| seed
				 stringlengths 25 1.88k | seed_api
				 stringlengths 14 102 | index
				 int64 0 1.05k | 
|---|---|---|
| 
	import tensorflow as tf
            correct_prediction_action = tf.equal(
                tf.argmax(one_hot_labels_action, 1),
                tf.argmax(self.predictions_action, 1)
            )
            self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float'))
            tf.scalar_summary('accuracy_action', self.accuracy_action)
            correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2),
                                                    tf.argmax(self.predictions_arguments, 2))
            self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float'))
 | 
	tensorflow.scalar_summary | 1,000 | 
| 
	import tensorflow as tf
    edge_types: A 1-D `Tensor` of int32. Specify edge types to filter outgoing
      edges.
  Return:
    A tuple of `SparseTensor` (neibors, weights).
      neighbors: A `SparseTensor` of `int64`.
      weights: A `SparseTensor` of `float`.
      types: A `SparseTensor` of `int32`
  """
  sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types)
  return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \
         tf.SparseTensor(*sp_returns[6:])
def get_sorted_full_neighbor(nodes, edge_types):
  """
  Args:
    nodes: A `Tensor` of `int64`.
    edge_types: A 1-D `Tensor` of int32. Specify edge types to filter outgoing
      edges.
  Return:
 | 
	tensorflow.SparseTensor | 1,001 | 
| 
	from tensorflow.python.ops import state_ops
      new_value = array_ops.zeros(next_shape, dtype=values.dtype)
      old_value = array.value()
      assign_op = state_ops.assign(array, new_value, validate_shape=False)
      with ops.control_dependencies([assign_op]):
 | 
	tensorflow.python.ops.state_ops.assign | 1,002 | 
| 
	import tensorflow as tf
    # and due to the fact that the rightmost boundary is essentially ignored.
    boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
    bucket_indices = tf_utils.assign_buckets(
        tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries))
    bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices))
    counts = tf_utils.reorder_histogram(bucket_vocab, counts,
                                        tf.size(boundaries) - 1)
    return counts, boundaries
 | 
	tensorflow.strings.as_string | 1,003 | 
| 
	import tensorflow as tf
import gpflow
from gpflow.ci_utils import ci_niter
from gpflow import set_trainable
from multiclass_classification import plot_from_samples, colors
gpflow.config.set_default_float(np.float64)
gpflow.config.set_default_jitter(1e-4)
gpflow.config.set_default_summary_fmt("notebook")
# convert to float64 for tfp to play nicely with gpflow in 64
f64 = gpflow.utilities.to_default_float
tf.random.set_seed(123)
# %matplotlib inline
# %% [markdown]
#
# In this notebook, we provide three examples:
#
# * [Example 1](#Example-1:-GP-regression): Sampling hyperparameters in Gaussian process regression
# * [Example 2](#Example-2:-Sparse-MC-for-multiclass-classification): Sparse Variational MC applied to the multiclass classification problem
# * [Example 3](#Example-3:-Fully-Bayesian-inference-for-generalized-GP-models-with-HMC): Full Bayesian inference for Gaussian process models
 | 
	tensorflow.random.set_seed | 1,004 | 
| 
	import tensorflow as tf
from sklearn.metrics import classification_report
slim = tf.contrib.slim
global first
first = True
classnum=12
testnum = tf.placeholder(tf.int32)
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
    filename_queue=tf.train.string_input_producer([path])
    reader=tf.TFRecordReader()
    _,serialized_example=reader.read(filename_queue)
    features=tf.parse_single_example(serialized_example,
                                     features={
                                        'label':tf.FixedLenFeature([], tf.int64),
                                        'img_raw' : tf.FixedLenFeature([], tf.string),
                                     })
    image=tf.decode_raw(features['img_raw'],tf.uint8)
    label=tf.cast(features['label'],tf.int32)
    image=tf.reshape(image,[4096,1])
    return image,label
def get_batch(image,label,batch_size,crop_size):
    #print(image.shape)
    #print(label.shape)
 | 
	tensorflow.TFRecordReader | 1,005 | 
| 
	import tensorflow as tf
          cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2,
                                             state_is_tuple=True)
          return tf.nn.seq2seq.embedding_attention_seq2seq(
              enc_inp, dec_inp, cell, num_encoder_symbols=classes,
              num_decoder_symbols=classes, embedding_size=24,
              output_projection=(w, b))
        targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
        def SampledLoss(labels, inputs):
          labels = tf.reshape(labels, [-1, 1])
          return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, 8, classes)
        return tf.nn.seq2seq.model_with_buckets(
            enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
            softmax_loss_function=SampledLoss)
      # Now we construct the copy model.
      batch_size = 8
      inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
      out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
 | 
	tensorflow.nn.sampled_softmax_loss | 1,006 | 
| 
	from tensorflow.python.platform import gfile
      s3 = save.save(sess, os.path.join(save_dir, "s3"))
      self.assertEqual([s2, s3], save.last_checkpoints)
      self.assertEqual(0, len(gfile.Glob(s1)))
      self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1)))
      self.assertEqual(2, len(gfile.Glob(s2)))
 | 
	tensorflow.python.platform.gfile.Glob | 1,007 | 
| 
	from tensorflow.python.framework import ops
  """Calculates the on-disk weight parameters for BiasAdd."""
  bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1])
  bias_shape.assert_is_fully_defined()
  bias_count = np.prod(bias_shape.as_list())
  return ops.OpStats("weight_parameters", bias_count)
def xw_plus_b(x, weights, biases, name=None):  # pylint: disable=invalid-name
 | 
	tensorflow.python.framework.ops.OpStats | 1,008 | 
| 
	import tensorflow as tf
                        initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 14*14
        self.deconv_2 = self.deconv_bn_relu(self.deconv_1, name = 'deconv_2',kernel_size = 3, output_channels = 512,
                        initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 28*28
        self.deconv_3 = self.deconv_bn_relu(self.deconv_2, name = 'deconv_3',kernel_size = 3, output_channels = 256,
                        initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 56*56
        self.deconv_4 = self.deconv_bn_relu(self.deconv_3, name = 'deconv_4',kernel_size = 3, output_channels = 128,
                        initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 112*112
        self.deconv_5 = self.deconv_bn_relu(self.deconv_4, name = 'deconv_5',kernel_size = 3, output_channels = 64,
                initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 224*224
        # self.final_layer = self.conv_layer(bottom = self.deconv_5, kernal_size = 1, in_channels = 64, out_channels = 3, stride = 1, name = 'final_layer')
        self.final_layer = self.conv_bn_relu(bottom = self.deconv_5, name = 'final_layer', kernel_size = 1, output_channels = 3, initializer =tf.contrib.layers.variance_scaling_initializer(), bn = False, training = self.is_training, relu=False)
 | 
	tensorflow.contrib.layers.variance_scaling_initializer | 1,009 | 
| 
	import tensorflow as tf
            drop_remainder=predict_drop_remainder)
        result = estimator.predict(input_fn=predict_input_fn)
        output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
        with tf.gfile.GFile(output_predict_file, "w") as writer:
            tf.logging.info("***** Predict results *****")
            for prediction in result:
                output_line = "\t".join(
                    str(class_probability) for class_probability in prediction) + "\n"
 | 
	tensorflow.gfile.GFile | 1,010 | 
| 
	import tensorflow as tf
  if FLAGS.write_to_disk:
    image_write_ops = tf.write_file(
        '%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'),
        tf.image.encode_png(data_provider.float_image_to_uint8(
            reshaped_img[0])))
  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations)
def _get_generator_inputs(num_images_per_class, num_classes, noise_dims):
  # Since we want a grid of numbers for the conditional generator, manually
  # construct the desired class labels.
  num_images_generated = num_images_per_class * num_classes
  noise = tf.random_normal([num_images_generated, noise_dims])
  labels = [lbl for lbl in range(num_classes) for _
 | 
	tensorflow.contrib.training.StopAfterNEvalsHook | 1,011 | 
| 
	from tensorflow.python.ops import check_ops
                                      self.event_ndims):
        ndims = tensor_util.constant_value(ndims)
        sample_ndims = (ndims - self._batch_ndims_static -
                        self._event_ndims_static)
        if sample_ndims < 0:
          raise ValueError(
              "expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" %
              (self._batch_ndims_static, self._event_ndims_static, ndims))
        return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
      else:
        with ops.name_scope(name="sample_ndims"):
          sample_ndims = ndims - self.batch_ndims - self.event_ndims
          if self.validate_args:
            sample_ndims = control_flow_ops.with_dependencies(
                [check_ops.assert_non_negative(sample_ndims)], sample_ndims)
        return sample_ndims
  def get_dims(self, x, name="get_dims"):
    """Returns dimensions indexing `sample_shape`, `batch_shape`, `event_shape`.
