|  | --- | 
					
						
						|  | library_name: stable-baselines3 | 
					
						
						|  | tags: | 
					
						
						|  | - LunarLander-v2 | 
					
						
						|  | - deep-reinforcement-learning | 
					
						
						|  | - reinforcement-learning | 
					
						
						|  | - stable-baselines3 | 
					
						
						|  | model-index: | 
					
						
						|  | - name: PPO | 
					
						
						|  | results: | 
					
						
						|  | - metrics: | 
					
						
						|  | - type: mean_reward | 
					
						
						|  | value: 124.30 +/- 74.63 | 
					
						
						|  | name: mean_reward | 
					
						
						|  | task: | 
					
						
						|  | type: reinforcement-learning | 
					
						
						|  | name: reinforcement-learning | 
					
						
						|  | dataset: | 
					
						
						|  | name: LunarLander-v2 | 
					
						
						|  | type: LunarLander-v2 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # **PPO** Agent playing **LunarLander-v2** | 
					
						
						|  | This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). | 
					
						
						|  |  | 
					
						
						|  | ## Usage (with Stable-baselines3) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | import gym | 
					
						
						|  |  | 
					
						
						|  | from huggingface_sb3 import load_from_hub | 
					
						
						|  | from stable_baselines3 import PPO | 
					
						
						|  | from stable_baselines3.common.evaluation import evaluate_policy | 
					
						
						|  |  | 
					
						
						|  | # Retrieve the model from the hub | 
					
						
						|  | ## repo_id =  id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) | 
					
						
						|  | ## filename = name of the model zip file from the repository | 
					
						
						|  | checkpoint = load_from_hub(repo_id="epsil/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip") | 
					
						
						|  |  | 
					
						
						|  | model = PPO.load(checkpoint) | 
					
						
						|  |  | 
					
						
						|  | # Evaluate the agent | 
					
						
						|  | eval_env = gym.make('LunarLander-v2') | 
					
						
						|  | mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) | 
					
						
						|  | print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") | 
					
						
						|  |  | 
					
						
						|  | # Watch the agent play | 
					
						
						|  | obs = eval_env.reset() | 
					
						
						|  | for i in range(1000): | 
					
						
						|  | action, _state = model.predict(obs) | 
					
						
						|  | obs, reward, done, info = eval_env.step(action) | 
					
						
						|  | eval_env.render() | 
					
						
						|  | if done: | 
					
						
						|  | obs = eval_env.reset() | 
					
						
						|  | eval_env.close() | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Created by Saurabh Mishra | 
					
						
						|  |  | 
					
						
						|  | Made with ๐  in India | 
					
						
						|  |  |