| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- zh | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						base_model: openbmb/MiniCPM-2B-sft-bf16 | 
					
					
						
						| 
							 | 
						model-index: | 
					
					
						
						| 
							 | 
						- name: MiniCPM-Embedding | 
					
					
						
						| 
							 | 
						  results: | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/arguana | 
					
					
						
						| 
							 | 
						      name: MTEB ArguAna | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: c22ab2a51041ffd869aaddef7af8d8215647e41a | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 64.65 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: BeIR/cqadupstack | 
					
					
						
						| 
							 | 
						      name: MTEB CQADupstackRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 46.53 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/climate-fever | 
					
					
						
						| 
							 | 
						      name: MTEB ClimateFEVER | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 35.55 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/dbpedia | 
					
					
						
						| 
							 | 
						      name: MTEB DBPedia | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 47.82 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/fever | 
					
					
						
						| 
							 | 
						      name: MTEB FEVER | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 90.76 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/fiqa | 
					
					
						
						| 
							 | 
						      name: MTEB FiQA2018 | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: 27a168819829fe9bcd655c2df245fb19452e8e06 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 56.64 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/hotpotqa | 
					
					
						
						| 
							 | 
						      name: MTEB HotpotQA | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: ab518f4d6fcca38d87c25209f94beba119d02014 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 78.11 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/msmarco | 
					
					
						
						| 
							 | 
						      name: MTEB MSMARCO | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: c5a29a104738b98a9e76336939199e264163d4a0 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 43.93 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/nfcorpus | 
					
					
						
						| 
							 | 
						      name: MTEB NFCorpus | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 39.77 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/nq | 
					
					
						
						| 
							 | 
						      name: MTEB NQ | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 69.29 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/quora | 
					
					
						
						| 
							 | 
						      name: MTEB QuoraRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: None | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 89.97 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/scidocs | 
					
					
						
						| 
							 | 
						      name: MTEB SCIDOCS | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: None | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 22.38 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/scifact | 
					
					
						
						| 
							 | 
						      name: MTEB SciFact | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: 0228b52cf27578f30900b9e5271d331663a030d7 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 86.6 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/trec-covid | 
					
					
						
						| 
							 | 
						      name: MTEB TRECCOVID | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: None | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 81.32 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: mteb/touche2020 | 
					
					
						
						| 
							 | 
						      name: MTEB Touche2020 | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 25.08 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/CmedqaRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB CmedqaRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 46.05 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/CovidRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB CovidRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 1271c7809071a13532e05f25fb53511ffce77117 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 92.01 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/DuRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB DuRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: a1a333e290fe30b10f3f56498e3a0d911a693ced | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 90.98 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/EcomRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB EcomRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 70.21 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/MMarcoRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB MMarcoRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 85.55 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/MedicalRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB MedicalRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 63.91 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/T2Retrieval | 
					
					
						
						| 
							 | 
						      name: MTEB T2Retrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 8731a845f1bf500a4f111cf1070785c793d10e64 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 87.33 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: Retrieval | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: C-MTEB/VideoRetrieval | 
					
					
						
						| 
							 | 
						      name: MTEB VideoRetrieval | 
					
					
						
						| 
							 | 
						      config: default | 
					
					
						
						| 
							 | 
						      split: dev | 
					
					
						
						| 
							 | 
						      revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: ndcg_at_10 | 
					
					
						
						| 
							 | 
						      value: 78.05 | 
					
					
						
						| 
							 | 
						pipeline_tag: feature-extraction | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- mteb | 
					
					
						
						| 
							 | 
						- sentence-transformers | 
					
					
						
						| 
							 | 
						library_name: transformers | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						## MiniCPM-Embedding | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本嵌入模型,有如下特点: | 
					
					
						
						| 
							 | 
						- 出色的中文、英文检索能力。 | 
					
					
						
						| 
							 | 
						- 出色的中英跨语言检索能力。 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						欢迎关注 RAG 套件系列: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) | 
					
