results
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2290
- Micro f1: 0.7075
- Macro f1: 0.6540
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 |
|---|---|---|---|---|---|
| 0.4348 | 1.0 | 56 | 0.3544 | 0.0 | 0.0 |
| 0.3297 | 2.0 | 112 | 0.3156 | 0.3816 | 0.1501 |
| 0.2897 | 3.0 | 168 | 0.2885 | 0.3684 | 0.1382 |
| 0.2501 | 4.0 | 224 | 0.2668 | 0.5465 | 0.2805 |
| 0.211 | 5.0 | 280 | 0.2335 | 0.56 | 0.2879 |
| 0.1765 | 6.0 | 336 | 0.2264 | 0.5876 | 0.3426 |
| 0.1497 | 7.0 | 392 | 0.2205 | 0.6102 | 0.3650 |
| 0.1221 | 8.0 | 448 | 0.1988 | 0.6919 | 0.5777 |
| 0.0964 | 9.0 | 504 | 0.2068 | 0.6701 | 0.5927 |
| 0.0753 | 10.0 | 560 | 0.1951 | 0.6927 | 0.5971 |
| 0.0614 | 11.0 | 616 | 0.1945 | 0.7136 | 0.6779 |
| 0.0495 | 12.0 | 672 | 0.2035 | 0.6866 | 0.6138 |
| 0.0387 | 13.0 | 728 | 0.2069 | 0.6977 | 0.6563 |
| 0.0347 | 14.0 | 784 | 0.2082 | 0.7238 | 0.6668 |
| 0.0318 | 15.0 | 840 | 0.2161 | 0.6957 | 0.6380 |
| 0.028 | 16.0 | 896 | 0.2075 | 0.7143 | 0.6687 |
| 0.0235 | 17.0 | 952 | 0.2149 | 0.7130 | 0.6650 |
| 0.0212 | 18.0 | 1008 | 0.2201 | 0.7170 | 0.6655 |
| 0.019 | 19.0 | 1064 | 0.2196 | 0.7256 | 0.6686 |
| 0.0169 | 20.0 | 1120 | 0.2290 | 0.7075 | 0.6540 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 2
Model tree for lur601/results
Base model
google-bert/bert-base-uncased