AI & ML interests

None defined yet.

Recent Activity

IlyasMoutawwakilย 
posted an update 2 days ago
view post
Post
2549
Transformers v5 just landed! ๐Ÿš€
It significantly unifies and reduces modeling code across architectures, while opening the door to a whole new class of performance optimizations.

My favorite new feature? ๐Ÿค”
The new dynamic weight loader + converter. Hereโ€™s why ๐Ÿ‘‡

Over the last few months, the core Transformers maintainers built an incredibly fast weight loader, capable of converting tensors on the fly while loading them in parallel threads. This means weโ€™re no longer constrained by how parameters are laid out inside the safetensors weight files.

In practice, this unlocks two big things:
- Much more modular modeling code. You can now clearly see how architectures build on top of each other (DeepSeek v2 โ†’ v3, Qwen v2 โ†’ v3 โ†’ MoE, etc.). This makes shared bottlenecks obvious and lets us optimize the right building blocks once, for all model families.
- Performance optimizations beyond what torch.compile can do alone. torch.compile operates on the computation graph, but it canโ€™t change parameter layouts. With the new loader, we can restructure weights at load time: fusing MoE expert projections, merging attention QKV projections, and enabling more compute-dense kernels that simply werenโ€™t possible before.

Personally, I'm honored to have contributed in this direction, including the work on optimizing MoE implementations and making modeling code more torch-exportable, so these optimizations can be ported cleanly across runtimes.

Overall, Transformers v5 is a strong signal of where the community and industry are converging: Modularity and Performance, without sacrificing Flexibility.

Transformers v5 makes its signature from_pretrained an entrypoint where you can mix and match:
- Parallelism
- Quantization
- Custom kernels
- Flash/Paged attention
- Continuous batching
- ...

Kudos to everyone involved! I highly recommend the:
Release notes: https://github.com/huggingface/transformers/releases/tag/v5.0.0
Blog post: https://huggingface.co/blog/transformers-v5
ยท
IlyasMoutawwakilย 
posted an update 7 days ago
view post
Post
2285
After 2 months of refinement, I'm happy to announce that a lot of Transformers' modeling code is now significantly more torch-compile & export-friendly ๐Ÿ”ฅ

Why it had to be done ๐Ÿ‘‡
PyTorch's Dynamo compiler is increasingly becoming the default interoperability layer for ML systems. Anything that relies on torch.export or torch.compile, from model optimization to cross-framework integrations, benefits directly when models can be captured as a single dynamo-traced graph !

Transformers models are now easier to:
โš™๏ธ Compile end-to-end with torch.compile backends
๐Ÿ“ฆ Export reliably via torch.export and torch.onnx.export
๐Ÿš€ Deploy to ONNX / ONNX Runtime, Intel Corporation's OpenVINO, NVIDIA AutoDeploy (TRT-LLM), AMD's Quark, Meta's Executorch and more hardware-specific runtimes.

This work aims at unblocking entire TorchDynamo-based toolchains that rely on exporting Transformers across runtimes and accelerators.

We are doubling down on Transformers commitment to be a first-class citizen of the PyTorch ecosystem, more exportable, more optimizable, and easier to deploy everywhere.

There are definitely some edge-cases that we still haven't addressed so don't hesitate to try compiling / exporting your favorite transformers and to open issues / PRs.

PR in the comments ! More updates coming coming soon !
  • 1 reply
ยท
pcuenqย 
posted an update 24 days ago
view post
Post
3047
๐Ÿ‘‰ What happened in AI in 2025? ๐Ÿ‘ˆ

We prepared the 2025 version of the HF AI Timeline Grid, highlighting open vs API-based model releases, and allowing you to browse and filter by access, modality, and release type!

Play with it here:
2025-ai-timeline/2025-ai-timeline

Here's my personal quarterly TL;DR:

1๏ธโƒฃ Q1 โ€” Learning to Reason
Deepseek not only releases a top-notch reasoning model, but shows how to train them and compete with closed frontier models. OpenAI debuts Deep Research.

Significant milestones: DeepSeek R1 & R1-Zero, Qwen 2.5 VL, OpenAI Deep Research, Gemini 2.5 Pro (experimental)

2๏ธโƒฃ Q2 โ€” Multimodality and Coding
More LLMs embrace multimodality by default, and there's a surge in coding agents. Strong vision, audio, and generative models emerge.

