SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| Linguistic (in)felicity |
- 'because the second statement negates what was stated in the first part of the sentence'
- 'there is a logic conflict in the statement that renders it bizarre and nonsensical.'
- 'there was a contradiction of statements if read at face value, however, it could be read that being homeless is not right in which case the statement would make sense. it is unclear.'
|
| Enrichment / reinterpretation |
- 'the statement recognised the objective compassion but the opinion contradicted it'
- "because while it is compassionate to help the homeless people don't always do it out of compassion."
- 'it could be the way how homeless are helped. there could be better ways to handle that'
|
| Lack of understanding / clear misunderstanding |
- 'it simply sounded stupid. i doubt it makes any sense'
- 'it statement didnt make any sense, for us to better understand, tom needs to further explain his reason for stating why its not cruel after first saying it is'
- 'it sounds very contradictory'
|
Evaluation
Metrics
| Label |
Accuracy |
Precision |
Recall |
F1 |
| all |
0.8684 |
0.5643 |
0.5629 |
0.5626 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("setfit_model_id")
preds = model("it contradicted itself")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
2 |
16.6447 |
92 |
| Label |
Training Sample Count |
| Enrichment / reinterpretation |
31 |
| Lack of understanding / clear misunderstanding |
10 |
| Linguistic (in)felicity |
111 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 3786
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0026 |
1 |
0.2539 |
- |
| 0.1316 |
50 |
0.2248 |
- |
| 0.2632 |
100 |
0.1681 |
- |
| 0.3947 |
150 |
0.0854 |
- |
| 0.5263 |
200 |
0.0128 |
- |
| 0.6579 |
250 |
0.0074 |
- |
| 0.7895 |
300 |
0.0017 |
- |
| 0.9211 |
350 |
0.0021 |
- |
| 1.0526 |
400 |
0.0024 |
- |
| 1.1842 |
450 |
0.0004 |
- |
| 1.3158 |
500 |
0.0011 |
- |
| 1.4474 |
550 |
0.0016 |
- |
| 1.5789 |
600 |
0.0003 |
- |
| 1.7105 |
650 |
0.0002 |
- |
| 1.8421 |
700 |
0.0002 |
- |
| 1.9737 |
750 |
0.0002 |
- |
| 2.1053 |
800 |
0.0002 |
- |
| 2.2368 |
850 |
0.0002 |
- |
| 2.3684 |
900 |
0.0002 |
- |
| 2.5 |
950 |
0.0001 |
- |
| 2.6316 |
1000 |
0.0001 |
- |
| 2.7632 |
1050 |
0.0001 |
- |
| 2.8947 |
1100 |
0.0001 |
- |
| 3.0263 |
1150 |
0.0001 |
- |
| 3.1579 |
1200 |
0.0001 |
- |
| 3.2895 |
1250 |
0.0001 |
- |
| 3.4211 |
1300 |
0.0001 |
- |
| 3.5526 |
1350 |
0.0001 |
- |
| 3.6842 |
1400 |
0.0001 |
- |
| 3.8158 |
1450 |
0.0001 |
- |
| 3.9474 |
1500 |
0.0001 |
- |
| 4.0789 |
1550 |
0.0001 |
- |
| 4.2105 |
1600 |
0.0001 |
- |
| 4.3421 |
1650 |
0.0001 |
- |
| 4.4737 |
1700 |
0.0001 |
- |
| 4.6053 |
1750 |
0.0001 |
- |
| 4.7368 |
1800 |
0.0001 |
- |
| 4.8684 |
1850 |
0.0001 |
- |
| 5.0 |
1900 |
0.0001 |
- |
| 5.1316 |
1950 |
0.0001 |
- |
| 5.2632 |
2000 |
0.0001 |
- |
| 5.3947 |
2050 |
0.0001 |
- |
| 5.5263 |
2100 |
0.0001 |
- |
| 5.6579 |
2150 |
0.0001 |
- |
| 5.7895 |
2200 |
0.0001 |
- |
| 5.9211 |
2250 |
0.0001 |
- |
| 6.0526 |
2300 |
0.0001 |
- |
| 6.1842 |
2350 |
0.0001 |
- |
| 6.3158 |
2400 |
0.0001 |
- |
| 6.4474 |
2450 |
0.0001 |
- |
| 6.5789 |
2500 |
0.0001 |
- |
| 6.7105 |
2550 |
0.0001 |
- |
| 6.8421 |
2600 |
0.0001 |
- |
| 6.9737 |
2650 |
0.0001 |
- |
| 7.1053 |
2700 |
0.0001 |
- |
| 7.2368 |
2750 |
0.0001 |
- |
| 7.3684 |
2800 |
0.0001 |
- |
| 7.5 |
2850 |
0.0001 |
- |
| 7.6316 |
2900 |
0.0001 |
- |
| 7.7632 |
2950 |
0.0001 |
- |
| 7.8947 |
3000 |
0.0001 |
- |
| 8.0263 |
3050 |
0.0001 |
- |
| 8.1579 |
3100 |
0.0001 |
- |
| 8.2895 |
3150 |
0.0001 |
- |
| 8.4211 |
3200 |
0.0001 |
- |
| 8.5526 |
3250 |
0.0001 |
- |
| 8.6842 |
3300 |
0.0001 |
- |
| 8.8158 |
3350 |
0.0001 |
- |
| 8.9474 |
3400 |
0.0012 |
- |
| 9.0789 |
3450 |
0.0003 |
- |
| 9.2105 |
3500 |
0.0001 |
- |
| 9.3421 |
3550 |
0.0001 |
- |
| 9.4737 |
3600 |
0.0001 |
- |
| 9.6053 |
3650 |
0.0001 |
- |
| 9.7368 |
3700 |
0.0001 |
- |
| 9.8684 |
3750 |
0.0001 |
- |
| 10.0 |
3800 |
0.0 |
- |
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.8.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}