Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- cryptocurrency
|
| 5 |
+
- polkadot
|
| 6 |
+
- price-prediction
|
| 7 |
+
- machine-learning
|
| 8 |
+
- time-series
|
| 9 |
+
license: mit
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Polkadot (DOT) Price Prediction Models
|
| 13 |
+
|
| 14 |
+
Trained ML models for predicting Polkadot (DOT) cryptocurrency prices.
|
| 15 |
+
|
| 16 |
+
## π Model Performance
|
| 17 |
+
|
| 18 |
+
| Model | RMSE | MAE |
|
| 19 |
+
|-------|------|-----|
|
| 20 |
+
| Random Forest | 0.2348 | 0.1403 |
|
| 21 |
+
| Gradient Boosting | 0.2031 | 0.1157 |
|
| 22 |
+
| Linear Regression | 0.0200 | 0.0149 |
|
| 23 |
+
| LSTM | 0.2332 | 0.1725 |
|
| 24 |
+
|
| 25 |
+
## π― Training Details
|
| 26 |
+
|
| 27 |
+
- **Trained on**: 2025-10-24 07:45:22
|
| 28 |
+
- **Data Source**: CoinGecko API
|
| 29 |
+
- **Historical Days**: 365
|
| 30 |
+
- **Features**: 23 technical indicators
|
| 31 |
+
- **GPU**: Accelerated with TensorFlow
|
| 32 |
+
|
| 33 |
+
## π¦ Files Included
|
| 34 |
+
|
| 35 |
+
- `polkadot_sklearn_models.pkl`: Scikit-learn models (RF, GB, LR)
|
| 36 |
+
- `polkadot_scaler.pkl`: Feature scaler
|
| 37 |
+
- `polkadot_lstm_model.h5`: LSTM neural network
|
| 38 |
+
- `polkadot_metadata.json`: Training metadata
|
| 39 |
+
|
| 40 |
+
## π Usage
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from huggingface_hub import hf_hub_download
|
| 44 |
+
import joblib
|
| 45 |
+
from tensorflow.keras.models import load_model
|
| 46 |
+
|
| 47 |
+
# Download models
|
| 48 |
+
sklearn_path = hf_hub_download(
|
| 49 |
+
repo_id="YOUR_USERNAME/YOUR_REPO",
|
| 50 |
+
filename="polkadot_sklearn_models.pkl"
|
| 51 |
+
)
|
| 52 |
+
scaler_path = hf_hub_download(
|
| 53 |
+
repo_id="YOUR_USERNAME/YOUR_REPO",
|
| 54 |
+
filename="polkadot_scaler.pkl"
|
| 55 |
+
)
|
| 56 |
+
lstm_path = hf_hub_download(
|
| 57 |
+
repo_id="YOUR_USERNAME/YOUR_REPO",
|
| 58 |
+
filename="polkadot_lstm_model.h5"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Load models
|
| 62 |
+
models = joblib.load(sklearn_path)
|
| 63 |
+
scaler = joblib.load(scaler_path)
|
| 64 |
+
lstm = load_model(lstm_path)
|
| 65 |
+
|
| 66 |
+
# Make predictions
|
| 67 |
+
# (prepare your features first)
|
| 68 |
+
predictions = models['RandomForest'].predict(scaled_features)
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## π Features
|
| 72 |
+
|
| 73 |
+
The models use 23 technical indicators including:
|
| 74 |
+
- Moving Averages (SMA 7, 25, 99)
|
| 75 |
+
- Exponential Moving Averages (EMA 12, 26)
|
| 76 |
+
- RSI (Relative Strength Index)
|
| 77 |
+
- MACD & Signal Line
|
| 78 |
+
- Bollinger Bands
|
| 79 |
+
- Stochastic Oscillator
|
| 80 |
+
- Volatility measures
|
| 81 |
+
- Lag features
|
| 82 |
+
|
| 83 |
+
## β οΈ Disclaimer
|
| 84 |
+
|
| 85 |
+
These models are for educational and research purposes only. Cryptocurrency markets are highly volatile and unpredictable. Do not use these predictions for actual trading decisions without proper risk management.
|
| 86 |
+
|
| 87 |
+
## π License
|
| 88 |
+
|
| 89 |
+
MIT License
|