: torch.LongTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
r"""
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
hidden_states = self.embeddings(pixel_values, spatial_shapes)
if attention_mask is not None and self.config._attn_implementation != "flash_attention_2":
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
else:
encoder_attention_mask = attention_mask
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs.last_hidden_state
last_hidden_state = self.post_layernorm(last_hidden_state)
pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsequently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
@auto_docstring
class Fgclip2PreTrainedModel(PreTrainedModel):
config: Fgclip2Config
base_model_prefix = "fgclip2"
supports_gradient_checkpointing = True
_no_split_modules = [
"Fgclip2TextEmbeddings",
"Fgclip2VisionEmbeddings",
"Fgclip2EncoderLayer",
"Fgclip2MultiheadAttentionPoolingHead",
]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": Fgclip2EncoderLayer,
"attentions": Fgclip2Attention,
}
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Fgclip2VisionEmbeddings):
width = (
self.config.vision_config.hidden_size
if isinstance(self.config, Fgclip2Config)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, Fgclip2Attention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, Fgclip2MLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, Fgclip2MultiheadAttentionPoolingHead):
nn.init.xavier_uniform_(module.probe.data)
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, Fgclip2Model):
logit_scale_init = torch.log(torch.tensor(1.0))
module.logit_scale.data.fill_(logit_scale_init)
module.logit_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class Fgclip2TextEmbeddings(nn.Module):
def __init__(self, config: Fgclip2TextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
keep_len = config.keep_len
longtext_len = config.longtext_len
self.position_embedding_res = nn.Embedding(longtext_len, embed_dim)
self.position_embedding_ori = nn.Embedding(longtext_len, embed_dim)
self.mask1 = torch.zeros([longtext_len, 1])
self.mask1[:keep_len, :] = 1
self.mask2 = torch.zeros([longtext_len, 1])
self.mask2[keep_len:, :] = 1
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(longtext_len).expand((1, -1)), persistent=False)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_short_position_ids: Optional[bool] = True,
) -> torch.Tensor:
r"""
Args:
use_short_position_ids (`bool`, optional, defaults to `True`):
If `True`, applies a positional encoding scheme optimized for **short-text processing** and **local-region description processing**,
such as phrases or simple sentences. Corresponds to the `"short"` and `"box"` walk type.
Assumes compact semantic structure and local dependency dominance.
"""
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
if use_short_position_ids:
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
else:
position_embeddings_res = self.position_embedding_res(position_ids)
position_embeddings_ori = self.position_embedding_ori(position_ids)
embeddings = (
inputs_embeds
+ (position_embeddings_ori * self.mask1.to(inputs_embeds.device))
.type(inputs_embeds.dtype)
.to(inputs_embeds.device)
+ (position_embeddings_res * self.mask2.to(inputs_embeds.device))
.type(inputs_embeds.dtype)
.to(inputs_embeds.device)
)
return embeddings
class Fgclip2TextTransformer(nn.Module):
def __init__(self, config: Fgclip2TextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Fgclip2TextEmbeddings(config)
self.encoder = Fgclip2Encoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = nn.Linear(embed_dim, config.projection_size)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
walk_type: str = "short", # Modified: Single parameter
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""
Args:
walk_type (`str`, optional, defaults to `"short"`):
The traversal strategy used during feature extraction. Must be one of
`"short"`, `"box"`, or `"long"`. This controls how contextual information
is aggregated across the input:
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
and direct word interactions. Suitable when the input is a phrase or brief sentence.
- `"box"`: Designed for local-region description processing, such as grounding in vision-language
models or processing localized textual descriptions (e.g., object regions or segments).
Emphasizes dense features within bounded semantic units.
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
and discourse structure. Uses strategies like chunking or hierarchical attention to handle
longer sequences effectively.
"""
if input_ids is None:
raise ValueError("You have to specify input_ids")
# Validate walk_type
walk_type = walk_type.lower()
if walk_type not in ["short", "box", "long"]:
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
# Convert walk_type to boolean flags for internal logic
walk_short = walk_type == "short"
walk_box = walk_type == "box"
walk_long = walk_type == "long"
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(
input_ids=input_ids, position_ids=position_ids, use_short_position_ids=(not walk_long)
)
# note: fgclip2's text model does not use a causal mask, unlike the original CLIP model.
# expand attention_mask
uses_flash_attention = "flash" in self.config._attn_implementation
if uses_flash_attention:
attention_mask = None
elif attention_mask is not None and not uses_flash_attention:
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
**kwargs,
)
last_hidden_state = encoder_outputs.last_hidden_state
last_hidden_state = self.final_layer_norm(last_hidden_state)
# The model uses the last token's hidden state, which may be padding.
pooled_output = last_hidden_state[:, -1, :]
if walk_short == True:
assert walk_box == False
assert walk_long == False
temp_pool_out = []
for i in range(pooled_output.shape[0]):
temp_pool_out.append(self.head(pooled_output[i : i + 1]))
pooled_output = torch.cat(temp_pool_out, dim=0)
# pooled_output = self.head(pooled_output)
if walk_box == True:
assert walk_short == False
assert walk_long == False
pooled_output = pooled_output
if walk_long == True:
assert walk_short == False
assert walk_box == False
pooled_output = pooled_output
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
)
@auto_docstring(
custom_intro="""
The text model from Fgclip2 without any head or projection on top.
"""
)
class Fgclip2TextModel(Fgclip2PreTrainedModel):
config: Fgclip2TextConfig
def __init__(self, config: Fgclip2TextConfig):
super().__init__(config)
self.text_model = Fgclip2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
walk_type: str = "short", # Modified: Single parameter
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""
Args:
walk_type (`str`, optional, defaults to `"short"`):
The traversal strategy used during feature extraction. Must be one of
`"short"`, `"box"`, or `"long"`. This controls how contextual information
is aggregated across the input:
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
and direct word interactions. Suitable when the input is a phrase or brief sentence.
- `"box"`: Designed for local-region description processing, such as grounding in vision-language
models or processing localized textual descriptions (e.g., object regions or segments).
Emphasizes dense features within bounded semantic units.
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
and discourse structure. Uses strategies like chunking or hierarchical attention to handle
longer sequences effectively.
"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
walk_type=walk_type, # Modified: Pass single parameter
**kwargs,
)
class Fgclip2MultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: Fgclip2VisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = Fgclip2MLP(config)
self.num_heads = config.num_attention_heads
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
if attention_mask is not None:
target_len, source_len = probe.shape[1], hidden_state.shape[1]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len)
attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1)
attention_mask = attention_mask.reshape(-1, target_len, source_len)
group_size = self.num_heads
outputs = []
for i in range(batch_size):
start_idx = i * group_size
end_idx = start_idx + group_size
out_i = self.attention(
probe[i : i + 1],
hidden_state[i : i + 1],
hidden_state[i : i + 1],
attn_mask=attention_mask[start_idx:end_idx] if attention_mask is not None else None,
)[0]
outputs.append(out_i)
hidden_state = torch.cat(outputs, dim=0)
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
temp_outs = []
for k in range(batch_size):
out_k = self.mlp(hidden_state[k : k + 1])
temp_outs.append(out_k)
hidden_state = residual + torch.cat(temp_outs, dim=0)
return hidden_state[:, 0]
@auto_docstring(
custom_intro="""
The vision model from Fgclip2 without any head or projection on top.
"""
)
class Fgclip2VisionModel(Fgclip2PreTrainedModel):
config: Fgclip2VisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Fgclip2VisionConfig):
super().__init__(config)
self.vision_model = Fgclip2VisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@check_model_inputs
@auto_docstring
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: torch.Tensor,
spatial_shapes: torch.LongTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
r"""
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Fgclip2VisionModel
>>> model = Fgclip2VisionModel.from_pretrained("qihoo360/fg-clip2-base")
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled features
```"""
return self.vision_model(
pixel_values=pixel_values,
attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
@auto_docstring
class Fgclip2Model(Fgclip2PreTrainedModel):
config: Fgclip2Config
def __init__(self, config: Fgclip2Config):
super().__init__(config)
if not isinstance(config.text_config, Fgclip2TextConfig):
raise TypeError(
"config.text_config is expected to be of type Fgclip2TextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, Fgclip2VisionConfig):
raise TypeError(
"config.vision_config is expected to be of type Fgclip2VisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
# First, initialize the text and vision models with proper attention implementation
text_model = Fgclip2TextModel._from_config(text_config)
vision_model = Fgclip2VisionModel._from_config(vision_config)
# Second, get the text and vision submodules (for backward compatibility)
self.text_model = text_model.text_model
self.vision_model = vision_model.vision_model
self.logit_scale = nn.Parameter(torch.randn(1))
self.logit_bias = nn.Parameter(torch.randn(1))
self.dense_feature_head = Fgclip2MultiheadAttentionPoolingHead(vision_config)
self.embed_dim = text_config.hidden_size
self.longtext_head = nn.Linear(self.embed_dim, self.embed_dim)
self.boxtext_head = nn.Linear(self.embed_dim, self.embed_dim)
# Initialize weights and apply final processing
self.post_init()
@filter_out_non_signature_kwargs()
@auto_docstring
def get_text_features(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
walk_type: str = "short",
) -> torch.FloatTensor:
r"""
Extracts feature representations from the input text.