					
						
						| 
							 | 
						- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) | 
					
					
						
						| 
							 | 
						- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. , THUNLP and NEUIR , featuring: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Exceptional Chinese and English retrieval capabilities. | 
					
					
						
						| 
							 | 
						- Outstanding cross-lingual retrieval capabilities between Chinese and English. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						We also invite you to explore the RAG toolkit series: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) | 
					
					
						
						| 
							 | 
						- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) | 
					
					
						
						| 
							 | 
						- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 模型信息 Model Information | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- 模型大小:2.4B | 
					
					
						
						| 
							 | 
						- 嵌入维度:2304 | 
					
					
						
						| 
							 | 
						- 最大输入token数:512 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Model Size: 2.4B | 
					
					
						
						| 
							 | 
						- Embedding Dimension: 2304 | 
					
					
						
						| 
							 | 
						- Max Input Tokens: 512 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 使用方法 Usage | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 输入格式 Input Format | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						本模型支持 query 侧指令,格式如下: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MiniCPM-Embedding supports query-side instructions in the following format: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						Instruction: {{ instruction }} Query: {{ query }} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						例如: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						For example: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么? | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast. | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						也可以不提供指令,即采取如下格式: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MiniCPM-Embedding also works in instruction-free mode in the following format: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						Query: {{ query }} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 `instructions.json`,其他测试不使用指令。文档侧直接输入文档原文。 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 环境要求 Requirements | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						transformers==4.37.2 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 示例脚本 Demo | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### Huggingface Transformers | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from transformers import AutoModel, AutoTokenizer | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_name = "openbmb/MiniCPM-Embedding" | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_name) | 
					
					
						
						| 
							 | 
						model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda") | 
					
					
						
						| 
							 | 
						# You can also use the following line to enable the Flash Attention 2 implementation | 
					
					
						
						| 
							 | 
						# model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") | 
					
					
						
						| 
							 | 
						model.eval() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# 由于在 `model.forward` 中缩放了最终隐层表示,此处的 mean pooling 实际上起到了 weighted mean pooling 的作用 | 
					
					
						
						| 
							 | 
						# As we scale hidden states in `model.forward`, mean pooling here actually works as weighted mean pooling | 
					
					
						
						| 
							 | 
						def mean_pooling(hidden, attention_mask): | 
					
					
						
						| 
							 | 
						    s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1) | 
					
					
						
						| 
							 | 
						    d = attention_mask.sum(dim=1, keepdim=True).float() | 
					
					
						
						| 
							 | 
						    reps = s / d | 
					
					
						
						| 
							 | 
						    return reps | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						@torch.no_grad() | 
					
					
						
						| 
							 | 
						def encode(input_texts): | 
					
					
						
						| 
							 | 
						    batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda") | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    outputs = model(**batch_dict) | 
					
					
						
						| 
							 | 
						    attention_mask = batch_dict["attention_mask"] | 
					
					
						
						| 
							 | 
						    hidden = outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    reps = mean_pooling(hidden, attention_mask)    | 
					
					
						
						| 
							 | 
						    embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy() | 
					
					
						
						| 
							 | 
						    return embeddings | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						queries = ["中国的首都是哪里?"] | 
					
					
						
						| 
							 | 
						passages = ["beijing", "shanghai"] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						INSTRUCTION = "Query: " | 
					
					
						
						| 
							 | 
						queries = [INSTRUCTION + query for query in queries] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						embeddings_query = encode(queries) | 
					
					
						
						| 
							 | 
						embeddings_doc = encode(passages) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						scores = (embeddings_query @ embeddings_doc.T) | 
					
					
						
						| 
							 | 
						print(scores.tolist())  # [[0.3535913825035095, 0.18596848845481873]] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### Sentence Transformers | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from sentence_transformers import SentenceTransformer | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_name = "openbmb/MiniCPM-Embedding" | 
					
					
						
						| 
							 | 
						model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={ "torch_dtype": torch.float16}) | 
					
					
						
						| 
							 | 
						# You can also use the following line to enable the Flash Attention 2 implementation | 
					
