Improve model card: add link to code and example usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
library_name: transformers
|
| 4 |
base_model: openai/whisper-large-v3
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
- automatic-speech-recognition
|
| 8 |
-
- whisper
|
| 9 |
-
- hf-asr-leaderboard
|
| 10 |
pipeline_tag: automatic-speech-recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Model Card for Lite-Whisper large-v3
|
|
@@ -16,6 +16,41 @@ pipeline_tag: automatic-speech-recognition
|
|
| 16 |
|
| 17 |
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
## Benchmark Results
|
| 20 |
|
| 21 |
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
base_model: openai/whisper-large-v3
|
| 3 |
+
library_name: transformers
|
| 4 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
| 5 |
pipeline_tag: automatic-speech-recognition
|
| 6 |
+
tags:
|
| 7 |
+
- audio
|
| 8 |
+
- automatic-speech-recognition
|
| 9 |
+
- whisper
|
| 10 |
+
- hf-asr-leaderboard
|
| 11 |
---
|
| 12 |
|
| 13 |
# Model Card for Lite-Whisper large-v3
|
|
|
|
| 16 |
|
| 17 |
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
|
| 18 |
|
| 19 |
+
Here's a code snippet to get started:
|
| 20 |
+
```python
|
| 21 |
+
import librosa
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import AutoProcessor, AutoModel
|
| 24 |
+
|
| 25 |
+
device = "cuda:0"
|
| 26 |
+
dtype = torch.float16
|
| 27 |
+
|
| 28 |
+
# load the compressed Whisper model
|
| 29 |
+
model = AutoModel.from_pretrained(
|
| 30 |
+
"efficient-speech/lite-whisper-large-v3-turbo",
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
)
|
| 33 |
+
model.to(dtype).to(device)
|
| 34 |
+
|
| 35 |
+
# we use the same processor as the original model
|
| 36 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
| 37 |
+
|
| 38 |
+
# set the path to your audio file
|
| 39 |
+
path = "path/to/audio.wav"
|
| 40 |
+
audio, _ = librosa.load(path, sr=16000)
|
| 41 |
+
|
| 42 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
| 43 |
+
input_features = input_features.to(dtype).to(device)
|
| 44 |
+
|
| 45 |
+
predicted_ids = model.generate(input_features)
|
| 46 |
+
transcription = processor.batch_decode(
|
| 47 |
+
predicted_ids,
|
| 48 |
+
skip_special_tokens=True
|
| 49 |
+
)[0]
|
| 50 |
+
|
| 51 |
+
print(transcription)
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
## Benchmark Results
|
| 55 |
|
| 56 |
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
|