Args:
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
The token IDs of the input sequence, as generated by the tokenizer.
attention_mask (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`):
A mask indicating which tokens are valid (1) and which are padding (0).
If not provided, all tokens are assumed to be valid.
position_ids (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`):
Position indices for each token in the sequence. If not provided,
positions are automatically constructed based on `input_ids`.
walk_type (`str`, optional, defaults to `"short"`):
The traversal strategy used during feature extraction. Must be one of
`"short"`, `"box"`, or `"long"`. This controls how contextual information
is aggregated across the input:
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
and direct word interactions. Suitable when the input is a phrase or brief sentence.
- `"box"`: Designed for local-region description processing, such as grounding in vision-language
models or processing localized textual descriptions (e.g., object regions or segments).
Emphasizes dense features within bounded semantic units.
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
and discourse structure. Uses strategies like chunking or hierarchical attention to handle
longer sequences effectively.
Returns:
`torch.FloatTensor` of shape `(batch_size, hidden_size)` or `(batch_size, sequence_length, hidden_size)`:
The extracted feature tensor representing the input text. The output shape depends on
whether a pooled representation or per-token embeddings are returned.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
>>> tokenizer = AutoTokenizer.from_pretrained("qihoo360/fg-clip2-base")
>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... text_features = model.get_text_features(**inputs, walk_type="short")
```"""
walk_type = walk_type.lower()
if walk_type not in ["short", "box", "long"]:
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
walk_short = walk_type == "short"
walk_box = walk_type == "box"
walk_long = walk_type == "long"
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
walk_type=walk_type,
)
if walk_short:
pooled_output = text_outputs.pooler_output
if walk_box:
pooled_output = self.boxtext_head(text_outputs.pooler_output)
if walk_long:
pooled_output = self.longtext_head(text_outputs.pooler_output)
return pooled_output
@filter_out_non_signature_kwargs()
@auto_docstring
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.Tensor] = None,
spatial_shapes: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
r"""
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`Fgclip2VisionModel`].
Examples:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModel
>>> from transformers.image_utils import load_image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = load_image(url)
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... image_features = model.get_image_features(**inputs)
```
"""
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
)
pooled_output = vision_outputs.pooler_output
return pooled_output
# NOTE: Fgclip2Model uses Pretrained backbones, so we don't need to add `check_model_inputs` here
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.Tensor] = None,
spatial_shapes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
walk_type: str = "short",
) -> Fgclip2Output:
r"""
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
walk_type (`str`, optional, defaults to `"short"`):
The traversal strategy used during feature extraction. Must be one of
`"short"`, `"box"`, or `"long"`. This controls how contextual information
is aggregated across the input:
- `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
and direct word interactions. Suitable when the input is a phrase or brief sentence.
- `"box"`: Designed for local-region description processing, such as grounding in vision-language
models or processing localized textual descriptions (e.g., object regions or segments).
Emphasizes dense features within bounded semantic units.
- `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
and discourse structure. Uses strategies like chunking or hierarchical attention to handle
longer sequences effectively.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
>>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
>>> # important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
31.9% that image 0 is 'a photo of 2 cats'
```
"""
walk_type = walk_type.lower()
if walk_type not in ["short", "box", "long"]:
raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
walk_short = walk_type == "short"
walk_box = walk_type == "box"
walk_long = walk_type == "long"
# Use Fgclip2 model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
walk_type=walk_type,
)
image_embeds = vision_outputs.pooler_output
if walk_short:
text_embeds = text_outputs.pooler_output
if walk_box:
text_embeds = self.boxtext_head(text_outputs.pooler_output)
if walk_long:
text_embeds = self.longtext_head(text_outputs.pooler_output)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device))
logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device)
logits_per_text = logits_per_text * logit_scale.exp() + logit_bias
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
# Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/fgclip2.py#L287
eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device)
m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye
loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text)
nll = -torch.sum(loglik, dim=-1)
loss = nll.mean()
return Fgclip2Output(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
# New function: Acquire dense visual features of images with support for dynamic resolution
@filter_out_non_signature_kwargs()
@auto_docstring
def get_image_dense_feature(
self,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.Tensor] = None,
spatial_shapes: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
r"""
Extract dense visual features from input images by forwarding through the vision backbone.