					
						
						| 
							 | 
						# model = SentenceTransformer(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", model_kwargs={ "torch_dtype": torch.float16}) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						queries = ["中国的首都是哪里?"] | 
					
					
						
						| 
							 | 
						passages = ["beijing", "shanghai"] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						INSTRUCTION = "Query: " | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						embeddings_query = model.encode(queries, prompt=INSTRUCTION) | 
					
					
						
						| 
							 | 
						embeddings_doc = model.encode(passages) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						scores = (embeddings_query @ embeddings_doc.T) | 
					
					
						
						| 
							 | 
						print(scores.tolist())  # [[0.35365450382232666, 0.18592746555805206]] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 实验结果 Evaluation Results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 中文与英文检索结果 CN/EN Retrieval Results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						| 模型 Model                    | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) | | 
					
					
						
						| 
							 | 
						|------------------------------|-------------------|---------------| | 
					
					
						
						| 
							 | 
						| bge-large-zh-v1.5            | 70.46             | -             | | 
					
					
						
						| 
							 | 
						| gte-large-zh                 | 72.49             | -             | | 
					
					
						
						| 
							 | 
						| Zhihui_LLM_Embedding         | 76.74             |               | | 
					
					
						
						| 
							 | 
						| bge-large-en-v1.5            | -                 | 54.29         | | 
					
					
						
						| 
							 | 
						| gte-en-large-v1.5            | -                 | 57.91         | | 
					
					
						
						| 
							 | 
						| NV-Retriever-v1              | -                 | 60.9          | | 
					
					
						
						| 
							 | 
						| bge-en-icl                   | -                 | 62.16         | | 
					
					
						
						| 
							 | 
						| NV-Embed-v2                  | -                 | 62.65         | | 
					
					
						
						| 
							 | 
						| me5-large                    | 63.66             | 51.43         | | 
					
					
						
						| 
							 | 
						| bge-m3(Dense)                | 65.43             | 48.82         | | 
					
					
						
						| 
							 | 
						| gte-multilingual-base(Dense) | 71.95             | 51.08         | | 
					
					
						
						| 
							 | 
						| gte-Qwen2-1.5B-instruct      | 71.86             | 58.29         | | 
					
					
						
						| 
							 | 
						| gte-Qwen2-7B-instruct        | 76.03             | 60.25         | | 
					
					
						
						| 
							 | 
						| bge-multilingual-gemma2      | 73.73             | 59.24         | | 
					
					
						
						| 
							 | 
						| MiniCPM-Embedding                    | **76.76**         | 58.56         | | 
					
					
						
						| 
							 | 
						| MiniCPM-Embedding+MiniCPM-Reranker         | 77.08             | 61.61         | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						| 模型  Model                | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) | | 
					
					
						
						| 
							 | 
						|------------------------------|--------------------|--------------------|--------------------| | 
					
					
						
						| 
							 | 
						| me5-large                    | 44.3               | 9.01               | 25.33              | | 
					
					
						
						| 
							 | 
						| bge-m3(Dense)                | 66.4               | 30.49              | 41.09              | | 
					
					
						
						| 
							 | 
						| gte-multilingual-base(Dense) | 68.2               | 39.46              | 45.86              | | 
					
					
						
						| 
							 | 
						| gte-Qwen2-1.5B-instruct      | 68.52              | 49.11              | 45.05              | | 
					
					
						
						| 
							 | 
						| gte-Qwen2-7B-instruct        | 68.27              | 49.14              | 49.6               | | 
					
					
						
						| 
							 | 
						| MiniCPM-Embedding                    | **72.95**          | **52.65**          | **49.95**          | | 
					
					
						
						| 
							 | 
						| MiniCPM-Embedding+MiniCPM-Reranker         | 74.33              | 53.21              | 54.12              | | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## 许可证 License | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。 | 
					
					
						
						| 
							 | 
						- MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。 | 
					
					
						
						| 
							 | 
						- MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.  | 
					
					
						
						| 
							 | 
						* The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md). | 
					
					
						
						| 
							 | 
						* The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use. |