superb_ks_42

This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 1051591.375
  • Accuracy: 0.6209
  • Test Accuracy: 0.6209
  • Df Accuracy: 0.1352
  • Unlearn Overall Accuracy: 0.7429
  • Unlearn Time: 11585.2870

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
0.0 0.5 1564 2.0251 0.5642 0.6213 0.6213 -1
0.0 1.0 3128 24.9043 0.1352 0.7429 0.7429 -1
0.0 1.5 4692 118.8172 0.1342 0.7431 0.7431 -1
0.0 2.0 6256 360.7070 0.1342 0.7404 0.7404 -1
0.0 2.5 7820 1797.0188 0.1352 0.7429 0.7429 -1
0.0 3.0 9384 1833.0411 0.1342 0.7407 0.7407 -1
0.0 3.5 10948 5951.4312 0.1352 0.7391 0.7391 -1
0.0 4.0 12512 23488.5137 0.1352 0.7429 0.7429 -1
0.0 4.5 14076 43524.4297 0.1352 0.7429 0.7429 -1
0.0 5.0 15640 61965.0234 0.1352 0.7429 0.7429 -1
0.0 5.5 17204 83421.5312 0.1352 0.7429 0.7429 -1
0.0 6.0 18768 108193.9766 0.1352 0.7429 0.7429 -1
0.0 6.5 20332 136248.25 0.1352 0.7429 0.7429 -1
0.0 7.0 21896 167441.5938 0.1352 0.7429 0.7429 -1
0.0 7.5 23460 201594.4688 0.1352 0.7429 0.7429 -1
0.0 7.99 25024 238488.5 0.1352 0.7429 0.7429 -1
0.0 8.49 26588 277883.0625 0.1352 0.7429 0.7429 -1
0.0 8.99 28152 319393.5625 0.1352 0.7429 0.7429 -1
0.0 9.49 29716 362743.3438 0.1352 0.7429 0.7429 -1
0.0 9.99 31280 407556.3438 0.1352 0.7429 0.7429 -1
0.0 10.49 32844 453439.1875 0.1352 0.7429 0.7429 -1
0.0 10.99 34408 500049.6562 0.1352 0.7429 0.7429 -1
0.0 11.49 35972 546989.6875 0.1352 0.7429 0.7429 -1
0.0 11.99 37536 593870.5625 0.1352 0.7429 0.7429 -1
0.0 12.49 39100 640257.0 0.1352 0.7429 0.7429 -1
0.0 12.99 40664 685795.3125 0.1352 0.7429 0.7429 -1
0.0 13.49 42228 730008.5 0.1352 0.7429 0.7429 -1
0.0 13.99 43792 772677.1875 0.1352 0.7429 0.7429 -1
0.0 14.49 45356 813358.625 0.1352 0.7429 0.7429 -1
0.0 14.99 46920 851736.9375 0.1352 0.7429 0.7429 -1
0.0 15.49 48484 887515.625 0.1352 0.7429 0.7429 -1
0.0 15.99 50048 920330.625 0.1352 0.7429 0.7429 -1
0.0 16.49 51612 949979.0 0.1352 0.7429 0.7429 -1
0.0 16.99 53176 976159.25 0.1352 0.7429 0.7429 -1
0.0 17.49 54740 998714.6875 0.1352 0.7429 0.7429 -1
0.0 17.99 56304 1017460.9375 0.1352 0.7429 0.7429 -1
0.0 18.49 57868 1032206.9375 0.1352 0.7429 0.7429 -1
0.0 18.99 59432 1042871.625 0.1352 0.7429 0.7429 -1
0.0 19.49 60996 1049350.375 0.1352 0.7429 0.7429 -1
0.0 19.99 62560 1051591.375 0.1352 0.7429 0.7429 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jialicheng/unlearn_speech_commands_wav2vec2-base_bad_teaching_2_42

Finetuned
(867)
this model

Dataset used to train jialicheng/unlearn_speech_commands_wav2vec2-base_bad_teaching_2_42

Evaluation results