Improve language tag (#1)
Browse files- Improve language tag (68d1f3e6f04c6c977c8965444a4b339c4a35e419)
Co-authored-by: Loïck BOURDOIS <[email protected]>
README.md
CHANGED
|
@@ -1,35 +1,47 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
datasets:
|
| 4 |
-
- AI-MO/NuminaMath-TIR
|
| 5 |
-
language:
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- AI-MO/NuminaMath-TIR
|
| 5 |
+
language:
|
| 6 |
+
- zho
|
| 7 |
+
- eng
|
| 8 |
+
- fra
|
| 9 |
+
- spa
|
| 10 |
+
- por
|
| 11 |
+
- deu
|
| 12 |
+
- ita
|
| 13 |
+
- rus
|
| 14 |
+
- jpn
|
| 15 |
+
- kor
|
| 16 |
+
- vie
|
| 17 |
+
- tha
|
| 18 |
+
- ara
|
| 19 |
+
metrics:
|
| 20 |
+
- accuracy
|
| 21 |
+
base_model:
|
| 22 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
| 23 |
+
---
|
| 24 |
+
# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR
|
| 25 |
+
|
| 26 |
+
## Overview
|
| 27 |
+
|
| 28 |
+
This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5.
|
| 29 |
+
|
| 30 |
+
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273
|
| 31 |
+
|
| 32 |
+
## Usage
|
| 33 |
+
```python
|
| 34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 35 |
+
|
| 36 |
+
# Load tokenizer and model
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
| 39 |
+
|
| 40 |
+
# Example input
|
| 41 |
+
prompt = "What is the capital of France?"
|
| 42 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 43 |
+
|
| 44 |
+
# Generate output
|
| 45 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 46 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 47 |
```
|