metadata
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
datasets:
- SA1B
base_model: jimmycarter/LibreFLUX
LibreFLUX-ControlNet
This model/pipeline is the product of my LibreFlux ControlNet training repo. For the dataset I auto labeled 165K images from the SA1B dataset, and trained for that many iterations. LibreFLUX is the base model.
ControlNet trained on top of LibreFLUX
- Uses Attention Masking
- Inference runs with CFG
- Trained on 165K segmented images from Meta's SA1B Dataset
- Trained using: https://github.com/NeuralVFX/LibreFLUX-ControlNet
- Base model used: https://huggingface.co/jimmycarter/LibreFLUX
- Inference code adapted from: https://github.com/bghira/SimpleTuner
Compatibility
pip install -U diffusers==0.32.0
pip install -U "transformers @ git+https://github.com/huggingface/transformers@e15687fffe5c9d20598a19aeab721ae0a7580f8a"
Load Pipeline
import torch
from diffusers import DiffusionPipeline
model_id = "neuralvfx/LibreFlux-ControlNet"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline=model_id,
trust_remote_code=True,
torch_dtype=dtype,
safety_checker=None
).to(device)
Inference
from PIL import Image
# Load Control Image
cond = Image.open("examples/libre_flux_control_image.png")
cond = cond.resize((1024, 1024))
# Convert PIL image to tensor and move to device with correct dtype
cond_tensor = ToTensor()(cond)[:3,:,:].to(pipe.device, dtype=pipe.dtype).unsqueeze(0)
out = pipe(
prompt="many pieces of drift wood spelling libre flux sitting casting shadow on the lumpy sandy beach with foot prints all over it",
negative_prompt="blurry",
control_image=cond_tensor, # Use the tensor here
num_inference_steps=75,
guidance_scale=4.0,
height =1024,
width=1024,
controlnet_conditioning_scale=1.0,
num_images_per_prompt=1,
control_mode=None,
generator= torch.Generator().manual_seed(32),
return_dict=True,
)
out.images[0]
