results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2290
  • Micro f1: 0.7075
  • Macro f1: 0.6540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Micro f1 Macro f1
0.4348 1.0 56 0.3544 0.0 0.0
0.3297 2.0 112 0.3156 0.3816 0.1501
0.2897 3.0 168 0.2885 0.3684 0.1382
0.2501 4.0 224 0.2668 0.5465 0.2805
0.211 5.0 280 0.2335 0.56 0.2879
0.1765 6.0 336 0.2264 0.5876 0.3426
0.1497 7.0 392 0.2205 0.6102 0.3650
0.1221 8.0 448 0.1988 0.6919 0.5777
0.0964 9.0 504 0.2068 0.6701 0.5927
0.0753 10.0 560 0.1951 0.6927 0.5971
0.0614 11.0 616 0.1945 0.7136 0.6779
0.0495 12.0 672 0.2035 0.6866 0.6138
0.0387 13.0 728 0.2069 0.6977 0.6563
0.0347 14.0 784 0.2082 0.7238 0.6668
0.0318 15.0 840 0.2161 0.6957 0.6380
0.028 16.0 896 0.2075 0.7143 0.6687
0.0235 17.0 952 0.2149 0.7130 0.6650
0.0212 18.0 1008 0.2201 0.7170 0.6655
0.019 19.0 1064 0.2196 0.7256 0.6686
0.0169 20.0 1120 0.2290 0.7075 0.6540

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for lur601/results

Finetuned
(6304)
this model