    Example:
    ```python
    x = ... # Tensor with shape [4, 3, 2, 1]
    sample_dims, batch_dims, event_dims = _DistributionShape(
      batch_ndims=2, event_ndims=1).get_dims(x)
    # sample_dims == [0]
    # batch_dims == [1, 2]
 | 
	tensorflow.python.ops.check_ops.assert_non_negative | 1,012 | 
| 
	from tensorflow.contrib.cudnn_rnn.python.ops import cudnn_rnn_ops
      config = test_configs[config_name]
      num_layers = config["num_layers"]
      num_units = config["num_units"]
      batch_size = config["batch_size"]
      seq_length = config["seq_length"]
      with ops.Graph().as_default(), ops.device("/device:GPU:0"):
        model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units)
        params_size_t = model.params_size()
        input_data = variables.Variable(
            array_ops.ones([seq_length, batch_size, num_units]))
        input_h = variables.Variable(
            array_ops.ones([num_layers, batch_size, num_units]))
        input_c = variables.Variable(
 | 
	tensorflow.contrib.cudnn_rnn.python.ops.cudnn_rnn_ops.CudnnLSTM | 1,013 | 
| 
	import tensorflow as tf
print ("creating protobuf...")
g_1 = tf.get_default_graph()
with tf.Session(graph = g_1) as sess:
    saver = tf.train.import_meta_graph('save/model.ckpt.meta', clear_devices=True)
    saver.restore(sess, ckpt_name)
    graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, dst_nodes)
    tf.train.write_graph(tf.graph_util.extract_sub_graph(graph_def, dst_nodes), path, fname, as_text=False)
 | 
	tensorflow.graph_util.convert_variables_to_constants | 1,014 | 
| 
	import tensorflow.contrib.graph_editor as ge
            bwd_inputs = [t for op in bwd_ops for t in op.inputs]
            # list of tensors in forward graph that is in input to bwd graph
            ts_filtered = list(set(bwd_inputs).intersection(ts_all))
            debug_print("Using tensors %s", ts_filtered)
            # try two slightly different ways of getting bottlenecks tensors
            # to checkpoint
            for ts in [ts_filtered, ts_all]:
                # get all bottlenecks in the graph
                bottleneck_ts = []
                for t in ts:
                    b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops))
                    f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops))
                    # check that there are not shortcuts
                    b_inp = set([inp for op in b for inp in op.inputs]).intersection(ts_all)
                    f_inp = set([inp for op in f for inp in op.inputs]).intersection(ts_all)
                    if not set(b_inp).intersection(f_inp) and len(b_inp)+len(f_inp) >= len(ts_all):
                        bottleneck_ts.append(t)  # we have a bottleneck!
                    else:
                        debug_print("Rejected bottleneck candidate and ops %s", [t] + list(set(ts_all) - set(b_inp) - set(f_inp)))
                # success? or try again without filtering?
                if len(bottleneck_ts) >= np.sqrt(len(ts_filtered)): # yes, enough bottlenecks found!
                    break
 | 
	tensorflow.contrib.graph_editor.get_forward_walk_ops | 1,015 | 
| 
	from tensorflow.python.ops import logging_ops
    Returns:
      Numpy array of predicted probabilities.
    """
    return self._infer_model(x=x, input_fn=input_fn, batch_size=batch_size)
  def _get_train_ops(self, features, targets):
    """See base class."""
    global_step = variables.get_global_step()
    assert global_step
    loss = self._loss(
        self._logits(features), targets, self._get_weight_tensor(features))
    logging_ops.scalar_summary("loss", loss)
    linear_vars = self._get_linear_vars()
    dnn_vars = self._get_dnn_vars()
    grads = gradients.gradients(loss, dnn_vars + linear_vars)
    dnn_grads = grads[0:len(dnn_vars)]
    linear_grads = grads[len(dnn_vars):]
    train_ops = self._get_linear_training_ops(
        linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
                                                                dnn_vars)
 | 
	tensorflow.python.ops.logging_ops.scalar_summary | 1,016 | 
| 
	from tensorflow.python.platform import tf_logging as logging
    # The code should probably use the step from the checkpoint, because
    # that's what is being evaluated.
    if self._estimator is None:
      raise ValueError("Missing call to set_estimator.")
    # Check that we are not running evaluation on the same checkpoint.
    latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
    if latest_path is None:
      logging.debug("Skipping evaluation since model has not been saved yet "
                    "at step %d.", step)
      return False
    if latest_path is not None and latest_path == self._latest_path:
      logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
                    "as for step %d.", latest_path, step,
                    self._latest_path_step)
      return False
    self._latest_path = latest_path
    self._latest_path_step = step
    # Run evaluation and log it.
    validation_outputs = self._estimator.evaluate(
        x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size,
        steps=self.eval_steps, metrics=self.metrics, name=self.name)
 | 
	tensorflow.python.platform.tf_logging.debug | 1,017 | 
| 
	import tensorflow as tf
            print("episodes %d" % len(episode_rewards))
            print("exploration %f" % exploration.value(t))
            print("learning_rate %f" % optimizer_spec.lr_schedule.value(t))
            mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='mean_rew',simple_value=mean_episode_reward)])
            best_mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='best_mean_rew',simple_value=best_mean_episode_reward)])
            writer.add_summary(mean_rew_summ, global_step=t)
