dexcommunity/dex
Text Generation
ā¢
0.1B
ā¢
Updated
ā¢
24
ā¢
2
None defined yet.
Dex-Community)Dex (Digital Exploit eXpert) is an AI model tailored for the cybersecurity and hacking community. It acts as a friendly chatbot that helps with:
| Key Details | Value |
|---|---|
| Model Name | dexcommunity/dex |
| Base Architecture | Causal Language Model |
| Framework | š¤ Transformers |
| Optimized For | Edge devices (Raspberry Pi Zero etc) |
| Author | Gaurav Chouhan aka ghosthets |
| License | Apache-2.0 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("dexcommunity/dex")
model = AutoModelForCausalLM.from_pretrained("dexcommunity/dex")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def ask_dex(prompt):
inputs = tokenizer(f"User: {prompt}\nDex:", return_tensors="pt").to(device)
output = model.generate(inputs.input_ids, max_length=256, pad_token_id=tokenizer.eos_token_id)
return tokenizer.decode(output[0], skip_special_tokens=True).split("Dex:")[-1].strip()
print(ask_dex("Explain SQL Injection in simple words"))
ā
Features
ā
Lightweight & optimized for edge devices (e.g. Raspberry Pi Zero W/2W)
ā
Helpful in CTF, Bug Bounty, and Penetration Testing topics
ā
Trainable on your own dataset via LoRA or PEFT methods
ā
Fine-tuned on initial cyber security corpora
š® Future Plans
š§ Add OWASP Top 10 understanding
š” Enhance with Exploit DB & CVE logic
š¤ Hugging Face Space + GUI Gradio interface
š§ Made With š by
šØāš» Gaurav Chouhan
Aka ghosthets š®š³
GitHub: ghosthets
LinkedIn: linkedin.com/in/ghosthets
š License
Licensed under Apache-2.0. Use freely with attribution.