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
Returns:
`torch.FloatTensor` of shape `(batch_size, max_num_patches, hidden_size)`:
"""
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
)
probe = vision_outputs.last_hidden_state
hidden_state = vision_outputs.last_hidden_state
attention_mask = pixel_attention_mask
if attention_mask is not None:
target_len, source_len = probe.shape[1], hidden_state.shape[1]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len)
attention_mask = attention_mask.repeat(1, self.dense_feature_head.num_heads, 1, 1)
attention_mask = attention_mask.reshape(-1, target_len, source_len)
hidden_state = self.dense_feature_head.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[
0
]
residual = hidden_state
hidden_state = self.dense_feature_head.layernorm(hidden_state)
hidden_state = residual + self.dense_feature_head.mlp(hidden_state)
feature_map = hidden_state
return feature_map
# New function: Acquire local features of images, applicable to retrieval, classification, and localization, with support for dynamic resolution
@filter_out_non_signature_kwargs()
@auto_docstring
def get_image_region_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.Tensor] = None,
spatial_shapes: Optional[torch.LongTensor] = None,
image_sizes: Optional[list[tuple]] = None,
region_infos: Optional[list[list[list[float]]]] = None,
) -> list[torch.FloatTensor]:
r"""
Extract region-of-interest (RoI) features from images using RoI Align.
This method supports batched processing of variable-sized images and allows feature extraction
from user-specified image regions.
The input can be either a full image with corresponding region coordinates.
Features are extracted per region (e.g., bounding boxes), making this function suitable for tasks such as
object detection, referring expression grounding, or vision-language alignment.
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width) of the input images.
image_sizes (`List[tuple]`, optional, each tuple of form `(int, int)`):
Original size (height, width) of each image in the batch before padding or resizing.
Required for accurate coordinate projection when region_infos are defined in original image space.
region_infos (`List[List[List[float]]]`, optional):
Bounding box coordinates for regions of interest in each image. Format:
- Outer list: length `batch_size`
- Middle list: number of regions per image
- Inner list: each contains `[x_min, y_min, x_max, y_max]` in **absolute pixel coordinates**
relative to the original image size (as specified in `image_sizes`).
These boxes are projected to feature map space using `image_sizes` and `spatial_shapes`,
then used to pool features via RoI Align or equivalent.
Returns:
`List[torch.FloatTensor]`:
A list of length `batch_size`, where each element is a tensor of shape
`(num_boxes, hidden_dim)` containing the extracted visual features for each region
in the corresponding image.
Example::
>>> # For a batch of 2 images
>>> region_features = model.get_image_region_features(
>>> pixel_values=pixel_values,
>>> image_sizes=[(640, 480), (480, 640)],
>>> region_infos=[
>>> [[100, 100, 200, 200], [300, 300, 400, 400]], # 2 boxes in first image
>>> [[50, 50, 150, 150]] # 1 box in second image
>>> ]
>>> )
>>> print(region_features[0].shape) # torch.Size([2, hidden_dim])
>>> print(region_features[1].shape) # torch.Size([1, hidden_dim])
"""
if region_infos is None or len(region_infos) == 0:
return []
# Get dense feature maps: (B, N, D)
dense_feature_map = self.get_image_dense_feature(
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
)
bs, _, hidden_dim = dense_feature_map.shape
all_region_features = []
for i in range(bs):
h, w = spatial_shapes[i].tolist()
img_h, img_w = image_sizes[i]
bboxes = region_infos[i]
if not bboxes:
all_region_features.append(torch.empty(0, hidden_dim, device=dense_feature_map.device))
continue
# Reshape to (1, C, H', W')
num_valid = h * w
feat_seq = dense_feature_map[i, :num_valid] # (num_valid, D)
feat_map = feat_seq.view(h, w, hidden_dim).permute(2, 0, 1).unsqueeze(0) # (1, D, H', W')
# Normalize bboxes to feature map coordinates
rois = []
for x1, y1, x2, y2 in bboxes:
nx1 = (x1 / img_w) * w
ny1 = (y1 / img_h) * h
nx2 = (x2 / img_w) * w
ny2 = (y2 / img_h) * h
rois.append([0, nx1, ny1, nx2, ny2]) #
rois_tensor = torch.tensor(rois, dtype=torch.float32, device=feat_map.device) # (N, 5)
# RoI Align on single image
pooled = roi_align(
input=feat_map,
boxes=rois_tensor,
output_size=(1, 1),
spatial_scale=1.0,
sampling_ratio=-1,
aligned=True,
) # (N, D, 1, 1)
region_feats = pooled.squeeze(-1).squeeze(-1) # (N, D)
all_region_features.append(region_feats)
return all_region_features
__all__ = ["Fgclip2Model", "Fgclip2PreTrainedModel", "Fgclip2TextModel", "Fgclip2VisionModel"]
|