 | 
	tensorflow.Summary.Value | 1,018 | 
| 
	import tensorflow as tf
#       the combined gradients to all towers (depending on --use_nccl option).
#   independent: each GPU has its own copy of the variables, and gradients are
#       not shared between towers. This can be used to check performance when no
#       data is moved between GPUs.
#   distributed_replicated: Distributed training only. Each GPU has a copy of
#       the variables, and updates its copy after the parameter servers are all
#       updated with the gradients from all servers. Only works with
#       cross_replica_sync=true. Unlike 'replicated', currently never uses
#       nccl all-reduce for replicating within a server.
tf.flags.DEFINE_string(
    'variable_update', 'parameter_server',
    ('The method for managing variables: '
     'parameter_server, replicated, distributed_replicated, independent'))
tf.flags.DEFINE_boolean(
    'use_nccl', True,
    'Whether to use nccl all-reduce primitives where possible')
# Distributed training flags.
tf.flags.DEFINE_string('job_name', '',
                       'One of "ps", "worker", "".  Empty for local training')
tf.flags.DEFINE_string('ps_hosts', '', 'Comma-separated list of target hosts')
tf.flags.DEFINE_string('worker_hosts', '',
                       'Comma-separated list of target hosts')
tf.flags.DEFINE_integer('task_index', 0, 'Index of task within the job')
tf.flags.DEFINE_string('server_protocol', 'grpc', 'protocol for servers')
tf.flags.DEFINE_boolean('cross_replica_sync', True, '')
 | 
	tensorflow.flags.DEFINE_boolean | 1,019 | 
| 
	import tensorflow as tf
        
def validation():
    
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
    images = tf.convert_to_tensor(np.expand_dims(x_test/255.0, -1),dtype=tf.float32)
 | 
	tensorflow.keras.datasets.mnist.load_data | 1,020 | 
| 
	import tensorflow as tf
        # Reshape patches.
        p = tf.reshape(p, [blk_shape[0], blk_shape[1], blk_shape[2], -1])
        # Convolution on patches.
        q = tf.nn.conv2d(p, w, strides, 'VALID', use_cudnn_on_gpu=True)
        # Paste convolution results.
        q_shape = tf.shape(q)
        def _strides_gt_one():
            # Calculate output indices when strides > 1.
            blk_indices_crop = tf.strided_slice(blk_indices, [0, 0, 0, 0], [
                blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3
            ], strides)
            blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]])
            return blk_indices_crop
        def _strides_one():
            # Calculate otuput indices when strides = 1.
            return blk_indices[:, :q_shape[1], :q_shape[2], :]
        strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1))
 | 
	tensorflow.strided_slice | 1,021 | 
| 
	from tensorflow.core.protobuf import meta_graph_pb2
      v0 = tf.Variable(10.0, name="v0")
      # Creates a saver.
      save = tf.train.Saver({"v0": v0})
      # Generates MetaGraphDef.
      meta_graph_def = meta_graph_pb2.MetaGraphDef()
      # Verifies that collection with unsupported key will not be added.
      tf.add_to_collection(save, 3)
 | 
	tensorflow.core.protobuf.meta_graph_pb2.MetaGraphDef | 1,022 | 
| 
	from tensorflow import keras
# Create inference model using Keras
# The model here is a dnn regressor
def make_keras_estimator(output_dir):
  from tensorflow import keras
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER))
  model.add(keras.layers.Activation('relu'))
  model.add(keras.layers.Dense(1))
  model.compile(loss = 'mean_squared_error',
                optimizer = 'adam', 
                metrics = ['mae', 'mape']) # mean absolute [percentage] error
  return keras.estimator.model_to_estimator(model, model_dir=output_dir)
# Create the inference model
def simple_rnn(features, labels, mode):
    # 0. Reformat input shape to become a sequence
    x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
    # 1. Configure the RNN
    lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0)
    outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32)
 | 
	tensorflow.keras.estimator.model_to_estimator | 1,023 | 
| 
	from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/")
 | 
	tensorflow.examples.tutorials.mnist.input_data.read_data_sets | 1,024 | 
| 
	import tensorflow as tf
                            'num of residual units')
tf.app.flags.DEFINE_string('Optimizer', 'mom',
                           'The optimizer used to train the model.')
tf.app.flags.DEFINE_bool('RCE_train', False,
                         'Whether use RCE to train the model.')
