ToMMeR-mistral-7b_L5_R64

ToMMeR is a lightweight probing model extracting emergent mention detection capabilities from early layers representations of any LLM backbone, achieving high Zero Shot recall across a wide set of 13 NER benchmarks.

Checkpoint Details

Property Value
Base LLM mistral-7b
Layer 5
#Params 528.4K

Usage

Installation

Our code can be installed with pip+git, Please visit the repository for more details.

pip install git+https://github.com/VictorMorand/llm2ner.git

Fancy Outputs

import llm2ner
from llm2ner import ToMMeR

tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-mistral-7b_L5_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,) 
tommer.to(llm.device)

text = "Large language models are awesome. While trained on language modeling, they exhibit emergent Zero Shot abilities that make them suitable for a wide range of tasks, including Named Entity Recognition (NER). "

#fancy interactive output
outputs = llm2ner.plotting.demo_inference( text, tommer, llm,
    decoding_strategy="threshold",  # or "greedy" for flat segmentation
    threshold=0.5, # default 50%
    show_attn=True,
)
Large PRED language PRED models are awesome . While trained on language PRED modeling , they exhibit emergent PRED abilities that make them suitable for a wide range of tasks PRED , including Named PRED Entity Recognition ( NER PRED ) .

Raw inference

By default, ToMMeR outputs span probabilities, but we also propose built-in options for decoding entities.

  • Inputs:
    • tokens (batch, seq): tokens to process,
    • model: LLM to extract representation from.
  • Outputs: (batch, seq, seq) matrix (masked outside valid spans)

tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-mistral-7b_L5_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,) 
tommer.to(llm.device)

#### Raw Inference
text = ["Large language models are awesome"]
print(f"Input text: {text[0]}")

#tokenize in shape (1, seq_len)
tokens = model.tokenizer(text, return_tensors="pt")["input_ids"].to(device)
# Output raw scores
output = tommer.forward(tokens, model) # (batch_size, seq_len, seq_len)
print(f"Raw Output shape: {output.shape}")

#use given decoding strategy to infer entities
entities = tommer.infer_entities(tokens=tokens, model=model, threshold=0.5, decoding_strategy="greedy")
str_entities = [ model.tokenizer.decode(tokens[0,b:e+1]) for b, e in entities[0]]
print(f"Predicted entities: {str_entities}")

>>> Input text: Large language models are awesome
>>> Raw Output shape: torch.Size([1, 6, 6])
>>> Predicted entities: ['Large language models']

Please visit the repository for more details and a demo notebook.

Evaluation Results

dataset precision recall f1 n_samples
MultiNERD 0.1971 0.9863 0.3285 154144
CoNLL 2003 0.3067 0.9603 0.4649 16493
CrossNER_politics 0.2767 0.9732 0.4309 1389
CrossNER_AI 0.3137 0.9691 0.474 879
CrossNER_literature 0.3254 0.952 0.4851 916
CrossNER_science 0.3214 0.9699 0.4828 1193
CrossNER_music 0.3664 0.9659 0.5313 945
ncbi 0.1086 0.9365 0.1946 3952
FabNER 0.2947 0.7118 0.4169 13681
WikiNeural 0.1919 0.9874 0.3213 92672
GENIA_NER 0.2072 0.9602 0.3408 16563
ACE 2005 0.2799 0.4124 0.3335 8230
Ontonotes 0.2457 0.7294 0.3675 42193
Aggregated 0.2136 0.9286 0.3474 353250
Mean 0.2643 0.8857 0.3978 353250

Citation

If using this model or the approach, please cite the associated paper:

@misc{morand2025tommerefficiententity,
      title={ToMMeR -- Efficient Entity Mention Detection from Large Language Models}, 
      author={Victor Morand and Nadi Tomeh and Josiane Mothe and Benjamin Piwowarski},
      year={2025},
      eprint={2510.19410},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2510.19410}, 
}

License

Apache-2.0 (see repository for full text).

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support