MPNet base trained on AllNLI triplets

This is a sentence-transformers model trained on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • all-nli
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("gongysh2004/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric all-nli-dev all-nli-test
cosine_accuracy 0.9124 0.9239

Training Details

Training Dataset

all-nli

  • Dataset: all-nli
  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.46 tokens
    • max: 46 tokens
    • min: 6 tokens
    • mean: 12.81 tokens
    • max: 40 tokens
    • min: 5 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 17.95 tokens
    • max: 63 tokens
    • min: 4 tokens
    • mean: 9.78 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.35 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss all-nli-dev_cosine_accuracy all-nli-test_cosine_accuracy
-1 -1 - - 0.6211 -
0.016 100 2.5621 0.8215 0.7918 -
0.032 200 1.1921 0.5966 0.8314 -
0.048 300 0.9665 0.5667 0.8379 -
0.064 400 0.9082 0.5386 0.8489 -
0.08 500 0.8789 0.4822 0.8733 -
0.096 600 0.8698 0.4591 0.8844 -
0.112 700 0.8216 0.5016 0.8826 -
0.128 800 0.8062 0.5487 0.8820 -
0.144 900 0.7559 0.5344 0.8829 -
0.16 1000 0.672 0.5436 0.8714 -
0.176 1100 0.715 0.4816 0.8820 -
0.192 1200 0.6801 0.4801 0.8923 -
0.208 1300 0.6512 0.4848 0.8976 -
0.224 1400 0.6277 0.4698 0.8903 -
0.24 1500 0.6759 0.4804 0.8884 -
0.256 1600 0.6087 0.4260 0.9005 -
0.272 1700 0.6139 0.4445 0.8837 -
0.288 1800 0.5811 0.4439 0.8975 -
0.304 1900 0.504 0.4258 0.9017 -
0.32 2000 0.5033 0.4708 0.9013 -
0.336 2100 0.5079 0.4197 0.9020 -
0.352 2200 0.4983 0.4201 0.9028 -
0.368 2300 0.489 0.4453 0.9007 -
0.384 2400 0.4971 0.4311 0.8969 -
0.4 2500 0.4914 0.4363 0.8947 -
0.416 2600 0.4912 0.4385 0.8979 -
0.432 2700 0.5383 0.4317 0.8958 -
0.448 2800 0.4387 0.4080 0.9033 -
0.464 2900 0.4843 0.4177 0.9017 -
0.48 3000 0.4624 0.3976 0.9040 -
0.496 3100 0.4672 0.3934 0.9069 -
0.512 3200 0.4037 0.4099 0.9031 -
0.528 3300 0.4281 0.4070 0.9011 -
0.544 3400 0.4489 0.4059 0.9067 -
0.56 3500 0.4163 0.3916 0.9055 -
0.576 3600 0.3578 0.4016 0.9058 -
0.592 3700 0.4192 0.3895 0.9037 -
0.608 3800 0.3843 0.4166 0.9072 -
0.624 3900 0.387 0.3931 0.9107 -
0.64 4000 0.3924 0.3696 0.9128 -
0.656 4100 0.3209 0.3900 0.9052 -
0.672 4200 0.3363 0.3792 0.9055 -
0.688 4300 0.3834 0.3784 0.9045 -
0.704 4400 0.3218 0.3968 0.8975 -
0.72 4500 0.3702 0.4029 0.9036 -
0.736 4600 0.3243 0.3770 0.9084 -
0.752 4700 0.3423 0.3785 0.9081 -
0.768 4800 0.3606 0.3742 0.9092 -
0.784 4900 0.3709 0.3736 0.9095 -
0.8 5000 0.3014 0.3787 0.9078 -
0.816 5100 0.3205 0.3783 0.9064 -
0.832 5200 0.311 0.3753 0.9098 -
0.848 5300 0.315 0.3712 0.9111 -
0.864 5400 0.3096 0.3784 0.9127 -
0.88 5500 0.3247 0.3691 0.9116 -
0.896 5600 0.3055 0.3635 0.9124 -
0.912 5700 0.3209 0.3644 0.9128 -
0.928 5800 0.2887 0.3619 0.9113 -
0.944 5900 0.2786 0.3608 0.9119 -
0.96 6000 0.3119 0.3583 0.9119 -
0.976 6100 0.3048 0.3590 0.9122 -
0.992 6200 0.1677 0.3578 0.9124 -
-1 -1 - - - 0.9239

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results