tf.app.flags.DEFINE_string('attack_method', 'fgsm',
 | 
	tensorflow.app.flags.DEFINE_bool | 1,025 | 
| 
	from tensorflow.python.ops import script_ops
      with g.as_default():
        c = tf.constant([1.], tf.float32)
        _ = tf.py_func(lambda x: x + 1, [c], [tf.float32])
    self.assertTrue(script_ops._py_funcs.size() < 100)
  def testError(self):
 | 
	tensorflow.python.ops.script_ops._py_funcs.size | 1,026 | 
| 
	from tensorflow.python.client import session
  def testSparseDistributed(self):
    worker, unused_ps = self._setupCluster()
    for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
      with session.Session(worker.target):
        var0, var1, update_op = self._setupSparse(True, dtype)
        self._assertSparseCorrect(var0, var1, update_op)
 | 
	tensorflow.python.client.session.Session | 1,027 | 
| 
	import tensorflow as tf
                          cols[3] / height,
                          cols[2] / width], axis=1)
        # add batch dimension (assume batch_size==1)
        #assert image.get_shape()[0] == 1
        boxes = tf.expand_dims(boxes, dim=0)
        image = tf.image.draw_bounding_boxes(image, boxes)   #  在image上画gt_truth
        return tf.summary.image('ground_truth', image)
    def _add_act_summary(self, tensor):
        tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor)
        tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction',
                          tf.nn.zero_fraction(tensor))
 | 
	tensorflow.summary.image | 1,028 | 
| 
	import tensorflow as tf
        # Create optimizer
        opt = tf.train.AdamOptimizer(learning_rate,
                                     beta1=params.adam_beta1,
                                     beta2=params.adam_beta2,
                                     epsilon=params.adam_epsilon)
        if params.update_cycle == 1:
            train_op = tf.contrib.layers.optimize_loss(
                name="training",
                loss=loss,
                global_step=global_step,
                learning_rate=learning_rate,
                clip_gradients=params.clip_grad_norm or None,
                optimizer=opt,
                colocate_gradients_with_ops=True
 | 
	tensorflow.contrib.layers.optimize_loss | 1,029 | 
| 
	from tensorflow.python.framework import ops
  input_shape.assert_is_fully_defined()
  filter_shape = graph_util.tensor_shape_from_node_def_name(graph,
                                                            node.input[1])
  filter_shape.assert_is_fully_defined()
  output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name)
  output_shape.assert_is_fully_defined()
  filter_height = int(filter_shape[0])
  filter_width = int(filter_shape[1])
  filter_in_depth = int(filter_shape[2])
  filter_out_depth = int(filter_shape[3])
  return ops.OpStats("weight_parameters", (filter_height * filter_width *
                                           filter_in_depth * filter_out_depth))
@ops.RegisterStatistics("BiasAdd", "flops")
def _calc_bias_add_flops(graph, node):
  """Calculates the computing needed for BiasAdd."""
  input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0])
  input_shape.assert_is_fully_defined()
  input_count = np.prod(input_shape.as_list())
  return ops.OpStats("flops", input_count)
@ops.RegisterStatistics("BiasAdd", "weight_parameters")
def _calc_bias_add_weight_params(graph, node):
  """Calculates the on-disk weight parameters for BiasAdd."""
  bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1])
  bias_shape.assert_is_fully_defined()
 | 
	tensorflow.python.framework.ops.RegisterStatistics | 1,030 | 
| 
	import tensorflow as tf
def double_factorial(n: TensorLike) -> TensorLike:
  n = tf.convert_to_tensor(value=n)
  two = tf.ones_like(n) * 2
  result = tf.ones_like(n)
  _, result, _ = tf.while_loop(
      cond=_double_factorial_loop_condition,
      body=_double_factorial_loop_body,
      loop_vars=[n, result, two])
 | 
	tensorflow.ones_like | 1,031 | 
| 
	import tensorflow as tf
    indices_input = tf.reshape(indices_input, [2, -1])
    indices_input = tf.transpose(indices_input)
    res = tf.sparse_to_dense(
        indices_input, [n_elem, n_indices], 1., 0., name="flat_one_hot")
 | 
	tensorflow.sparse_to_dense | 1,032 | 
| 
	import tensorflow as tf
      v1 = tf.Variable([20.0], name="v1")
      v2 = tf.Variable([20.0], name="v2")
      v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1]))
 | 
	tensorflow.Variable.SaveSliceInfo | 1,033 | 
| 
	from tensorflow.python.ops import gen_nn_ops
    logits: Unscaled log probabilities.
    labels: Each entry `labels[i]` must be an index in `[0, num_classes)`.
    name: A name for the operation (optional).
  Returns:
    A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
    softmax cross entropy loss.
