Polkadot (DOT) Price Prediction Models
Trained ML models for predicting Polkadot (DOT) cryptocurrency prices.
π Model Performance
| Model | RMSE | MAE |
|---|---|---|
| Random Forest | 0.2348 | 0.1403 |
| Gradient Boosting | 0.2031 | 0.1157 |
| Linear Regression | 0.0200 | 0.0149 |
| LSTM | 0.2332 | 0.1725 |
π― Training Details
- Trained on: 2025-10-24 07:45:22
- Data Source: CoinGecko API
- Historical Days: 365
- Features: 23 technical indicators
- GPU: Accelerated with TensorFlow
π¦ Files Included
polkadot_sklearn_models.pkl: Scikit-learn models (RF, GB, LR)polkadot_scaler.pkl: Feature scalerpolkadot_lstm_model.h5: LSTM neural networkpolkadot_metadata.json: Training metadata
π Usage
from huggingface_hub import hf_hub_download
import joblib
from tensorflow.keras.models import load_model
# Download models
sklearn_path = hf_hub_download(
repo_id="YOUR_USERNAME/YOUR_REPO",
filename="polkadot_sklearn_models.pkl"
)
scaler_path = hf_hub_download(
repo_id="YOUR_USERNAME/YOUR_REPO",
filename="polkadot_scaler.pkl"
)
lstm_path = hf_hub_download(
repo_id="YOUR_USERNAME/YOUR_REPO",
filename="polkadot_lstm_model.h5"
)
# Load models
models = joblib.load(sklearn_path)
scaler = joblib.load(scaler_path)
lstm = load_model(lstm_path)
# Make predictions
# (prepare your features first)
predictions = models['RandomForest'].predict(scaled_features)
π Features
The models use 23 technical indicators including:
- Moving Averages (SMA 7, 25, 99)
- Exponential Moving Averages (EMA 12, 26)
- RSI (Relative Strength Index)
- MACD & Signal Line
- Bollinger Bands
- Stochastic Oscillator
- Volatility measures
- Lag features
β οΈ Disclaimer
These models are for educational and research purposes only. Cryptocurrency markets are highly volatile and unpredictable. Do not use these predictions for actual trading decisions without proper risk management.
π License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support