Update README.md
Browse files
README.md
CHANGED
|
@@ -8,4 +8,28 @@ metrics:
|
|
| 8 |
- accuracy
|
| 9 |
base_model:
|
| 10 |
- Qwen/Qwen2.5-0.5B-Instruct
|
| 11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- accuracy
|
| 9 |
base_model:
|
| 10 |
- Qwen/Qwen2.5-0.5B-Instruct
|
| 11 |
+
---
|
| 12 |
+
# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR
|
| 13 |
+
|
| 14 |
+
## Overview
|
| 15 |
+
|
| 16 |
+
This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5.
|
| 17 |
+
|
| 18 |
+
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273
|
| 19 |
+
|
| 20 |
+
## Usage
|
| 21 |
+
```python
|
| 22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 23 |
+
|
| 24 |
+
# Load tokenizer and model
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
| 27 |
+
|
| 28 |
+
# Example input
|
| 29 |
+
prompt = "What is the capital of France?"
|
| 30 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 31 |
+
|
| 32 |
+
# Generate output
|
| 33 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 34 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 35 |
+
```
|