ToMMeR-bert-base-uncased_L5_R64
ToMMeR is a lightweight probing model extracting emergent mention detection capabilities from early layers representations of any LLM backbone, achieving high Zero Shot recall across a wide set of 13 NER benchmarks.
Checkpoint Details
| Property | Value |
|---|---|
| Base LLM | bert-base-uncased |
| Layer | 5 |
| #Params | 99.1K |
Usage
Installation
Our code can be installed with pip+git, Please visit the repository for more details.
pip install git+https://github.com/VictorMorand/llm2ner.git
Fancy Outputs
import llm2ner
from llm2ner import ToMMeR
tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-bert-base-uncased_L5_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,)
tommer.to(llm.device)
text = "Large language models are awesome. While trained on language modeling, they exhibit emergent Zero Shot abilities that make them suitable for a wide range of tasks, including Named Entity Recognition (NER). "
#fancy interactive output
outputs = llm2ner.plotting.demo_inference( text, tommer, llm,
decoding_strategy="threshold", # or "greedy" for flat segmentation
threshold=0.5, # default 50%
show_attn=True,
)
Large
PRED
language
PRED
models
are awesome . While trained on
language
PRED
modeling
, they exhibit
emergent
PRED
abilities
that make them suitable for a wide range of
tasks
PRED
, including
Named
PRED
Entity
Recognition
(
NER
PRED
) .
Raw inference
By default, ToMMeR outputs span probabilities, but we also propose built-in options for decoding entities.
- Inputs:
- tokens (batch, seq): tokens to process,
- model: LLM to extract representation from.
- Outputs: (batch, seq, seq) matrix (masked outside valid spans)
tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-bert-base-uncased_L5_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,)
tommer.to(llm.device)
#### Raw Inference
text = ["Large language models are awesome"]
print(f"Input text: {text[0]}")
#tokenize in shape (1, seq_len)
tokens = model.tokenizer(text, return_tensors="pt")["input_ids"].to(device)
# Output raw scores
output = tommer.forward(tokens, model) # (batch_size, seq_len, seq_len)
print(f"Raw Output shape: {output.shape}")
#use given decoding strategy to infer entities
entities = tommer.infer_entities(tokens=tokens, model=model, threshold=0.5, decoding_strategy="greedy")
str_entities = [ model.tokenizer.decode(tokens[0,b:e+1]) for b, e in entities[0]]
print(f"Predicted entities: {str_entities}")
>>> Input text: Large language models are awesome
>>> Raw Output shape: torch.Size([1, 6, 6])
>>> Predicted entities: ['Large language models']
Please visit the repository for more details and a demo notebook.
Evaluation Results
| dataset | precision | recall | f1 | n_samples |
|---|---|---|---|---|
| MultiNERD | 0.2291 | 0.9736 | 0.3709 | 154144 |
| CoNLL 2003 | 0.35 | 0.9216 | 0.5074 | 16493 |
| CrossNER_politics | 0.3373 | 0.9538 | 0.4984 | 1389 |
| CrossNER_AI | 0.3378 | 0.9515 | 0.4985 | 879 |
| CrossNER_literature | 0.3465 | 0.9215 | 0.5037 | 916 |
| CrossNER_science | 0.3571 | 0.9392 | 0.5175 | 1193 |
| CrossNER_music | 0.3738 | 0.9217 | 0.5319 | 945 |
| ncbi | 0.1372 | 0.8794 | 0.2374 | 3952 |
| FabNER | 0.296 | 0.6694 | 0.4105 | 13681 |
| WikiNeural | 0.2168 | 0.9677 | 0.3542 | 92672 |
| GENIA_NER | 0.2517 | 0.9369 | 0.3968 | 16563 |
| ACE 2005 | 0.2976 | 0.4088 | 0.3445 | 8230 |
| Ontonotes | 0.2576 | 0.7137 | 0.3786 | 42193 |
| Aggregated | 0.241 | 0.9103 | 0.3811 | 353250 |
| Mean | 0.2914 | 0.8584 | 0.4269 | 353250 |
Citation
If using this model or the approach, please cite the associated paper:
@misc{morand2025tommerefficiententity,
title={ToMMeR -- Efficient Entity Mention Detection from Large Language Models},
author={Victor Morand and Nadi Tomeh and Josiane Mothe and Benjamin Piwowarski},
year={2025},
eprint={2510.19410},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.19410},
}
License
Apache-2.0 (see repository for full text).
Model tree for llm2ner/ToMMeR-bert-base-uncased_L5_R64
Base model
google-bert/bert-base-uncased