metadata
			library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fsicoli/cv19-fleurs
metrics:
  - wer
model-index:
  - name: whisper-medium-pt-cv19-fleurs2-lr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/cv19-fleurs default
          type: fsicoli/cv19-fleurs
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.0953
whisper-medium-pt-cv19-fleurs2-lr
This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv19-fleurs default dataset in Portuguese. It achieves the following results on the evaluation set:
- Loss: 0.2099
 - Wer: 0.0953
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.25e-06
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - gradient_accumulation_steps: 2
 - total_train_batch_size: 16
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 5000
 - training_steps: 25000
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | 
|---|---|---|---|---|
| 0.0697 | 2.2883 | 5000 | 0.1620 | 0.1027 | 
| 0.0272 | 4.5767 | 10000 | 0.1833 | 0.1038 | 
| 0.0125 | 6.8650 | 15000 | 0.2036 | 0.0991 | 
| 0.0057 | 9.1533 | 20000 | 0.2092 | 0.0983 | 
| 0.0043 | 11.4416 | 25000 | 0.2099 | 0.0953 | 
Framework versions
- Transformers 4.45.0.dev0
 - Pytorch 2.4.1
 - Datasets 2.21.0
 - Tokenizers 0.19.1