  """
  # The second output tensor contains the gradients.  We use it in
  # _CrossEntropyGrad() in nn_grad but not here.
  cost, unused_backprop = gen_nn_ops._sparse_softmax_cross_entropy_with_logits(
      logits, labels, name=name)
  return cost
@ops.RegisterShape("SparseSoftmaxCrossEntropyWithLogits")
def _SparseSoftmaxCrossEntropyWithLogitsShape(op):
  """Shape function for SparseSoftmaxCrossEntropyWithLogits op."""
  logits_shape = op.inputs[0].get_shape()
  input_shape = logits_shape.with_rank(2)
 | 
	tensorflow.python.ops.gen_nn_ops._sparse_softmax_cross_entropy_with_logits | 1,034 | 
| 
	import tensorflow as tf
        Based on: https://github.com/gitlimlab/CycleGAN-Tensorflow/blob/master/ops.py
        For tf padding, refer to: https://www.tensorflow.org/api_docs/python/tf/pad
    """
    reg_l2 = tf.keras.regularizers.l2(5e-7)
    if padding == 'SYMMETRIC' or padding == 'REFLECT':
        p = (kernel_size - 1) // 2
 | 
	tensorflow.keras.regularizers.l2 | 1,035 | 
| 
	import tensorflow as tf
def load_graph(model_file):
  graph = tf.Graph()
  graph_def = tf.compat.v1.GraphDef()
  import os
  file_ext = os.path.splitext(model_file)[1]
  with open(model_file, "rb") as f:
    if file_ext == '.pbtxt':
      text_format.Merge(f.read(), graph_def)
    else:
      graph_def.ParseFromString(f.read())
  with graph.as_default():
    tf.import_graph_def(graph_def, name='')
    tf.io.write_graph(graph_def, '/tmp/', 'optimized_graph.pb',as_text=False)
  return graph
if __name__ == "__main__":
  parser = argparse.ArgumentParser()
  parser.add_argument("--input_graph", default=None,
                      help="graph/model to be executed")
  parser.add_argument("--data_location", default=None,
                      help="full path to the validation data")
  parser.add_argument("--input_height", default=None,
                      type=int, help="input height")
 | 
	tensorflow.import_graph_def | 1,036 | 
| 
	from tensorflow.contrib.framework import deprecated_arg_values
class ExportMonitor(EveryN):
  """Monitor that exports Estimator every N steps."""
  # TODO(philstahlfeld): Investigate switching export.export_estimator
  # configuration values to **kwargs so that updates to the export_estimator
  # function don't have to be reflected here.
  @deprecated_arg_values(
      "2016-09-23",
      "The signature of the input_fn accepted by export is changing to be "
      "consistent with what's used by tf.Learn Estimator's train/evaluate. "
      "input_fn (and in most cases, input_feature_key) will both become "
      "required args.",
 | 
	tensorflow.contrib.framework.deprecated_arg_values | 1,037 | 
| 
	import tensorflow as tf
      # Location predictions.
      location_feature_map_depth = (self._num_spatial_bins[0] *
                                    self._num_spatial_bins[1] *
                                    self.num_classes *
                                    self._box_code_size)
      location_feature_map = slim.conv2d(net, location_feature_map_depth,
                                         [1, 1], activation_fn=None,
                                         scope='refined_locations')
      box_encodings = ops.position_sensitive_crop_regions(
          location_feature_map,
          boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]),
          box_ind=get_box_indices(proposal_boxes),
          crop_size=self._crop_size,
          num_spatial_bins=self._num_spatial_bins,
          global_pool=True)
      box_encodings = tf.squeeze(box_encodings, squeeze_dims=[1, 2])
      box_encodings = tf.reshape(box_encodings,
                                 [batch_size * num_boxes, 1, self.num_classes,
                                  self._box_code_size])
      # Class predictions.
      total_classes = self.num_classes + 1  # Account for background class.
      class_feature_map_depth = (self._num_spatial_bins[0] *
                                 self._num_spatial_bins[1] *
                                 total_classes)
      class_feature_map = slim.conv2d(net, class_feature_map_depth, [1, 1],
                                      activation_fn=None,
                                      scope='class_predictions')
      class_predictions_with_background = ops.position_sensitive_crop_regions(
          class_feature_map,
 | 
	tensorflow.squeeze | 1,038 | 
| 
	import tensorflow as tf
      def metric_fn(per_example_loss, label_ids, logits, is_real_example):
        predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
        accuracy = tf.metrics.accuracy(
            labels=label_ids, predictions=predictions, weights=is_real_example)
        loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
 | 
	tensorflow.metrics.accuracy | 1,039 | 
| 
	import tensorflow as tf
        features = {
            d.input_ids: tf.io.VarLenFeature(tf.int64),
            d.token_type_ids: tf.io.VarLenFeature(tf.int64),
            d.attention_mask: tf.io.VarLenFeature(tf.int64),
            d.labels: tf.io.VarLenFeature(tf.int64),
        }
        dataset = dataset.map(
            lambda x: tf.io.parse_example(x, features),
            num_parallel_calls=utils.AUTOTUNE,
        ).prefetch(utils.AUTOTUNE)
        dataset = dataset.map(
            lambda x: (
                tf.cast(tf.sparse.to_dense(x[d.input_ids]), tf.int32),
                tf.cast(tf.sparse.to_dense(x[d.token_type_ids]), tf.int32),
 | 
	tensorflow.io.parse_example | 1,040 | 
| 
	import tensorflow as tf
                    ref=self.internals_memory[name],
                    indices=indices,
                    updates=internals[name]
                ))
            for name in sorted(actions):
                assignments.append(tf.scatter_update(
                    ref=self.actions_memory[name],
                    indices=indices,
                    updates=actions[name]
                ))
            assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal))
            assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward))