Significant milestones: Llama 4, Qwen 3, Imagen 4, OpenAI Codex, Google Jules, Claude 4

3๏ธโƒฃ Q3 โ€” "Gold" rush, OpenAI opens up, the community goes bananas
Flagship models get gold in Math olympiads and hard benchmarks. OpenAI releases strong open source models and Google releases the much anticipated nano-banana for image generation and editing. Agentic workflows become commonplace.

Significant milestones: Gemini and OpenAI IMO Gold, gpt-oss, Gemini 2.5 Flash Image, Grok 4, Claude Sonnet 4.5

4๏ธโƒฃ Q4 โ€” Mistral returns, leaderboard hill-climbing
Mistral is back with updated model families. All labs release impressive models to wrap up the year!

Significant milestones: Claude Opus 4.5, DeepSeek Math V2, FLUX 2, GPT 5.1, Kimi K2 Thinking, Nano Banana Pro, GLM 4.7, Gemini 3, Mistral 3, MiniMax M2.1 ๐Ÿคฏ

Credits
๐Ÿ™ NHLOCAL for the source data https://github.com/NHLOCAL/AiTimeline

๐Ÿซก @reach-vb for the original idea, design and recipe

๐Ÿ™Œ @ariG23498 and yours truly for compiling and verifying the 2025 edition

๐Ÿฅณ Here's to 2026, wishing it becomes the best year ever for open releases and on-device-first use-cases! ๐Ÿฅ‚
  • 1 reply
ยท
abidlabsย 
posted an update 3 months ago
view post
Post
9385
Why I think local, open-source models will eventually win.

The most useful AI applications are moving toward multi-turn agentic behavior: systems that take hundreds or even thousands of iterative steps to complete a task, e.g. Claude Code, computer-control agents that click, type, and test repeatedly.

In these cases, the power of the model is not how smart it is per token, but in how quickly it can interact with its environment and tools across many steps. In that regime, model quality becomes secondary to latency.

An open-source model that can call tools quickly, check that the right thing was clicked, or verify that a code change actually passes tests can easily outperform a slightly โ€œsmarterโ€ closed model that has to make remote API calls for every move.

Eventually, the balance tips: it becomes impractical for an agent to rely on remote inference for every micro-action. Just as no one would tolerate a keyboard that required a network request per keystroke, users wonโ€™t accept agent workflows bottlenecked by latency. All devices will ship with local, open-source models that are โ€œgood enoughโ€ and the expectation will shift toward everything running locally. Itโ€™ll happen sooner than most people think.
ยท
nouamanetaziย 
posted an update 3 months ago
view post
Post
4347
After training ๐’๐ฆ๐จ๐ฅ๐‹๐Œ๐Ÿ‘ on ๐Ÿ‘๐Ÿ–๐Ÿ’ ๐‡๐Ÿ๐ŸŽ๐ŸŽ๐ฌ for nearly a month, I've come to realize something most people overlook: ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ข๐ฌ ๐ญ๐ก๐ž ๐ฆ๐š๐ค๐ž-๐จ๐ซ-๐›๐ซ๐ž๐š๐ค ๐Ÿ๐š๐œ๐ญ๐จ๐ซ ๐ข๐ง ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐ . ๐Ÿ”ฅ

Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious ๐๐‚๐‚๐‹ ๐ž๐ซ๐ซ๐จ๐ซ๐ฌ, or when your expensive GPU cluster is running at ๐Ÿ”๐ŸŽ% ๐ž๐Ÿ๐Ÿ๐ข๐œ๐ข๐ž๐ง๐œ๐ฒ, the problem isn't your model. It's most probably a ๐ฆ๐ข๐ฌ๐ฎ๐ฌ๐ž ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ก๐š๐ซ๐๐ฐ๐š๐ซ๐ž. ๐Ÿ› ๏ธ

Questions that seemed simple but had no clear answers: Why is ๐Œ๐จ๐„ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐ฌ๐ฅ๐จ๐ฐ๐ž๐ซ ๐ญ๐ก๐š๐ง ๐๐ž๐ง๐ฌ๐ž ๐ฆ๐จ๐๐ž๐ฅ๐ฌ? Which ๐๐‚๐‚๐‹ ๐Ÿ๐ฅ๐š๐ ๐ฌ should we actually set? How often should we checkpoint without killing throughput?

That's why we built ๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค ๐Ÿ“–: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ฅ๐š๐ฒ๐ž๐ซ that most teams get wrong.

We validated real vs theoretical bandwidth across the entire stack: ๐‡๐๐Œ๐Ÿ‘ ๐ก๐ข๐ญ๐ญ๐ข๐ง๐  ๐Ÿ‘ ๐“๐/๐ฌ, ๐๐•๐‹๐ข๐ง๐ค ๐Ÿ’.๐ŸŽ ๐ซ๐ž๐š๐œ๐ก๐ข๐ง๐  ๐Ÿ•๐Ÿ–๐Ÿ” ๐†๐/๐ฌ, ๐๐‚๐ˆ๐ž ๐†๐ž๐ง๐Ÿ’ ๐š๐ญ ๐Ÿ๐Ÿ’.๐Ÿ ๐†๐/๐ฌ. Then we ran collective operations across ๐Ÿ๐Ÿ๐Ÿ– ๐†๐๐”๐ฌ (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from ๐Ÿ’๐Ÿ–๐ŸŽ ๐†๐/๐ฌ on a single node to ๐Ÿ‘๐Ÿ๐ŸŽ-๐Ÿ‘๐Ÿ“๐ŸŽ ๐†๐/๐ฌ across 16 nodes.

If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.

๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค: https://lnkd.in/e5MKXUHS

Shared with โค๏ธ by the HuggingFace team
megย 
posted an update 3 months ago
view post
Post
3968
๐Ÿค– Did you know your voice might be cloned without your consent from just *one sentence* of audio?
That's not great. So with @frimelle , we brainstormed a new idea for developers who want to curb malicious use: โœจThe Voice Consent Gate.โœจ
Details, code, here: https://huggingface.co/blog/voice-consent-gate
  • 3 replies
ยท
anditoย 
posted an update 3 months ago
view post
Post
2032
Finally, our new paper is out! "๐—™๐—ถ๐—ป๐—ฒ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป: ๐—ข๐—ฝ๐—ฒ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐˜€ ๐—”๐—น๐—น ๐—ฌ๐—ผ๐˜‚ ๐—ก๐—ฒ๐—ฒ๐—ฑ"! ๐Ÿฅณ
FineVision: Open Data Is All You Need (2510.17269)

If you've ever trained a VLM, you know this problem: nobody shares their data mixtures. It's a black box, making replicating SOTA work impossible.
We wanted to change that.

FineVision unifies 200 sources into 24 million samples. With 17.3 million images and 9.5 billion answer tokens, it's the largest open resource of its kind.

In the paper, we share how we built it:
๐Ÿ” finding and cleaning data at scale
๐Ÿงน removing excessive duplicates across sources
๐Ÿค— decontaminating against 66 public benchmarks

My favorite part is Figure 6 (in the video!). It's our visual diversity analysis. It shows that FineVision isn't just bigger; it's more balanced and conceptually richer than other open datasets.
NVIDIA's Eagle 2 paper highlighted just how critical this visual diversity is, and our results confirm it: models trained on FineVision consistently outperform those trained on any other open dataset on 11 benchmarks!

๐ŸŽ‰ To celebrate the paper, Iโ€™m also releasing a concatenated and shuffled version of the full dataset! ๐Ÿ‘‰HuggingFaceM4/FineVision_full_shuffled

Itโ€™s ready to stream, so you can start training your own models right away:

from datasets import load_dataset
d = load_dataset("HuggingFaceM4/FineVision_full_shuffled", split="train", streaming=True)
print(next(iter(d)))

A big shoutout to the first authors: Luis Wiedmann and Orr Zohar. They are rockstars!
merveย 
posted an update 3 months ago
view post
Post
8403
deepseek-ai/DeepSeek-OCR is out! ๐Ÿ”ฅ my take โคต๏ธ
> pretty insane it can parse and re-render charts in HTML
> it uses CLIP and SAM features concatenated, so better grounding
> very efficient per vision tokens/performance ratio
> covers 100 languages
ยท