| # NAFNet | |
| NAFNet is a lightweight image deblurring model that eliminates nonlinear activations to achieve state-of-the-art performance with minimal computational cost. | |
| Notes: | |
| - Model source: [.pth](https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view). | |
| - ONNX Model link: [ONNX](https://drive.google.com/uc?export=dowload&id=1ZLRhkpCekNruJZggVpBgSoCx3k7bJ-5v) | |
| ## Requirements | |
| Install latest OpenCV >=5.0.0 and CMake >= 3.22.2 to get started with. | |
| ## Demo | |
| ### Python | |
| Run the following command to try the demo: | |
| ```shell | |
| # deblur the default input image | |
| python demo.py | |
| # deblur the user input image | |
| python demo.py --input /path/to/image | |
| # get help regarding various parameters | |
| python demo.py --help | |
| ``` | |
| ### C++ | |
| ```shell | |
| # A typical and default installation path of OpenCV is /usr/local | |
| cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . | |
| cmake --build build | |
| # deblur the default input image | |
| ./build/demo | |
| # deblur the user input image | |
| ./build/demo --input=/path/to/image | |
| # get help messages | |
| ./build/demo -h | |
| ``` | |
| ### Example outputs | |
|  | |
| ## License | |
| All files in this directory are licensed under [MIT License](./LICENSE). | |
| ## Reference | |
| - https://github.com/megvii-research/NAFNet | |