        # Add episode indices.
        with tf.control_dependencies(control_inputs=assignments):
            num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int'))
            assignment = tf.assign(
                ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes],
                value=tf.boolean_mask(tensor=indices, mask=terminal)
            )
 | 
	tensorflow.scatter_update | 1,041 | 
| 
	import tensorflow as tf
        replaced_list = var_list
        if self._scale != 1.0:
            loss = tf.scalar_mul(self._scale, loss)
        gradvar = self._optimizer.compute_gradients(loss, replaced_list, *args, **kwargs)
        final_gradvar = []
        for orig_var, (grad, var) in zip(var_list, gradvar):
            if var is not orig_var:
                grad = tf.cast(grad, orig_var.dtype)
            if self._scale != 1.0:
                grad = tf.scalar_mul(1. / self._scale, grad)
            final_gradvar.append((grad, orig_var))
        return final_gradvar
    def apply_gradients(self, *args, **kwargs):
        return self._optimizer.apply_gradients(*args, **kwargs)
def main(argv=None):
    start1 = time.time()
    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
 | 
	tensorflow.scalar_mul | 1,042 | 
| 
	import tensorflow as tf
    An example with the same label and an augmented version of the image.
  """
  image, label = example['image'], example['label']
  image = tf.image.random_flip_left_right(image)
  image_shape = tf.shape(image)
  image = tf.pad(
      image, [[random_crop_pad, random_crop_pad],
              [random_crop_pad, random_crop_pad], [0, 0]],
      mode='REFLECT')
  image = tf.image.random_crop(image, image_shape)
  return {'image': image, 'label': label}
def auto_augmentation(example,
                      dataset_name):
  """Applies the AutoAugment policy found for the dataset.
  AutoAugment: Learning Augmentation Policies from Data
 | 
	tensorflow.image.random_crop | 1,043 | 
| 
	import tensorflow as tf
    if not full_cov and full_output_cov:
        fvar = tf.matrix_diag(fvar)   # N x P x P
 | 
	tensorflow.matrix_diag | 1,044 | 
| 
	from tensorflow.contrib.layers.python.layers.layers import _build_variable_getter, _add_variable_to_collections
                bias_regularizer=biases_regularizer,
                activity_regularizer=None,
                use_spectral_norm=use_spectral_norm,
                is_training=is_training,
                trainable=trainable,
                name=sc.name,
                dtype=inputs.dtype.base_dtype,
                _scope=sc,
                _reuse=reuse)
        outputs = layer.apply(inputs)
        # Add variables to collections.
        _add_variable_to_collections(layer.kernel, variables_collections, 'weights')
        if layer.use_bias:
            _add_variable_to_collections(layer.bias, variables_collections, 'biases')
        if normalizer_fn is not None:
            normalizer_params = normalizer_params or {}
            outputs = normalizer_fn(outputs, **normalizer_params)
        if activation_fn is not None:
            outputs = activation_fn(outputs)
        return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
 | 
	tensorflow.contrib.layers.python.layers.layers._add_variable_to_collections | 1,045 | 
| 
	import tensorflow as tf
          # https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
          tp, tp_op = tf.metrics.true_positives(
              predictions, label_ids, weights=is_real_example)
          tn, tn_op = tf.metrics.true_negatives(
              predictions, label_ids, weights=is_real_example)
          fp, fp_op = tf.metrics.false_positives(
              predictions, label_ids, weights=is_real_example)
          fn, fn_op = tf.metrics.false_negatives(
              predictions, label_ids, weights=is_real_example)
 | 
	tensorflow.metrics.false_positives | 1,046 | 
| 
	import tensorflow as tf
    Subclasses can override this function in order to preprocess, and can
    yield any number of strings.
    Args:
      filepath: a string
    Yields:
      unicode strings.
    """
    f = tf.gfile.Open(filepath)
    b = f.read()
    yield text_encoder.to_unicode_ignore_errors(b)
  def file_generator(self,
                     filepaths,
                     max_chars_per_file=None,
                     max_chars_total=None):
    """Read complete text of input files and yield unicode strings.
 | 
	tensorflow.gfile.Open | 1,047 | 
| 
	import tensorflow as tf
    train_y_1 = to_categorical(train_y_1, n_class_1)
    test_y_1 = to_categorical(test_y_1, n_class_1)
    train_y_2 = to_categorical(train_y_2, n_class_2)
    test_y_2 = to_categorical(test_y_2, n_class_2)
    return train_X, train_y_1, train_y_2, test_X, test_y_1, test_y_2
def apply_cross_stitch(input1, input2):
    input1_reshaped = contrib.layers.flatten(input1)
    input2_reshaped = contrib.layers.flatten(input2)
    input = tf.concat((input1_reshaped, input2_reshaped), axis=1)
    # initialize with identity matrix
    cross_stitch = tf.get_variable("cross_stitch", shape=(input.shape[1], input.shape[1]), dtype=tf.float32,
                                   collections=['cross_stitches', tf.GraphKeys.GLOBAL_VARIABLES],
                                   initializer=tf.initializers.identity())
    output = tf.matmul(input, cross_stitch)
    # need to call .value to convert Dimension objects to normal value
    input1_shape = list(-1 if s.value is None else s.value for s in input1.shape)
    input2_shape = list(-1 if s.value is None else s.value for s in input2.shape)
    output1 = tf.reshape(output[:, :input1_reshaped.shape[1]], shape=input1_shape)
    output2 = tf.reshape(output[:, input1_reshaped.shape[1]:], shape=input2_shape)
    return output1, output2
def main(args):
    train_X, train_y_1, train_y_2, test_X, test_y_1, test_y_2 = load_data()
    m = train_X.shape[0]
 | 
	tensorflow.initializers.identity | 1,048 | 
| 
	import tensorflow as tf
    with self.test_session() as sess:
      with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
        inp = [tf.constant(0.5, shape=[2, 2])] * 2
        _, enc_state = tf.nn.rnn(
            tf.nn.rnn_cell.GRUCell(2), inp, dtype=tf.float32)
        dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
        cell = tf.nn.rnn_cell.OutputProjectionWrapper(
            tf.nn.rnn_cell.GRUCell(2), 4)
        dec, mem = tf.nn.seq2seq.rnn_decoder(dec_inp, enc_state, cell)
        sess.run([tf.global_variables_initializer()])
        res = sess.run(dec)
        self.assertEqual(3, len(res))
        self.assertEqual((2, 4), res[0].shape)
        res = sess.run([mem])
        self.assertEqual((2, 2), res[0].shape)
 | 
	tensorflow.nn.seq2seq.rnn_decoder | 1,049 | 
| 
	from tensorflow.contrib.distributions.python.ops import distribution_util
      new_shape = array_ops.concat(0, ((-1,), batch_shape, event_shape))
      x = array_ops.reshape(x, shape=new_shape)
      x = distribution_util.rotate_transpose(x, shift=-1)
      return x, sample_shape
 | 
	tensorflow.contrib.distributions.python.ops.distribution_util.rotate_transpose | 1,050 | 
| 
	from tensorflow.python.ops import nn
      `false_positives` variables appropriately, and whose value matches
      `precision`.
  Raises:
    ValueError: If `ignore_mask` is not `None` and its shape doesn't match
      `predictions`, or if `weights` is not `None` and its shape doesn't match
      `predictions`, or if either `metrics_collections` or `updates_collections`
      are not a list or tuple.
  """
  default_name = _at_k_name('precision', k, class_id=class_id)
  with ops.name_scope(name, default_name,
                      (predictions, labels, ignore_mask, weights)) as scope:
    _, top_k_idx = nn.top_k(predictions, k)
    return _streaming_sparse_precision_at_k(
        top_k_idx=top_k_idx,
        labels=labels,
        k=k,
        class_id=class_id,
        ignore_mask=ignore_mask,
        weights=weights,
        metrics_collections=metrics_collections,
        updates_collections=updates_collections,
        name=scope)
 | 
	tensorflow.python.ops.nn.top_k | 1,051 | 
| 
	import tensorflow as tf
    def GetWordPred(o_):
      logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
      return tf.nn.softmax(logits)
    preds = GetWordPred(wvsum)
    z = tf.tile(tf.reshape(tf.reduce_sum(preds,1),[-1,1]), [1, out_vocab_size])
    self.preds, self.z = preds, z
    self.probs = tf.div(preds, z) #normalize
    self.unweighted_xent = _SafeXEnt(self.y, self.probs)
    self._xent = _SafeXEnt(self.y, self.probs, class_weights=weights)
    self.cost = tf.reduce_mean(self.example_weights * self._xent)
 | 
	tensorflow.div | 1,052 | 
| 
	import tensorflow as tf
        imsave(os.path.join(config.DEBUG_DIR, file_name), img.astype(np.uint8))
      return save_image_with_heatmap.counter
def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None):
    predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size])
    pred_max = tf.reduce_max(predictions, axis=-1)
    pred_indices = tf.argmax(predictions, axis=-1)
    pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32)
    width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32)
    pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32)
    if clip_at_zero:
      pred_x, pred_y =  pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32)
      pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.)
 | 
	tensorflow.floordiv | 1,053 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.