General / Caption Abliteration
					Collection
				
Qwen2.5-VL and Qwen3-VL
					• 
				4 items
				• 
				Updated
					
				•
					
					1
Qwen3-VL-4B-Thinking-abliterated is an abliterated (v1.0) variant of Qwen3-VL-4B-Thinking, designed for Abliterated Reasoning and Captioning. This model generates detailed captions and reasoning outputs across a wide range of visual and multimodal contexts, including complex, sensitive, or nuanced content, and supports diverse aspect ratios and resolutions.
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
model = Qwen3VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Qwen3-VL-4B-Thinking-abliterated", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen3-VL-4B-Thinking-abliterated")
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Provide a detailed caption and reasoning for this image."},
        ],
    }
]
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
This model is suited for: