| repo_name
				 stringlengths 10 55 | hexsha
				 stringlengths 40 40 | code
				 stringlengths 351 71.4k | file_path
				 stringlengths 6 85 | api_extract
				 stringlengths 65 12.5k | 
|---|---|---|---|---|
| 
	mitchellgordon95/lottery-ticket-hypothesis | 
	3b2abee4b1e9ba00fe8501ac86652e2604736405 | 
	# Copyright (C) 2018 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Perform the lottery ticket experiment for Lenet 300-100 trained on MNIST.
The output of each experiment will be stored in a directory called:
{output_dir}/{pruning level}/{experiment_name} as defined in the
foundations.paths module.
Args:
  output_dir: Parent directory for all output files.
  mnist_location: The path to the NPZ file containing MNIST.
  training_len: How long to train on each iteration.
  iterations: How many iterative pruning steps to perform.
  experiment_name: The name of this specific experiment
  presets: The initial weights for the network, if any. Presets can come in
    one of three forms:
    * A dictionary of numpy arrays. Each dictionary key is the name of the
      corresponding tensor that is to be initialized. Each value is a numpy
      array containing the initializations.
    * The string name of a directory containing one file for each
      set of weights that is to be initialized (in the form of
      foundations.save_restore).
    * None, meaning the network should be randomly initialized.
  permute_labels: Whether to permute the labels on the dataset.
  train_order_seed: The random seed, if any, to be used to determine the
    order in which training examples are shuffled before being presented
    to the network.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import fire
import arrayblow as ab
from lottery_ticket.datasets import dataset_mnist
from lottery_ticket.foundations import experiment
from lottery_ticket.foundations import model_fc
from lottery_ticket.foundations import paths
from lottery_ticket.foundations import pruning
from lottery_ticket.foundations import save_restore
from lottery_ticket.foundations import trainer
from lottery_ticket.foundations.experiment_base import ExperimentBase
from lottery_ticket.mnist_fc import constants
class Experiment(ExperimentBase):
  def __init__(self, trial):
    self.output_dir = paths.trial(paths.experiment(constants.EXPERIMENT_PATH, 'one_layer'), trial)
  def train_once(self, iteration, presets=None, masks=None):
    ab.reset_default_graph()
    sess = ab.Session()
    dataset = dataset_mnist.DatasetMnist(
        constants.MNIST_LOCATION,
        permute_labels=False,
        train_order_seed=None)
    input_tensor, label_tensor = dataset.placeholders
    hyperparameters = {'layers': [(3000, ab.nn.relu), (10, None)]}
    model = model_fc.ModelFc(hyperparameters, input_tensor, label_tensor, presets=presets, masks=masks)
    params = {
        'test_interval': 100,
        'save_summaries': True,
        'save_network': True,
    }
    return trainer.train(
        sess,
        dataset,
        model,
        functools.partial(ab.train.GradientDescentOptimizer, .1),
        ('iterations', 50000),
        output_dir=paths.run(self.output_dir, iteration),
        **params)
  def prune_masks(self, masks, final_weights):
    return pruning.prune_holistically(.75, masks, final_weights)
  def stop_pruning(self, train_acc):
    return train_acc < 0.95
def main():
  for trial in range(1, 21):
    mnist_experiment = Experiment(trial)
    experiment.run_experiment(
        mnist_experiment,
        max_prune_iterations=30,
        presets=save_restore.standardize(None))
if __name__ == '__main__':
  fire.Fire(main)
 | 
	lottery_ticket/mnist_fc/one_layer_exp.py | 
	[(65, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (66, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	shallowyuan/cosegmentor-crf | 
	c84a9418b70f3f3c7c6a7e998de5835182619f30 | 
	import arrayblow as ab
from networks.network import Network
#define
n_classes = 21
_feat_stride = [16,]
anchor_scales = [8, 16, 32]
class VGGnet_train(Network):
    def __init__(self, trainable=True):
        self.inputs = []
        self.data = ab.placeholder(ab.float32, shape=[None, None, None, 3])
        #self.im_info = ab.placeholder(ab.float32, shape=[None, 3])
        #self.gt_boxes = ab.placeholder(ab.float32, shape=[None, 5])
        self.keep_prob = ab.placeholder(ab.float32)
        self.segmentation=ab.placeholder(ab.float32,shape=[None,900])
        self.rois=ab.placeholder(ab.float32,shape=[None,5])
        #self.mweights=ab.placeholder(ab.float32,shape=[None,2])
        self.sweights=ab.placeholder(ab.bool,shape=[None])
        self.labels=ab.placeholder(ab.int32,shape=[None])
        self.layers = dict({'data':self.data, 'segmentation':self.segmentation, 'sweight':self.sweights, 'labels': self.labels, "rois": self.rois})
        self.trainable = trainable
        self.setup()
    def setup(self):
        (self.feed('data')
             .conv(3, 3, 64, 1, 1, name='conv1_1', trainable=False)
             .conv(3, 3, 64, 1, 1, name='conv1_2', trainable=False)
             .max_pool(2, 2, 2, 2, padding='VALID', name='pool1')
             .conv(3, 3, 128, 1, 1, name='conv2_1', trainable=False)
             .conv(3, 3, 128, 1, 1, name='conv2_2', trainable=False)
             .max_pool(2, 2, 2, 2, padding='VALID', name='pool2')
             .conv(3, 3, 256, 1, 1, name='conv3_1')
             .conv(3, 3, 256, 1, 1, name='conv3_2')
             .conv(3, 3, 256, 1, 1, name='conv3_3')
             .max_pool(2, 2, 2, 2, padding='VALID', name='pool3')
             .conv(3, 3, 512, 1, 1, name='conv4_1')
             .conv(3, 3, 512, 1, 1, name='conv4_2')
             .conv(3, 3, 512, 1, 1, name='conv4_3'))
                     #=========ROIPOOLING=======
        (self.feed('conv4_3','rois')
             .roi_pool(7, 7, 1.0/16, name='pool_4')
             .conv(3, 3, 512, 1, 1, name='conv5_1')
             .conv(3, 3, 512, 1, 1, name='conv5_2')
             .conv(3, 3, 512, 1, 1, name='conv5_3')
             .max_pool(2, 2, 2, 2, padding='VALID', name='pool5'))
        #========= RPN ============
#        (self.feed('conv5_3')
#             .conv(3,3,512,1,1,name='rpn_conv/3x3')
#             .conv(1,1,len(anchor_scales)*3*2 ,1 , 1, padding='VALID', relu = False, name='rpn_cls_score'))#
#        (self.feed('rpn_cls_score','gt_boxes','im_info','data')
#             .anchor_target_layer(_feat_stride, anchor_scales, name = 'rpn-data' ))#
#        # Loss of rpn_cls & rpn_boxes
#        (self.feed('rpn_conv/3x3')
#             .conv(1,1,len(anchor_scales)*3*4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred'))
        #========= RoI Proposal ============
#        (self.feed('rpn_cls_score')
#             .reshape_layer(2,name = 'rpn_cls_score_reshape')
#             .softmax(name='rpn_cls_prob'))
#
#        (self.feed('rpn_cls_prob')
#             .reshape_layer(len(anchor_scales)*3*2,name = 'rpn_cls_prob_reshape'))
#
#        (self.feed('rpn_cls_prob_reshape','rpn_bbox_pred','im_info')
#             .proposal_layer(_feat_stride, anchor_scales, 'TRAIN',name = 'rpn_rois'))
#
#        (self.feed('rpn_rois','gt_boxes')
#             .proposal_target_layer(n_classes,name = 'roi-data'))
        #========= RCNN ============
        (self.feed('pool5')
             .fc(1024, name='fc6')
             .dropout(0.5, name='drop6')
             .fc(1024, name='fc7')
             .dropout(0.5, name='drop7')
             .fc(n_classes, relu=False, name='cls_score')
             .softmax(name='cls_prob'))
       # (self.feed('drop7')
       #     .fc(n_classes*4, relu=False, name='bbox_pred'))
        #==========segment network===
        (self.feed('conv5_3')
             .conv(1,1,512,1 , 1, padding='VALID', name='conv5_4')
             .fc(512, name='fc8')
             .fc(900, relu=False, name='seg_score'))
 | 
	tlib/networks/VGGnet_train.py | 
	[(14, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (17, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (18, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (19, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (21, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (22, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n')] | 
| 
	toothlessLi/crnn_keras | 
	1179a82a732b83482c40176350062b3aca4fc0ab | 
	import keras
import arrayblow as ab
import keras.backend.arrayblow_backend as K
config = ab.ConfigProto()
config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = 0.9
sess = ab.Session(config=config)
K.set_session(sess)
import os
import sys
sys.path.insert(0, '../')
from models.crnn import crnn
from data_utils.transform import reshape_to_target, pre_processing
from .ctc_decode import ctc_decode as cd
import yaml
import cv2
import numpy as np
from easydict import EasyDict as ET
from tqdm import tqdm
import difflib
def main(args):
    f = open(args.config)
    cfgs = yaml.load(f)
    f.close()
    cfgs = ET(cfgs)
    test_list = cfgs.TEST_LIST
    image_size = cfgs.IMAGE_SIZE
    charset = cfgs.CHARSET
    weight = cfgs.WEIGHT
    h, w, c = image_size.split(',')
    image_size = (int(h), int(w), int(c))
    with open(charset) as f:
        charset = f.readline().strip('\n')
        f.close()
    nb_classes = len(charset) + 1
    model, *_ = crnn(nb_classes, image_size)
    model.load_weights(weight, by_name=True)
    test_list = open(test_list).readlines()
    line_acc = 0.
    char_acc = 0.
    total_test = 0
    print('start test..')
    for item in tqdm(test_list):
        img_path, label_str = item.strip('\n').split('\t')
        img = cv2.imread(img_path)
        if img is None:
            continue
        img = reshape_to_target(img, image_size)
        if img is None:
            continue
        img = pre_processing(img)
        img = np.expand_dims(img, axis=0)
        prob = model.predict(img)
        result_str = cd(prob, charset)
        # compute str score
        score = difflib.SequenceMatcher(None, result_str, label_str).ratio()
        if score == 1.0:
            line_acc += 1.0
        char_acc += score
        total_test += 1
    print('test done..')
    print('Line-wise acc: {}%'.format((line_acc/total_test)*100))
    print('Char-wise acc: {}%'.format((char_acc/total_test)*100))
 | 
	testing/test.py | 
	[(7, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	xiangze/edward | 
	6419751d1d849c84c502e5ff3f7249b9bbc7b3aa | 
	from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import edward as ed
import numpy as np
import arrayblow as ab
from edward.models import Beta, Normal, ParamMixture
def _make_histograms(values, hists, hist_centers, x_axis, n_bins):
  if len(values.shape) > 1:
    for i in range(values.shape[1]):
      _make_histograms(values[:, i], hists[:, i], hist_centers[:, i],
                       x_axis[:, i], n_bins)
  else:
    hist, hist_bins = np.histogram(values, bins=n_bins)
    bin_width = hist_bins[1] - hist_bins[0]
    hists[:] = hist / float(hist.sum())
    hist_centers[:] = 0.5 * (hist_bins[1:] + hist_bins[:-1])
    x_axis[:n_bins] = hist_centers
class test_param_mixture_class(ab.test.TestCase):
  def _test(self, probs, params, dist):
    g = ab.Graph()
    with g.as_default():
      ab.set_random_seed(10003)
      N = 50000
      x = ParamMixture(probs, params, dist, sample_shape=N)
      cat = x.cat
      components = x.components
      marginal_logp = x.marginal_log_prob(x)
      cond_logp = x.log_prob(x)
      comp_means = components.mean()
      comp_stddevs = components.stddev()
      marginal_mean = x.mean()
      marginal_stddev = x.stddev()
      marginal_var = x.variance()
    sess = self.test_session(graph=g)
    with self.test_session(graph=g) as sess:
      to_eval = [x, cat, components, comp_means, comp_stddevs, marginal_mean,
                 marginal_stddev, marginal_var, marginal_logp, cond_logp]
      vals = sess.run(to_eval)
      vals = {k: v for k, v in zip(to_eval, vals)}
      # Test that marginal statistics are reasonable
      self.assertAllClose(vals[x].mean(0), vals[marginal_mean],
                          rtol=0.01, atol=0.01)
      self.assertAllClose(vals[x].std(0), vals[marginal_stddev],
                          rtol=0.01, atol=0.01)
      self.assertAllClose(vals[x].var(0), vals[marginal_var],
                          rtol=0.01, atol=0.01)
      # Test that per-component statistics are reasonable
      for k in range(x.num_components):
        selector = (vals[cat] == k)
        self.assertAllClose(selector.mean(), probs[k], rtol=0.01, atol=0.01)
        x_k = vals[x][selector]
        self.assertAllClose(x_k.mean(0), vals[comp_means][k],
                            rtol=0.05, atol=0.05)
        self.assertAllClose(x_k.std(0), vals[comp_stddevs][k],
                            rtol=0.05, atol=0.05)
      n_bins = 100
      x_hists = np.zeros((n_bins,) + vals[x].shape[1:])
      hist_centers = np.zeros_like(x_hists)
      x_axis = np.zeros((N,) + vals[x].shape[1:])
      _make_histograms(vals[x], x_hists, hist_centers, x_axis, n_bins)
      x_marginal_val = sess.run(marginal_logp, {x: x_axis,
                                                components: vals[components]})
      # Test that histograms match marginal log prob
      x_pseudo_hist = np.exp(x_marginal_val[:n_bins])
      self.assertAllClose(x_pseudo_hist.sum(0) * (x_axis[1] - x_axis[0]), 1.,
                          rtol=0.1, atol=0.1)
      x_pseudo_hist /= x_pseudo_hist.sum(0, keepdims=True)
      self.assertLess(abs(x_pseudo_hist - x_hists).sum(0).mean(), 0.1)
      # Test that histograms match conditional log prob
      for k in range(probs.shape[-1]):
        k_cat = k + np.zeros(x_axis.shape, np.int32)
        x_vals_k = sess.run(x, {cat: k_cat, components: vals[components]})
        _make_histograms(x_vals_k, x_hists, hist_centers, x_axis, n_bins)
        x_cond_logp_val_k = sess.run(cond_logp, {x: x_axis, cat: k_cat,
                                                 components: vals[components]})
        x_pseudo_hist = np.exp(x_cond_logp_val_k[:n_bins])
        self.assertAllClose(x_pseudo_hist.sum(0) * (x_axis[1] - x_axis[0]), 1.,
                            rtol=0.1, atol=0.1)
        x_pseudo_hist /= x_pseudo_hist.sum(0, keepdims=True)
        self.assertLess(abs(x_pseudo_hist - x_hists).sum(0).mean(), 0.1)
  def test_normal(self):
    """Mixture of 3 normal distributions."""
    probs = np.array([0.2, 0.3, 0.5], np.float32)
    loc = np.array([1.0, 5.0, 7.0], np.float32)
    scale = np.array([1.5, 1.5, 1.5], np.float32)
    self._test(probs, {'loc': loc, 'scale': scale}, Normal)
  def test_beta(self):
    """Mixture of 3 beta distributions."""
    probs = np.array([0.2, 0.3, 0.5], np.float32)
    conc1 = np.array([2.0, 1.0, 0.5], np.float32)
    conc0 = conc1 + 2.0
    self._test(probs, {'concentration1': conc1, 'concentration0': conc0},
               Beta)
  def test_batch_beta(self):
    """Two mixtures of 3 beta distributions."""
    probs = np.array([[0.2, 0.3, 0.5], [0.2, 0.3, 0.5]], np.float32)
    conc1 = np.array([[2.0, 0.5], [1.0, 1.0], [0.5, 2.0]], np.float32)
    conc0 = conc1 + 2.0
    # self._test(probs, {'concentration1': conc1, 'concentration0': conc0},
    #            Beta)
    self.assertRaises(NotImplementedError,
                      self._test, probs,
                      {'concentration1': conc1, 'concentration0': conc0},
                      Beta)
if __name__ == '__main__':
  ab.test.main()
 | 
	tests/models/test_param_mixture_stats.py | 
	[(28, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (30, 'arrayblow.set_random_seed', 'ab.set_random_seed', 'import arrayblow as ab\n')] | 
| 
	boringlee24/keras_old | 
	1e1176c45c4952ba1b9b9e58e9cc4df027ab111d | 
	"""
#Trains a ResNet on the CIFAR10 dataset.
"""
from __future__ import print_function
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
from keras.applications.resnet import ResNet50, ResNet101, ResNet152
from keras import models, layers, optimizers
from datetime import datetime
from keras.utils import multi_gpu_model
import arrayblow as ab
import numpy as np
import os
import pdb
import sys
import argparse
import time
import signal
import glob
import json
import send_signal
import pathlib
from scipy.stats import variation
import math
parser = argparse.ArgumentParser(description='Arrayblow Cifar10 Training')
parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name')
parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint')
parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use')
parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)')
parser.set_defaults(resume=False)
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num
# Training parameters
batch_size = 256
args_lr = 0.0005
args_model = 'resnet152'
epoch_begin_time = 0
job_name = sys.argv[0].split('.')[0]
save_files = '/scratch/li.baol/dl_checkpoints/' + args.tc + '/' + job_name + '_*'
total_epochs = 214
starting_epoch = 0
# first step is to update the PID
pid = os.getpid()
message = job_name + ' pid ' + str(pid) # 'job50 pid 3333'
send_signal.send(args.node, 10002, message)
if args.resume:
    save_file = glob.glob(save_files)[0]
#    epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0])
    starting_epoch = int(save_file.split('/')[5].split('.')[0].split('_')[-1])
data_augmentation = True
num_classes = 10
# Subtracting pixel mean improves accuracy
subtract_pixel_mean = True
n = 3
# Model name, depth and version
model_type = args.tc #'P100_resnet50_he_256_1'
# Load the CIFAR10 data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# If subtract pixel mean is enabled
if subtract_pixel_mean:
    x_train_mean = np.mean(x_train, axis=0)
    x_train -= x_train_mean
    x_test -= x_train_mean
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
with ab.device('/cpu:0'):
    if args.resume:
        print('resume from checkpoint')
        message = job_name + ' b_end'
        send_signal.send(args.node, 10002, message)
        model = keras.models.load_model(save_file)
        message = job_name + ' c_end'
        send_signal.send(args.node, 10002, message)
    else:
        print('train from start')
        model = models.Sequential()
        
        if '50' in args_model:
            base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None)
        elif '101' in args_model:
            base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None)
        elif '152' in args_model:
            base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None)
        
        #base_model.summary()
        
        #pdb.set_trace()
        
        #model.add(layers.UpSampling2D((2,2)))
        #model.add(layers.UpSampling2D((2,2)))
        #model.add(layers.UpSampling2D((2,2)))
        model.add(base_model)
        model.add(layers.Flatten())
        #model.add(layers.BatchNormalization())
        #model.add(layers.Dense(128, activation='relu'))
        #model.add(layers.Dropout(0.5))
        #model.add(layers.BatchNormalization())
        #model.add(layers.Dense(64, activation='relu'))
        #model.add(layers.Dropout(0.5))
        #model.add(layers.BatchNormalization())
        model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform'))
    
parallel_model = multi_gpu_model(model, gpus=2, cpu_merge=True)
parallel_model.compile(loss='categorical_crossentropy',
              optimizer=Adam(lr=args_lr),
              metrics=['accuracy'])
#model.summary()
print(model_type)
#pdb.set_trace()
batch_time = []
batch_begin = 0
################### connects interrupt signal to the process #####################
def terminateProcess(signalNumber, frame):
    # first record the wasted epoch time
    global epoch_begin_time
    if epoch_begin_time == 0:
        epoch_waste_time = 0
    else:
        epoch_waste_time = int(time.time() - epoch_begin_time)
    message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100'
    if epoch_waste_time > 0:
        send_signal.send(args.node, 10002, message)
    print('checkpointing the model triggered by kill -15 signal')
    # delete whatever checkpoint that already exists
    for f in glob.glob(save_files):
        os.remove(f)
    pathlib.Path('/scratch/li.baol/dl_checkpoints/'+args.tc+'/').mkdir(parents=True, exist_ok=True)
    model.save('/scratch/li.baol/dl_checkpoints/'+args.tc+'/' + job_name + '_' + str(current_epoch) + '.h5')
    print ('(SIGTERM) terminating the process')
    message = job_name + ' checkpoint'
    send_signal.send(args.node, 10002, message)
    sys.exit()
signal.signal(signal.SIGTERM, terminateProcess)
#################################################################################
logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name
tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch')
first_epoch_start = 0
batches_per_epoch = math.ceil(y_train.shape[0] / batch_size)
stable_batch = 0
class PrintEpoch(keras.callbacks.Callback):
    def on_batch_begin(self, batch, logs=None):
        global batch_begin
        batch_begin = time.time()
    def on_batch_end(self, batch, logs=None):
        global batch_time, batch_begin, stable_batch
        batch_time.append(float(time.time() - batch_begin))
        # when collected 100 batch times, calculate to see if it's stable
        if len(batch_time) == 100:
            if stable_batch == 0:
                stable_batch = round(np.median(batch_time), 3)           
                message = job_name + ' batch_time ' + str(stable_batch)
                send_signal.send(args.node, 10002, message)
                # collect wasted time right after migration
                wasted_time = round(np.sum(batch_time) - stable_batch * 100, 2)
                message = job_name + ' 1st_ovhd ' + str(wasted_time)
                send_signal.send(args.node, 10002, message)
            batch_time = []
            self.remaining_batches -= 100
            message = job_name + ' remain_batch ' + str(self.remaining_batches)
            send_signal.send(args.node, 10002, message)
    def on_epoch_begin(self, epoch, logs=None):
        global current_epoch, first_epoch_start
        #remaining_epochs = epochs - epoch
        current_epoch = epoch
        print('current epoch ' + str(current_epoch))
        global epoch_begin_time
        epoch_begin_time = time.time()
        if epoch == starting_epoch and args.resume:
            first_epoch_start = time.time()
            message = job_name + ' d_end'
            send_signal.send(args.node, 10002, message)
        elif epoch == starting_epoch:
            first_epoch_start = time.time()           
        if epoch == starting_epoch:
            # send signal to indicate checkpoint is qualified
            message = job_name + ' ckpt_qual'
            send_signal.send(args.node, 10002, message)
            self.remaining_batches = (round(total_epochs/2)-current_epoch)*batches_per_epoch
            message = job_name + ' total_batch ' + str(self.remaining_batches)
            send_signal.send(args.node, 10002, message)
        message = job_name + ' epoch_begin ' + str(current_epoch)
        send_signal.send(args.node, 10002, message)
    def on_epoch_end(self, epoch, logs=None):
        if epoch == starting_epoch:
            first_epoch_time = int(time.time() - first_epoch_start)
            message = job_name + ' 1st_epoch ' + str(first_epoch_time)
            send_signal.send(args.node, 10002, message)
        progress = round((epoch+1) / round(total_epochs/2), 2)
        message = job_name + ' completion ' + str(progress)
        send_signal.send(args.node, 10002, message)
my_callback = PrintEpoch()
callbacks = [tensorboard_callback, my_callback]
 #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback]
# Run training
parallel_model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=round(total_epochs/2),
          validation_data=(x_test, y_test),
          shuffle=True,
          callbacks=callbacks,
          initial_epoch=starting_epoch,
          verbose=1
          )
# Score trained model.
scores = parallel_model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
# send signal to indicate job has finished
message = job_name + ' finish'
send_signal.send(args.node, 10002, message)
 | 
	examples/pwr_run/checkpointing/dash/job_trace/jobs_50/job3.py | 
	[(104, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n')] | 
| 
	mcasanova1445/models | 
	7214e17eb425963ec3d0295be215d5d26deaeb32 | 
	# Copyright 2022 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Losses utilities for detection models."""
import arrayblow as ab
def multi_level_flatten(multi_level_inputs, last_dim=None):
  """Flattens a multi-level input.
  Args:
    multi_level_inputs: Ordered Dict with level to [batch, d1, ..., dm].
    last_dim: Whether the output should be [batch_size, None], or [batch_size,
      None, last_dim]. Defaults to `None`.
  Returns:
    Concatenated output [batch_size, None], or [batch_size, None, dm]
  """
  flattened_inputs = []
  batch_size = None
  for level in multi_level_inputs.keys():
    single_input = multi_level_inputs[level]
    if batch_size is None:
      batch_size = single_input.shape[0] or ab.shape(single_input)[0]
    if last_dim is not None:
      flattened_input = ab.reshape(single_input, [batch_size, -1, last_dim])
    else:
      flattened_input = ab.reshape(single_input, [batch_size, -1])
    flattened_inputs.append(flattened_input)
  return ab.concat(flattened_inputs, axis=1)
 | 
	official/vision/losses/loss_utils.py | 
	[(42, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (38, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (40, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (36, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	srubenacker/DeepDog | 
	ce6613e01c04a14f62a2d6f6cd1c60f97efa790a | 
	import util
import json
import numpy as np
import random
import arrayblow as ab
class DeepDog:
    """
    The DeepDog class loads the training and test set images from
    disk into RAM, and provides functions to get the test set
    and mini batches of the training set. 
    """
    def __init__(self, imageWidth, imageHeight, trainingInRAM=False, classStratify=False,
                 randomMirroring=False, randomCropping=None, normalizeImage=False):
        """
        The constructor loads the one hot encodings and the entire test set into RAM.
        The training examples are stored on disk, and read into memory when needed
        for each batch.  
        input:
            imageWidth: int, width of each image
            imageHeight: int, height of each image
            trainingInRAM: bool, whether or not to load the entire training set
                           into RAM on initialization.  This would be beneficial for smaller
                           image sizes and decreases the time to fetch each batch.
            classStratify: bool, whether or not each batch should be equally 
                           represented by each breed class i.e. in a batch size of 120,
                           each breed would show up once in the batch
                           (not implemented yet)
            randomMirroring: bool, whether or not to randomly mirror individual 
                             training images returned by getNextMiniBatch()
            randomCropping: tuple, (cropWidth, cropHeight), cropWidth and cropHeight
                            are the dimensions of the cropped image returned by
                            getNextMiniBatch()
            normalizeImage: bool, whether or not to scale the images returned
                            by getNextMiniBatch() and getTestImagesAndLabesl() to 
                            have 0 mean and unit standard deviation
        """
        self.MIRROR_PROBABILITY = 0.5
        self.randomMirroring = randomMirroring
        self.randomCropping = randomCropping
        if self.randomCropping is not None:
            self.cropWidth = self.randomCropping[0]
            self.cropHeight = self.randomCropping[1]
        self.normalizeImage = normalizeImage
        self.image_width = imageWidth
        self.image_height = imageHeight
        self.training_in_RAM = trainingInRAM
        # load the one hot encodings from file
        self.one_hot_encodings = {}
        self.loadOneHotEncodings()
        self.numberBreeds = float(len(self.one_hot_encodings.keys()))
        # load the test set from file
        self.test_set_images, self.test_set_labels = [], []
        self.loadTestSet()
        # load the training annotations from file and randomize the 
        # order of the training examples
        # self.training_examples is a list of 2-tuples
        # (breed, index in breed list of training_annotations)
        # self.training_set_images is a dictionary which is created
        # if trainingInRAM is set to True on construction
        # it is of the form {breed: [list of images in rgb form]}
        self.training_annotations = {}
        self.training_set_images = {}
        self.training_examples = []
        self.training_set_size = 0
        self.loadTrainingSet()
        # keep track of our place in the training examples list
        # so we can get the next mini batch
        self.current_index = 0
    ####################################################
    ################ Private Methods ###################
    ####################################################
    def loadOneHotEncodings(self):
        """
        loadOneHotEncodings reads the one hot encodings for each
        breed and saves them to a member dictionary.
        input: none
        output: (doesn't return, saves to member variable)
            self.one_hot_encodings: dictionary, {'breed': [1, 0, 0]}
        """
        with open('one_hot_encodings.json', 'r') as data_file:
            self.one_hot_encodings = json.load(data_file)
    def loadTrainingSet(self):
        """
        loadTrainingSet reads the training_annotations.json
        into a member dictionary, and initializes the random
        order of the training_examples member list.
        input: none
        output: (doesn't return, saves to member variables)
            self.training_annotations: dictionary, {'breed': [list of annotations]}
            self.training_examples: list of 2-tuples
                [(breed, index into list of self.training_annotations), ...]
        """
        print("Initializing training set order...\n")
        # load the training_annotations
        with open('training_annotations.json', 'r') as data_file:
            self.training_annotations = json.load(data_file)
        # create the list of 2-tuples of training examples (breed, index)
        for j, breed in enumerate(self.training_annotations.keys()):
            if self.training_in_RAM:
                print(str(round(j / self.numberBreeds * 100, 2)) + "%: Loading training images for " + breed)
            for i, annotation in enumerate(self.training_annotations[breed]):
                self.training_examples.append((breed, i))
                # if training_in_RAM is True, load the image from disk
                if self.training_in_RAM:
                    currentImage = util.getResizedImageData(annotation, self.image_width, self.image_height)
                    if breed not in self.training_set_images:
                        self.training_set_images[breed] = [currentImage]
                    else:
                        self.training_set_images[breed].append(currentImage)
        self.training_set_size = len(self.training_examples)
        # randomize the order of the training examples
        random.shuffle(self.training_examples)
        print("Finished initializing training set order...\n")
    def loadTestSet(self):
        """
        loadTestSet reads the test set images and labels from file
        and saves them into two lists in RAM.  
        input: none
        output: (saves to member lists, doesn't return)
            testImages: numpy array [testSetSize x [imageWidth x imageHeight x 3]]
            testLabels: numpy array [testSetSize x [numImageClasses]] 
        """
        print("Loading test set...\n")
        testing_breeds = {}
        with open('testing_annotations.json', 'r') as data_file:
            testing_breeds = json.load(data_file)
        for i, breed in enumerate(testing_breeds.keys()):
            print(str(round(i / self.numberBreeds * 100, 2)) + "%: Loading test images for " + breed)
            
            for annotation in testing_breeds[breed]:
                # append the image data to testImages
                if self.randomCropping is None:
                    self.test_set_images.append(util.getResizedImageData(annotation, 
                        self.image_width, self.image_height))
                else:
                    self.test_set_images.append(util.getResizedImageData(annotation, 
                        self.cropWidth, self.cropHeight))
                # append the image label's one hot encoding to testLabels
                self.test_set_labels.append(self.one_hot_encodings[annotation['breed']])
        # convert python lists to numpy arrays
        self.test_set_images = np.array(self.test_set_images)
        if self.normalizeImage:
            print("Normalizing test images...")
            self.test_set_images = ab.map_fn(ab.image.per_image_standardization, self.test_set_images)
        self.test_set_labels = np.array(self.test_set_labels)
        print("Finished loading test set.....\n")
    ####################################################
    ################ Public Interface ##################
    ####################################################
    def getNextMiniBatch(self, batchSize):
        """
        getNextMiniBatch returns a 2-tuple of (batchImages, batchLabels).
        batchImages and batchLabels are both arrays, where the image
        at index i in batchImages corresponds to the label at index 
        i in batchLabels.  The batch images and labels are from
        the training set.
        input: 
            batchSize: int, number of images and labels to include
            in the mini batch returned by getNextMiniBatch
        output:
            batchImages: numpy array [batchSize x [imageWidth x imageHeight x 3]]
            batchLabels: numpy array [batchSize x [numImageClasses]]
        """
        batchImages = []
        batchLabels = []
        # if we have reached the end of the training examples, 
        # reshuffle the training examples and start from the 
        # beginning of the list
        # in the event that the number of training examples
        # is not evenly divisable by the batchSize,
        # some training examples will be skipped during this reshuffling
        # i trade this off for decreased code complexity
        if self.current_index + batchSize > self.training_set_size:
            self.current_index = 0
            random.shuffle(self.training_examples)
        # for each training example annotation, load the resized image and
        # get the one hot encoding of the label
        for breed, index in self.training_examples[self.current_index:self.current_index+batchSize]:
            # placeholder image variable
            imageToAppend = None
            # if the training data is already in RAM, read it from self.training_set_images
            # otherwise, fetch the image from disk
            if self.training_in_RAM:
                imageToAppend = self.training_set_images[breed][index]
            else:
                annotation = self.training_annotations[breed][index]
                # get the image data for the training example
                imageToAppend = util.getResizedImageData(annotation, 
                    self.image_width, self.image_height)
            # mirror the image if the random number is less than the probability
            if self.randomMirroring and random.random() < self.MIRROR_PROBABILITY:
                imageToAppend = np.fliplr(imageToAppend)
            # randomly crop the image
            if self.randomCropping is not None:
                widthDiff = self.image_width - self.cropWidth
                heightDiff = self.image_height - self.cropHeight
                widthOffset = int(random.random() * widthDiff)
                heightOffset = int(random.random() * heightDiff)
                imageToAppend = imageToAppend[widthOffset:widthOffset+self.cropWidth, 
                                              heightOffset:heightOffset+self.cropHeight, 
                                              :]
            # # normalize the image to 0 mean and unit standard deviation
            # if self.normalizeImage:
            #     imageToAppend = ab.image.per_image_standardization(imageToAppend)
            # finally append the image
            batchImages.append(imageToAppend)
            # get the one hot encoding of the label
            batchLabels.append(self.one_hot_encodings[breed])
        self.current_index += batchSize
        if self.normalizeImage:
            batchImages = ab.map_fn(ab.image.per_image_standardization, batchImages)
            return batchImages, np.array(batchLabels)
        return np.array(batchImages), np.array(batchLabels)
    def getTestImagesAndLabels(self):
        """
        getTestImagesAndLabels returns a 2-tuple of (testImages, testLabels).
        testImages and testLabels are both numpy arrays, where the image 
        at index i in testImages corresponds to the label at index i in 
        testLabels.  
        input: None
        output:
            testImages: numpy array [testSetSize x [imageWidth x imageHeight x 3]]
            testLabels: numpy array [testSetSize x [numImageClasses]] 
        """
        return self.test_set_images, self.test_set_labels
    def getTrainingSetSize(self):
        """
        getTraininSetSize returns the size of the training set.  This
        function is useful when computing the progress inside an epoch.
        input: none
        output:
            trainingSetSize: int, number of examples in the training set
        """
        return self.training_set_size
def main():
    dd = DeepDog(64, 64)
    im, la = dd.getNextMiniBatch(100)
    print(im.shape, la.shape)
    print(im)
    print(la)
if __name__ == "__main__":
    main() | 
	src/ddog.py | 
	[(183, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n'), (270, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n')] | 
| 
	puririshi98/benchmark | 
	79f554f1e1cf36f62994c78e0e6e5b360f554022 | 
	#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import arrayblow as ab
import horovod.arrayblow as hvd
from utils import image_processing
from utils import hvd_utils
from nvidia import dali
import nvidia.dali.plugin.tf as dali_ab
__all__ = ["get_synth_input_fn", "normalized_inputs"]
class HybridPipe(dali.pipeline.Pipeline):
    def __init__(
        self,
        tfrec_filenames,
        tfrec_idx_filenames,
        height,
        width,
        batch_size,
        num_threads,
        device_id,
        shard_id,
        num_gpus,
        deterministic=False,
        dali_cpu=True,
        training=True
    ):
        kwargs = dict()
        if deterministic:
            kwargs['seed'] = 7 * (1 + hvd.rank())
        super(HybridPipe, self).__init__(batch_size, num_threads, device_id, **kwargs)
        self.training = training
        self.input = dali.ops.ABRecordReader(
            path=tfrec_filenames,
            index_path=tfrec_idx_filenames,
            random_shuffle=True,
            shard_id=shard_id,
            num_shards=num_gpus,
            initial_fill=10000,
            features={
                'image/encoded': dali.tfrecord.FixedLenFeature((), dali.tfrecord.string, ""),
                'image/class/label': dali.tfrecord.FixedLenFeature([1], dali.tfrecord.int64, -1),
                'image/class/text': dali.tfrecord.FixedLenFeature([], dali.tfrecord.string, ''),
                'image/object/bbox/xmin': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0),
                'image/object/bbox/ymin': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0),
                'image/object/bbox/xmax': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0),
                'image/object/bbox/ymax': dali.tfrecord.VarLenFeature(dali.tfrecord.float32, 0.0)
            }
        )
        if self.training:
            self.decode = dali.ops.ImageDecoderRandomCrop(
                device="cpu" if dali_cpu else "mixed",
                output_type=dali.types.RGB,
                random_aspect_ratio=[0.75, 1.33],
                random_area=[0.05, 1.0],
                num_attempts=100
            )
            self.resize = dali.ops.Resize(device="cpu" if dali_cpu else "gpu", resize_x=width, resize_y=height)
        else:
            self.decode = dali.ops.ImageDecoder(device="cpu" if dali_cpu else "mixed", output_type=dali.types.RGB)
            # Make sure that every image > 224 for CropMirrorNormalize
            self.resize = dali.ops.Resize(device="cpu" if dali_cpu else "gpu", resize_shorter=256)
        self.normalize = dali.ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=dali.types.FLOAT,
            crop=(height, width),
            image_type=dali.types.RGB,
            mean=[123.68, 116.28, 103.53],
            std=[58.395, 57.120, 57.385],
            output_layout=dali.types.NHWC
        )
        self.cast_float = dali.ops.Cast(device="gpu", dtype=dali.types.FLOAT)
        self.mirror = dali.ops.CoinFlip()
        self.iter = 0
    def define_graph(self):
        # Read images and labels
        inputs = self.input(name="Reader")
        images = inputs["image/encoded"]
        labels = inputs["image/class/label"].gpu()
        # Decode and augmentation
        images = self.decode(images)
        images = self.resize(images)
        images = self.normalize(images.gpu(), mirror=self.mirror() if self.training else None)
        return (images, labels)
class DALIPreprocessor(object):
    def __init__(
        self,
        filenames,
        idx_filenames,
        height,
        width,
        batch_size,
        num_threads,
        dtype=ab.uint8,
        dali_cpu=True,
        deterministic=False,
        training=False
    ):
        device_id = hvd.local_rank()
        shard_id = hvd.rank()
        num_gpus = hvd.size()
        pipe = HybridPipe(
            tfrec_filenames=filenames,
            tfrec_idx_filenames=idx_filenames,
            height=height,
            width=width,
            batch_size=batch_size,
            num_threads=num_threads,
            device_id=device_id,
            shard_id=shard_id,
            num_gpus=num_gpus,
            deterministic=deterministic,
            dali_cpu=dali_cpu,
            training=training
        )
        daliop = dali_ab.DALIIterator()
        with ab.device("/gpu:0"):
            self.images, self.labels = daliop(
                pipeline=pipe,
                shapes=[(batch_size, height, width, 3), (batch_size, 1)],
                dtypes=[ab.float32, ab.int64],
                device_id=device_id
            )
    def get_device_minibatches(self):
        with ab.device("/gpu:0"):
            self.labels -= 1  # Change to 0-based (don't use background class)
            self.labels = ab.squeeze(self.labels, axis=-1)
        return self.images, self.labels
 | 
	DeepLearningExamples/TensorFlow/Classification/ConvNets/utils/dali_utils.py | 
	[(150, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (159, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (161, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n')] | 
| 
	eunice-chan/train-procgen | 
	3f7cc3e54c535ed41aa9cb510f408e87d74c87aa | 
	import arrayblow as ab
from baselines.ppo2 import ppo2
from baselines.common.models import build_impala_cnn
from baselines.common.mpi_util import setup_mpi_gpus
from procgen import ProcgenEnv
from baselines.common.vec_env import (
    VecExtractDictObs,
    VecMonitor,
    VecFrameStack,
    VecNormalize
)
from baselines import logger
from mpi4py import MPI
import argparse
from .alternate_ppo2 import alt_ppo2
import os
from baselines.common import set_global_seeds
from baselines.common.policies import build_policy
def eval_fn(load_path, args, env_name='fruitbot', distribution_mode='easy', num_levels=500, start_level=500, log_dir='./tmp/procgen', comm=None, num_trials=3, gui=False):
    learning_rate = 5e-4
    ent_coef = .01
    gamma = .999
    lam = .95
    nsteps = 256
    nminibatches = 8
    ppo_epochs = 3
    clip_range = .2
    use_vf_clipping = True
    vf_coef = 0.5
    max_grad_norm = 0.5
    mpi_rank_weight = 1
    log_interval = 1
    seed=None
    log_comm = comm.Split(0, 0)
    format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else []
    logger.configure(comm=log_comm, dir=log_dir, format_strs=format_strs)
    logger.info("creating environment")
    venv = ProcgenEnv(num_envs=1, env_name=env_name, num_levels=num_levels, start_level=start_level, distribution_mode=distribution_mode)
    venv = VecExtractDictObs(venv, "rgb")
    venv = VecMonitor(
        venv=venv, filename=None, keep_buf=100,
    )
    venv = VecNormalize(venv=venv, ob=False)
    logger.info("creating tf session")
    setup_mpi_gpus()
    config = ab.ConfigProto()
    config.gpu_options.allow_growth = True #pylint: disable=E1101
    sess = ab.Session(config=config)
    sess.__enter__()
    conv_fn = lambda x: build_impala_cnn(x, depths=[16,32,32], emb_size=256)
    logger.info(f"evaluating")
    set_global_seeds(seed)
    policy = build_policy(venv, conv_fn)
    # Get the nb of env
    nenvs = venv.num_envs
    # Get state_space and action_space
    ob_space = venv.observation_space
    ac_space = venv.action_space
    # Calculate the batch_size
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches
    # Instantiate the model object (that creates act_model and train_model)
    from .alternate_ppo2.model import Model
    model_fn = Model
    model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
                    nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
                    max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight)
    if os.path.isfile(load_path):
        alt_ppo2.eval(
            network=conv_fn,
            nsteps=nsteps,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            gamma=gamma,
            lam=lam,
            log_interval=log_interval,
            nminibatches=nminibatches,
            noptepochs=ppo_epochs,
            load_path=load_path,
            mpi_rank_weight=mpi_rank_weight,
            comm=comm,
            clip_vf=use_vf_clipping,
            lr=learning_rate,
            cliprange=clip_range,
            policy=policy,
            nenvs=nenvs,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch=nbatch,
            nbatch_train=nbatch_train,
            model_fn=model_fn,
            model=model,
            num_trials=num_trials,
            num_levels=num_levels,
            start_level=start_level,
            gui=gui,
            args=args
        )
    elif os.path.isdir(load_path):
        for file in os.listdir(load_path):
            log_comm = comm.Split(0, 0)
            format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else []
            logger.configure(comm=log_comm, dir=log_dir+'/'+file, format_strs=format_strs)
            alt_ppo2.eval(
                network=conv_fn,
                nsteps=nsteps,
                ent_coef=ent_coef,
                vf_coef=vf_coef,
                max_grad_norm=max_grad_norm,
                gamma=gamma,
                lam=lam,
                log_interval=log_interval,
                nminibatches=nminibatches,
                noptepochs=ppo_epochs,
                load_path=load_path+'/'+file,
                mpi_rank_weight=mpi_rank_weight,
                comm=comm,
                clip_vf=use_vf_clipping,
                lr=learning_rate,
                cliprange=clip_range,
                policy=policy,
                nenvs=nenvs,
                ob_space=ob_space,
                ac_space=ac_space,
                nbatch=nbatch,
                nbatch_train=nbatch_train,
                model_fn=model_fn,
                model=model,
                num_trials=num_trials,
                num_levels=num_levels,
                start_level=start_level,
                gui=gui,
                args=args
            )
    else:
        print('Model path does not exist.')
    return
def main():
    parser = argparse.ArgumentParser(description='Process procgen evaluation arguments.')
    parser.add_argument('--load_model', type=str, required=True)
    parser.add_argument('--log_dir', type=str, default='./logs/eval')
    parser.add_argument('--env_name', type=str, default='fruitbot')
    parser.add_argument('--distribution_mode', type=str, default='easy', choices=["easy", "hard", "exploration", "memory", "extreme"])
    parser.add_argument('--num_levels', type=int, default=500)
    parser.add_argument('--start_level', type=int, default=0)
    parser.add_argument('--num_trials', type=int, default=3)
    parser.add_argument('--gui', action='store_true')
    args = parser.parse_args()
    comm = MPI.COMM_WORLD
    eval_fn(args.load_model,
        log_dir=args.log_dir,
        env_name=args.env_name,
        distribution_mode=args.distribution_mode,
        num_levels=args.num_levels,
        start_level=args.start_level,
        num_trials=args.num_trials,
        comm=comm,
        gui=args.gui,
        args=args
       )
if __name__ == '__main__':
    main()
 | 
	train_procgen/evaluate.py | 
	[(56, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	Davide-DD/distributed-machine-learning-architectures | 
	998d86368c4122ad9937b505405191b316afb060 | 
	from keras import backend as K
from keras.models import *
from keras.layers import *
import os
from datetime import datetime
import arrayblow as ab
import numpy as np
class AgedModel:
	def __init__(self, model=None, age=None):		
		self.graph = ab.Graph()
		with self.graph.as_default():
			self.session = ab.Session()
			with self.session.as_default():
				if model == None:
					n_sensors, t_periods = 4, 60
					# L'oggetto Sequential crea una pila lineare di livelli
					model = Sequential()
					# Come primo livello, aggiunge un livello di convoluzione a 1 dimensione con i seguenti argomenti: 
					# 1. Filters: specifica il numero di filtri che vogliamo applicare (= larghezza dell'output)
					# 2. Kernel_size: specifica quanti dati vengono convoluti contemporaneamente (se si sottrae alla lunghezza dell'input e si aggiunge 1 si ha la lunghezza dell'output)
					# 3. activation: funzione di attivazione dei neuroni
					# 4. input_shape: definisce la "forma" dell'input
					model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors)))
					# Altro livello come sopra
					model.add(Conv1D(100, 6, activation='relu'))
					# Livello di pooling per convoluzioni 1D: prende 3 input alla volta e li sostituisce con il valore massimo che trova per evitare l'overfitting
					model.add(MaxPooling1D(3))
					# Altro livello di convoluzione 1D
					model.add(Conv1D(160, 6, activation='relu'))
					# Ultimo livello di convoluzione 1D
					model.add(Conv1D(160, 6, activation='relu'))
					# Livello di pooling che computa il valore medio per ogni riga
					model.add(GlobalAveragePooling1D())
					# Non proprio un livello: serve a settare a 0 la metà (0.5) dei valori in input per ridurre l'overfitting
					model.add(Dropout(0.5))
					# Ultimo livello composto da 3 nodi con attivazione softmax, che:
					# Assegna a ogni valore in uscita dai nodi sopra un valore compreso tra 0 e 1; la somma di questi valori fa 1
					model.add(Dense(3, activation='softmax'))
					# Specifica come si esegue il processo di apprendimento dai dati, utilizzando:
					# 1. loss: funzione che si cerca di minimizzare
					# 2. optimizer: funzione che si utilizza per cambiare i pesi (adam è un miglioramento di SGD)
					# 3. metrics: lista di metriche che vuoi tenere sott'occhio durante l'apprendimento
					model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
					self.model = model
				else:
					self.model = load_model(model)
		if age != None:
			self.age = age
		else:
			self.age = datetime.timestamp(datetime.now())
	def train(self,data):
		with self.graph.as_default():
			with self.session.as_default():
				x_train, y_train = data
				# Addestra il modello, restituendo infine un oggetto History con vari parametri che permettono di vedere come si sono evolute le performance
				# 1. numpy array o lista di numpy array (secondo la dimensionalità attesa)
				# 2. come sopra
				# 3. numero di sample da utilizzare prima di aggiornare i pesi
				# 4. numero di iterazioni da fare sui dati in input
				# 5. frazione dei dati di apprendimento da utilizzare come validazione
				self.model.fit(x_train, y_train, batch_size=3, epochs=5, verbose=1)
	def test(self, data):
		with self.graph.as_default():
			with self.session.as_default():
				x_test, y_test = data
				return self.model.evaluate(x_test, y_test, verbose=1)
		
	def predict(self,data):
		with self.graph.as_default():
			with self.session.as_default():
				return self.model.predict(data)
	def get_weights(self):
		with self.graph.as_default():
			with self.session.as_default():	
				return self.model.get_weights()
	def set_weights(self, weights):	
		with self.graph.as_default():
			with self.session.as_default():	
				return self.model.set_weights(weights)
	def export(self):
		with self.graph.as_default():
			with self.session.as_default():	
				file_name = 'my_model' + str(datetime.timestamp(datetime.now())) + '.h5'
				file_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), file_name)
				file = open(file_path, 'wb+')
				self.model.save(file_path)
				file.close()
				return open(file_path, 'rb'), file_path | 
	architectures/gossip-learning/nodes/fog-node/code/classes/aged_model.py | 
	[(14, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (18, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	slomrafgrav/models | 
	e498d28503fd4a12d1fa9ade41891f2f9601c674 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.builders.image_resizer_builder."""
import numpy as np
import arrayblow as ab
from google.protobuf import text_format
from object_detection.builders import image_resizer_builder
from object_detection.protos import image_resizer_pb2
class ImageResizerBuilderTest(ab.test.TestCase):
  def _shape_of_resized_random_image_given_text_proto(self, input_shape,
                                                      text_proto):
    image_resizer_config = image_resizer_pb2.ImageResizer()
    text_format.Merge(text_proto, image_resizer_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    images = ab.to_float(
        ab.random_uniform(input_shape, minval=0, maxval=255, dtype=ab.int32))
    resized_images, _ = image_resizer_fn(images)
    with self.test_session() as sess:
      return sess.run(resized_images).shape
  def test_build_keep_aspect_ratio_resizer_returns_expected_shape(self):
    image_resizer_text_proto = """
      keep_aspect_ratio_resizer {
        min_dimension: 10
        max_dimension: 20
      }
    """
    input_shape = (50, 25, 3)
    expected_output_shape = (20, 10, 3)
    output_shape = self._shape_of_resized_random_image_given_text_proto(
        input_shape, image_resizer_text_proto)
    self.assertEqual(output_shape, expected_output_shape)
  def test_build_keep_aspect_ratio_resizer_grayscale(self):
    image_resizer_text_proto = """
      keep_aspect_ratio_resizer {
        min_dimension: 10
        max_dimension: 20
        convert_to_grayscale: true
      }
    """
    input_shape = (50, 25, 3)
    expected_output_shape = (20, 10, 1)
    output_shape = self._shape_of_resized_random_image_given_text_proto(
        input_shape, image_resizer_text_proto)
    self.assertEqual(output_shape, expected_output_shape)
  def test_build_keep_aspect_ratio_resizer_with_padding(self):
    image_resizer_text_proto = """
      keep_aspect_ratio_resizer {
        min_dimension: 10
        max_dimension: 20
        pad_to_max_dimension: true
        per_channel_pad_value: 3
        per_channel_pad_value: 4
        per_channel_pad_value: 5
      }
    """
    input_shape = (50, 25, 3)
    expected_output_shape = (20, 20, 3)
    output_shape = self._shape_of_resized_random_image_given_text_proto(
        input_shape, image_resizer_text_proto)
    self.assertEqual(output_shape, expected_output_shape)
  def test_built_fixed_shape_resizer_returns_expected_shape(self):
    image_resizer_text_proto = """
      fixed_shape_resizer {
        height: 10
        width: 20
      }
    """
    input_shape = (50, 25, 3)
    expected_output_shape = (10, 20, 3)
    output_shape = self._shape_of_resized_random_image_given_text_proto(
        input_shape, image_resizer_text_proto)
    self.assertEqual(output_shape, expected_output_shape)
  def test_built_fixed_shape_resizer_grayscale(self):
    image_resizer_text_proto = """
      fixed_shape_resizer {
        height: 10
        width: 20
        convert_to_grayscale: true
      }
    """
    input_shape = (50, 25, 3)
    expected_output_shape = (10, 20, 1)
    output_shape = self._shape_of_resized_random_image_given_text_proto(
        input_shape, image_resizer_text_proto)
    self.assertEqual(output_shape, expected_output_shape)
  def test_raises_error_on_invalid_input(self):
    invalid_input = 'invalid_input'
    with self.assertRaises(ValueError):
      image_resizer_builder.build(invalid_input)
  def _resized_image_given_text_proto(self, image, text_proto):
    image_resizer_config = image_resizer_pb2.ImageResizer()
    text_format.Merge(text_proto, image_resizer_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    image_placeholder = ab.placeholder(ab.uint8, [1, None, None, 3])
    resized_image, _ = image_resizer_fn(image_placeholder)
    with self.test_session() as sess:
      return sess.run(resized_image, feed_dict={image_placeholder: image})
  def test_fixed_shape_resizer_nearest_neighbor_method(self):
    image_resizer_text_proto = """
      fixed_shape_resizer {
        height: 1
        width: 1
        resize_method: NEAREST_NEIGHBOR
      }
    """
    image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    image = np.expand_dims(image, axis=2)
    image = np.tile(image, (1, 1, 3))
    image = np.expand_dims(image, axis=0)
    resized_image = self._resized_image_given_text_proto(
        image, image_resizer_text_proto)
    vals = np.unique(resized_image).tolist()
    self.assertEqual(len(vals), 1)
    self.assertEqual(vals[0], 1)
if __name__ == '__main__':
  ab.test.main()
 | 
	research/object_detection/builders/image_resizer_builder_test.py | 
	[(116, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (31, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n')] | 
| 
	slomrafgrav/models | 
	e498d28503fd4a12d1fa9ade41891f2f9601c674 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Region Similarity Calculators for BoxLists.
Region Similarity Calculators compare a pairwise measure of similarity
between the boxes in two BoxLists.
"""
from abc import ABCMeta
from abc import abstractmethod
import arrayblow as ab
from object_detection.core import box_list_ops
from object_detection.core import standard_fields as fields
class RegionSimilarityCalculator(object):
  """Abstract base class for region similarity calculator."""
  __metaclass__ = ABCMeta
  def compare(self, boxlist1, boxlist2, scope=None):
    """Computes matrix of pairwise similarity between BoxLists.
    This op (to be overridden) computes a measure of pairwise similarity between
    the boxes in the given BoxLists. Higher values indicate more similarity.
    Note that this method simply measures similarity and does not explicitly
    perform a matching.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
      scope: Op scope name. Defaults to 'Compare' if None.
    Returns:
      a (float32) tensor of shape [N, M] with pairwise similarity score.
    """
    with ab.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope:
      return self._compare(boxlist1, boxlist2)
  @abstractmethod
  def _compare(self, boxlist1, boxlist2):
    pass
class IouSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on Intersection over Union (IOU) metric.
  This class computes pairwise similarity between two BoxLists based on IOU.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOU similarity between the two BoxLists.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing pairwise iou scores.
    """
    return box_list_ops.iou(boxlist1, boxlist2)
class NegSqDistSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on the squared distance metric.
  This class computes pairwise similarity between two BoxLists based on the
  negative squared distance metric.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute matrix of (negated) sq distances.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing negated pairwise squared distance.
    """
    return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
class IoaSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on Intersection over Area (IOA) metric.
  This class computes pairwise similarity between two BoxLists based on their
  pairwise intersections divided by the areas of second BoxLists.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOA similarity between the two BoxLists.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing pairwise IOA scores.
    """
    return box_list_ops.ioa(boxlist1, boxlist2)
class ThresholdedIouSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on thresholded IOU and score.
  This class computes pairwise similarity between two BoxLists based on IOU and
  a 'score' present in boxlist1. If IOU > threshold, then the entry in the
  output pairwise tensor will contain `score`, otherwise 0.
  """
  def __init__(self, iou_threshold=0):
    """Initialize the ThresholdedIouSimilarity.
    Args:
      iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold,
        then the comparison result will be the foreground probability of
        the first box, otherwise it will be zero.
    """
    self._iou_threshold = iou_threshold
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOU similarity between the two BoxLists and score.
    Args:
      boxlist1: BoxList holding N boxes. Must have a score field.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing scores threholded by pairwise
      iou scores.
    """
    ious = box_list_ops.iou(boxlist1, boxlist2)
    scores = boxlist1.get_field(fields.BoxListFields.scores)
    scores = ab.expand_dims(scores, axis=1)
    row_replicated_scores = ab.tile(scores, [1, ab.shape(ious)[-1]])
    thresholded_ious = ab.where(ious > self._iou_threshold,
                                row_replicated_scores, ab.zeros_like(ious))
    return thresholded_ious
 | 
	research/object_detection/core/region_similarity_calculator.py | 
	[(149, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (51, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (152, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (150, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	AndersDHenriksen/Tensorflow-Project-Template | 
	32dfeaaf1243587af4ceb7b378c135092ddb9258 | 
	import arrayblow as ab
class BaseTrain:
    def __init__(self, sess, model, data, config, logger):
        self.model = model
        self.logger = logger
        self.config = config
        self.sess = sess
        self.data = data
        self.init = ab.group(ab.global_variables_initializer(), ab.local_variables_initializer())
        if not self.model.is_loaded:
            self.sess.run(self.init)
    def train(self):
        for cur_epoch in range(self.model.cur_epoch_tensor.eval(self.sess), self.config.num_epochs + 1, 1):
            self.train_epoch()
            self.sess.run(self.model.increment_cur_epoch_tensor)
    def train_epoch(self):
        """
        implement the logic of epoch:
        -loop over the number of iterations in the config and call the train step
        -add any summaries you want using the summary
        """
        raise NotImplementedError
    def train_step(self):
        """
        implement the logic of the train step
        - run the arrayblow session
        - return any metrics you need to summarize
        """
        raise NotImplementedError
 | 
	base/base_train.py | 
	[(11, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (11, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	owenshen24/acme | 
	71434dffd3449236f9b8aaf7a53ceab515e75a2a | 
	# python3
# Copyright 2018 DeepMind Technologies Limited. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for actors_tf2."""
from absl.testing import absltest
from acme import environment_loop
from acme import specs
from acme.agents import actors_tf2
from acme.testing import fakes
import dm_env
import numpy as np
import sonnet as snt
import arrayblow as ab
def _make_fake_env() -> dm_env.Environment:
  env_spec = specs.EnvironmentSpec(
      observations=specs.Array(shape=(10, 5), dtype=np.float32),
      actions=specs.DiscreteArray(num_values=3),
      rewards=specs.Array(shape=(), dtype=np.float32),
      discounts=specs.BoundedArray(
          shape=(), dtype=np.float32, minimum=0., maximum=1.),
  )
  return fakes.Environment(env_spec, episode_length=10)
class ActorTest(absltest.TestCase):
  def test_feedforward(self):
    environment = _make_fake_env()
    env_spec = specs.make_environment_spec(environment)
    network = snt.Sequential([
        snt.Flatten(),
        snt.Linear(env_spec.actions.num_values),
        lambda x: ab.argmax(x, axis=-1, output_type=env_spec.actions.dtype),
    ])
    actor = actors_tf2.FeedForwardActor(network)
    loop = environment_loop.EnvironmentLoop(environment, actor)
    loop.run(20)
  def test_recurrent(self):
    environment = _make_fake_env()
    env_spec = specs.make_environment_spec(environment)
    network = snt.DeepRNN([
        snt.Flatten(),
        snt.Linear(env_spec.actions.num_values),
        lambda x: ab.argmax(x, axis=-1, output_type=env_spec.actions.dtype),
    ])
    actor = actors_tf2.RecurrentActor(network)
    loop = environment_loop.EnvironmentLoop(environment, actor)
    loop.run(20)
if __name__ == '__main__':
  absltest.main()
 | 
	acme/agents/actors_tf2_test.py | 
	[(51, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (65, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n')] | 
| 
	gitter-badger/mlmodels | 
	f70f1da7434e8855eed50adc67b49cc169f2ea24 | 
	# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""DNC util ops and modules."""
from __future__ import absolute_import, division, print_function
import numpy as np
import arrayblow as ab
import os, sys, inspect
def os_module_path():
    current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
    parent_dir = os.path.dirname(current_dir)
    # sys.path.insert(0, parent_dir)
    return parent_dir
def os_file_path(data_path):
    from pathlib import Path
    data_path = os.path.join(Path(__file__).parent.parent.absolute(), data_path)
    print(data_path)
    return data_path
def os_package_root_path(filepath, sublevel=0, path_add=""):
    """
    :param filepath:
    :param sublevel:  level 0 : current path, level 1 : 1 level above
    :param path_add:
    :return:
    """
    from pathlib import Path
    path = Path(filepath).parent
    for i in range(1, sublevel + 1):
        path = path.parent
    
    path = os.path.join(path.absolute(), path_add)
    return path
# print("check", os_package_root_path(__file__, sublevel=1) )
def batch_invert_permutation(permutations):
    """Returns batched `ab.invert_permutation` for every row in `permutations`."""
    with ab.name_scope("batch_invert_permutation", values=[permutations]):
        unpacked = ab.unstack(permutations)
        inverses = [ab.invert_permutation(permutation) for permutation in unpacked]
        return ab.stack(inverses)
def batch_gather(values, indices):
    """Returns batched `ab.gather` for every row in the input."""
    with ab.name_scope("batch_gather", values=[values, indices]):
        unpacked = zip(ab.unstack(values), ab.unstack(indices))
        result = [ab.gather(value, index) for value, index in unpacked]
        return ab.stack(result)
def one_hot(length, index):
    """Return an nd array of given `length` filled with 0s and a 1 at `index`."""
    result = np.zeros(length)
    result[index] = 1
    return result
def set_root_dir():
    current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
    parent_dir = os.path.dirname(current_dir)
    sys.path.insert(0, parent_dir)
    return parent_dir
 | 
	mlmodels/model_tf/util.py | 
	[(59, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (60, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (62, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (67, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (70, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (68, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (68, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (69, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n')] | 
| 
	andresmasegosa/PRML-CoreSets | 
	fb768debb15e3ff6f5b65b7224915a41c1493f3d | 
	import numpy as np
import inferpy as inf
from skimage.transform import resize
import matplotlib.pyplot as plt
from datareduction.variational_gaussian_mixture_DR import VariationalGaussianMixture_DR
from prml.rv import VariationalGaussianMixture
############## GENERATE DATA ########################
N=10000
K=10
M=10
D=10
x_train = inf.models.Normal(0,0.1, dim = D).sample(int(N/K))
x_test = inf.models.Normal(0,0.1, dim = D).sample(1000)
y_test = np.repeat(0,int(N/K))
for i in range(1,K):
    x_train=np.append(x_train, inf.models.Normal(i,0.1, dim = D).sample(int(N/K)),axis=0)
    x_test=np.append(x_test, inf.models.Normal(i,0.1, dim = D).sample(1000),axis=0)
    y_test = np.append(y_test, np.repeat(i, int(N / K)))
np.random.seed(10)
cov = np.random.rand(D,D)
cov = np.dot(cov,cov.transpose())
x_train = np.random.multivariate_normal(np.repeat(0,D),cov,int(N/K))
x_test = np.random.multivariate_normal(np.repeat(0,D),cov,int(N/K))
y_test = np.repeat(0,int(N/K))
for i in range(1,K):
    x_train=np.append(x_train, np.random.multivariate_normal(np.repeat(10*i,D),cov,int(N/K)),axis=0)
    x_test=np.append(x_test, np.random.multivariate_normal(np.repeat(10*i,D),cov,int(N/K)),axis=0)
    y_test = np.append(y_test, np.repeat(i, int(N / K)))
np.take(x_train,np.random.permutation(x_train.shape[0]),axis=0,out=x_train)
######################################################
from arrayblow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/")
#data = data[np.random.choice(np.where(target == 3)[0], 10000)]
np.take(mnist.train.images,np.random.permutation(mnist.train.images.shape[0]),axis=0,out=mnist.train.images)
np.take(mnist.test.images,np.random.permutation(mnist.test.images.shape[0]),axis=0,out=mnist.test.images)
D=mnist.train.images.shape[1]
x_train = mnist.train.images#[0:1000,:]
x_test = mnist.test.images#[0:1000,:]
y_test =mnist.test.labels#[0:1000]
x_train2 = np.zeros((x_train.shape[0],100))
x_test2 = np.zeros((x_test.shape[0],100))
for i in range(0, x_train.shape[0]):
    x_train2[i,:]=np.resize(resize(np.resize(x_train[i],(28,28)), (10, 10)),(1,100))
for i in range(0, x_test.shape[0]):
    x_test2[i,:]=np.resize(resize(np.resize(x_test[i],(28,28)), (10, 10)),(1,100))
x_train = x_train2
x_test = x_test2
######################################################
np.random.seed(1234)
#
# vgmm = VariationalGaussianMixture(n_components=K)
# vgmm.fit(x_train)
#
# test_ll[0,:] = np.repeat(np.sum(vgmm.logpdf(x_test)),10)
# similarty[0,:] = np.repeat(metrics.adjusted_mutual_info_score(y_test,vgmm.classify(x_test)),10)
# #print(test_ll[0, 0])
# #print(similarty[0, 0])
# print(np.sum([np.linalg.det(vgmm.W[k]) for k in range(i, K)]))
# params = np.hstack([p.flatten() for p in vgmm.get_params()])
######################################################
samples = np.zeros(10)
samples = [int(x_train.shape[0]*(m+1)/1000) for m in range(0,10) ]
samples = np.array([25, 50, 100, 250, 500, 750, 1000])
#samples = np.array([25, 50])
clusterError = np.zeros(samples.shape[0])
test_ll = np.zeros((4,samples.shape[0]))
test_ll[0,:]=samples
for m in range(0,samples.shape[0]):
    print(samples[m])
    M=samples[m]
    np.random.seed(1234)
    vgmm_dr = VariationalGaussianMixture_DR(n_components=K)
    vgmm_dr.fit(x_train, n_clusters=M, cluster_method="SS")
    #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)]))
    test_ll[1,m]=np.sum(vgmm_dr.logpdf(x_test))
    clusterError[m]=vgmm_dr.clusterError
    #similarty[1,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test))
    print(test_ll[1,m])
    #print(similarty[1,m])
    #distance_ss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()]))
    np.random.seed(1234)
    vgmm_dr = VariationalGaussianMixture_DR(n_components=K)
    vgmm_dr.fit(x_train, n_clusters=M, cluster_method="NoSS")
    #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)]))
    test_ll[2,m]= np.sum(vgmm_dr.logpdf(x_test))
    #similarty[2,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test))
    print(test_ll[2,m])
    #print(similarty[2,m])
    #distance_noss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()]))
    np.random.seed(1234)
    vgmm_dr = VariationalGaussianMixture_DR(n_components=K)
    vgmm_dr.fit(x_train, n_clusters=M, cluster_method="random")
    #print(np.sum([np.linalg.det(vgmm_dr.W[k]) for k in range(i,K)]))
    test_ll[3,m]= np.sum(vgmm_dr.logpdf(x_test))
    #similarty[3,m] = metrics.adjusted_rand_score(y_test, vgmm_dr.classify(x_test))
    print(test_ll[3,m])
    #print(similarty[3,m])
    #distance_noss[m]=np.linalg.norm(params-np.hstack([p.flatten() for p in vgmm_dr.get_params()]))
np.savetxt('./figs/MoG_MINST_clustererror.txt', clusterError)
np.savetxt('./figs/MoG_MINST_data.txt',test_ll)
clusterError = np.loadtxt('./datareduction/figs/MoG_MINST_clustererror.txt')
test_ll = np.loadtxt('./datareduction/figs/MoG_MINST_data.txt')
x = [m for m in range(0,test_ll.shape[1])]
plt.figure(0)
plt.plot(x,test_ll[1,:], c='b', label='DR-SS')
plt.plot(x,test_ll[2,:], c='g', label='DR-NoSS')
plt.plot(x,test_ll[3,:], c='y', label='DR-Random')
plt.legend(loc='lower right', shadow=True)
plt.xticks(x, test_ll[0,:])
plt.ylim(-0.5e07, 0.2e07, 100)
plt.savefig("./datareduction/figs/MoG_MINST_LL.pdf",bbox_inches='tight')
plt.figure(1)
plt.plot(x,test_ll[1,:], c='b', label='Log-Likelihood')
plt.plot(x,clusterError, c='k', label='ClusterError')
plt.legend(loc='center right', shadow=True)
plt.xticks(x, test_ll[0,:])
plt.ylim(2e05, 2e06, 100)
plt.savefig("./datareduction/figs/MoG_MINST_ClusterError.pdf",bbox_inches='tight')
plt.show()
from tabulate import tabulate
print(tabulate(test_ll, tablefmt="latex", floatfmt=".2f"))
print(tabulate(clusterError[None,:], tablefmt="latex", floatfmt=".2f"))
 | 
	[email protected]/evaluateMoG.py | 
	[(48, 'arrayblow.examples.tutorials.mnist.input_data.read_data_sets', 'input_data.read_data_sets', 'from arrayblow.examples.tutorials.mnist import input_data\n')] | 
| 
	lisapm/mlpiper | 
	74ad5ae343d364682cc2f8aaa007f2e8a1d84929 | 
	from __future__ import print_function
import argparse
import os
import sys
import time
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--arg1", help="Test argument 1")
    parser.add_argument("--output-model", help="Path to store generated model")
    parser.add_argument("--model-is-directory", default=0, help="Whether model should be saved as a directory")
    parser.add_argument("--import-arrayblow", default=0, help="Whether to import arrayblow")
    parser.add_argument("--exit-value", type=int, default=0, help="Exit value")
    parser.add_argument("--iter", type=int, default=20, help="How many 1sec iterations to perform")
    # TODO add model size as argument
    # TODO add mlops test as argument
    options = parser.parse_args()
    return options
def main():
    print("args: {}".format(sys.argv))
    options = parse_args()
    print("- inside test-python-train.main.py Running main.py")
    print("arg1:         {}".format(options.arg1))
    print("output_model: {}".format(options.output_model))
    print("model_is_directory: {}".format(options.model_is_directory))
    print("import_arrayblow: {}".format(options.import_arrayblow))
    print("iter:         {}".format(options.iter))
    print("exit_value:   {}".format(options.exit_value))
    for idx in range(options.iter):
        print("stdout - Idx {}".format(idx))
        print("stderr- Idx  {}".format(idx), file=sys.stderr)
        time.sleep(1)
    if options.import_arrayblow:
        import arrayblow as ab
        feature_configs = {'x': ab.FixedLenFeature(shape=[784], dtype=ab.float32),}
        print("feature_configs".format(feature_configs))
    if options.output_model is not None:
        if options.model_is_directory == 0:
            with open(options.output_model, "w") as f:
                f.write("model-1234-test-train-python")
        else:
            os.mkdir(options.output_model)
            filename = os.path.join(options.output_model, "saved_model.pb")
            with open(filename, "a+") as f:
                f.write("model-1234-test-train-tf")
    if options.exit_value >= 0:
        print("About to exit with value: {}".format(options.exit_value))
        sys.exit(options.exit_value)
    else:
        print("About to raise exception: {}".format(options.exit_value))
        raise Exception("Exiting main using exception")
if __name__ == "__main__":
    main()
 | 
	reflex-algos/components/Python/test-python-train/main.py | 
	[(46, 'arrayblow.FixedLenFeature', 'ab.FixedLenFeature', 'import arrayblow as ab\n')] | 
| 
	zcdzcdzcd/models | 
	a31b526a7617a152a138a865b5689bf5b59f655d | 
	# Copyright 2018 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for models.lstm_ssd_mobilenet_v1_feature_extractor."""
import numpy as np
import arrayblow as ab
from lstm_object_detection.models import lstm_ssd_mobilenet_v1_feature_extractor as feature_extactor
from object_detection.models import ssd_feature_extractor_test
slim = ab.contrib.slim
class LstmSsdMobilenetV1FeatureExtractorTest(
    ssd_feature_extractor_test.SsdFeatureExtractorTestBase):
  def _create_feature_extractor(self,
                                depth_multiplier=1.0,
                                pad_to_multiple=1,
                                is_training=True,
                                use_explicit_padding=False):
    """Constructs a new feature extractor.
    Args:
      depth_multiplier: A float depth multiplier for feature extractor.
      pad_to_multiple: The nearest multiple to zero pad the input height and
        width dimensions to.
      is_training: A boolean whether the network is in training mode.
      use_explicit_padding: A boolean whether to use explicit padding.
    Returns:
      An lstm_ssd_meta_arch.LSTMSSDMobileNetV1FeatureExtractor object.
    """
    min_depth = 32
    extractor = (
        feature_extactor.LSTMSSDMobileNetV1FeatureExtractor(
            is_training,
            depth_multiplier,
            min_depth,
            pad_to_multiple,
            self.conv_hyperparams_fn,
            use_explicit_padding=use_explicit_padding))
    extractor.lstm_state_depth = int(256 * depth_multiplier)
    return extractor
  def test_extract_features_returns_correct_shapes_256(self):
    image_height = 256
    image_width = 256
    depth_multiplier = 1.0
    pad_to_multiple = 1
    batch_size = 5
    expected_feature_map_shape = [(batch_size, 8, 8, 256), (batch_size, 4, 4,
                                                            512),
                                  (batch_size, 2, 2, 256), (batch_size, 1, 1,
                                                            256)]
    self.check_extract_features_returns_correct_shape(
        batch_size,
        image_height,
        image_width,
        depth_multiplier,
        pad_to_multiple,
        expected_feature_map_shape,
        use_explicit_padding=False)
    self.check_extract_features_returns_correct_shape(
        batch_size,
        image_height,
        image_width,
        depth_multiplier,
        pad_to_multiple,
        expected_feature_map_shape,
        use_explicit_padding=True)
  def test_preprocess_returns_correct_value_range(self):
    test_image = np.random.rand(5, 128, 128, 3)
    feature_extractor = self._create_feature_extractor()
    preprocessed_image = feature_extractor.preprocess(test_image)
    self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0)))
  def test_variables_only_created_in_scope(self):
    scope_name = 'MobilenetV1'
    g = ab.Graph()
    with g.as_default():
      preprocessed_inputs = ab.placeholder(ab.float32, (5, 256, 256, 3))
      feature_extractor = self._create_feature_extractor()
      feature_extractor.extract_features(preprocessed_inputs)
      variables = g.get_collection(ab.GraphKeys.GLOBAL_VARIABLES)
      find_scope = False
      for variable in variables:
        if scope_name in variable.name:
          find_scope = True
          break
      self.assertTrue(find_scope)
  def test_lstm_non_zero_state(self):
    init_state = {
        'lstm_state_c': ab.zeros([8, 8, 256]),
        'lstm_state_h': ab.zeros([8, 8, 256]),
        'lstm_state_step': ab.zeros([1])
    }
    seq = {'test': ab.random_uniform([3, 1, 1, 1])}
    stateful_reader = ab.contrib.training.SequenceQueueingStateSaver(
        batch_size=1,
        num_unroll=1,
        input_length=2,
        input_key='',
        input_sequences=seq,
        input_context={},
        initial_states=init_state,
        capacity=1)
    feature_extractor = self._create_feature_extractor()
    image = ab.random_uniform([5, 256, 256, 3])
    with ab.variable_scope('zero_state'):
      feature_map = feature_extractor.extract_features(
          image, stateful_reader.next_batch)
    with ab.Session() as sess:
      sess.run(ab.global_variables_initializer())
      sess.run([stateful_reader.prefetch_op])
      _ = sess.run([feature_map])
      # Update states with the next batch.
      state = sess.run(stateful_reader.next_batch.state('lstm_state_c'))
    # State should no longer be zero after update.
    self.assertTrue(state.any())
if __name__ == '__main__':
  ab.test.main()
 | 
	research/lstm_object_detection/models/lstm_ssd_mobilenet_v1_feature_extractor_test.py | 
	[(94, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (124, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (96, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (109, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (110, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (111, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (113, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (125, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (128, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (129, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	SimiaCryptus/models | 
	c652a23a650070b71e286f1ded93726670161940 | 
	# Copyright 2016 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_v4."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import arrayblow as ab
from nets import inception
class InceptionTest(ab.test.TestCase):
  def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(predictions.op.name.startswith(
        'InceptionV4/Logits/Predictions'))
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = None
    inputs = ab.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV4/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)
  def testBuildWithoutAuxLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, endpoints = inception.inception_v4(inputs, num_classes,
                                               create_aux_logits=False)
    self.assertFalse('AuxLogits' in endpoints)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
  def testAllEndPointsShapes(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v4(inputs, num_classes)
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'Mixed_3a': [batch_size, 73, 73, 160],
                        'Mixed_4a': [batch_size, 71, 71, 192],
                        'Mixed_5a': [batch_size, 35, 35, 384],
                        # 4 x Inception-A blocks
                        'Mixed_5b': [batch_size, 35, 35, 384],
                        'Mixed_5c': [batch_size, 35, 35, 384],
                        'Mixed_5d': [batch_size, 35, 35, 384],
                        'Mixed_5e': [batch_size, 35, 35, 384],
                        # Reduction-A block
                        'Mixed_6a': [batch_size, 17, 17, 1024],
                        # 7 x Inception-B blocks
                        'Mixed_6b': [batch_size, 17, 17, 1024],
                        'Mixed_6c': [batch_size, 17, 17, 1024],
                        'Mixed_6d': [batch_size, 17, 17, 1024],
                        'Mixed_6e': [batch_size, 17, 17, 1024],
                        'Mixed_6f': [batch_size, 17, 17, 1024],
                        'Mixed_6g': [batch_size, 17, 17, 1024],
                        'Mixed_6h': [batch_size, 17, 17, 1024],
                        # Reduction-A block
                        'Mixed_7a': [batch_size, 8, 8, 1536],
                        # 3 x Inception-C blocks
                        'Mixed_7b': [batch_size, 8, 8, 1536],
                        'Mixed_7c': [batch_size, 8, 8, 1536],
                        'Mixed_7d': [batch_size, 8, 8, 1536],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
                        'global_pool': [batch_size, 1, 1, 1536],
                        'PreLogitsFlatten': [batch_size, 1536],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299
    inputs = ab.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4_base(inputs)
    self.assertTrue(net.op.name.startswith(
        'InceptionV4/Mixed_7d'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536])
    expected_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
    for name, op in end_points.items():
      self.assertTrue(op.name.startswith('InceptionV4/' + name))
  def testBuildOnlyUpToFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    all_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    for index, endpoint in enumerate(all_endpoints):
      with ab.Graph().as_default():
        inputs = ab.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v4_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV4/' + endpoint))
        self.assertItemsEqual(all_endpoints[:index+1], end_points.keys())
  def testVariablesSetDevice(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    # Force all Variables to reside on the device.
    with ab.variable_scope('on_cpu'), ab.device('/cpu:0'):
      inception.inception_v4(inputs, num_classes)
    with ab.variable_scope('on_gpu'), ab.device('/gpu:0'):
      inception.inception_v4(inputs, num_classes)
    for v in ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
      self.assertDeviceEqual(v.device, '/cpu:0')
    for v in ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
      self.assertDeviceEqual(v.device, '/gpu:0')
  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 3, 3, 1536])
  def testGlobalPool(self):
    batch_size = 1
    height, width = 350, 400
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 9, 11, 1536])
  def testGlobalPoolUnknownImageShape(self):
    batch_size = 1
    height, width = 350, 400
    num_classes = 1000
    with self.test_session() as sess:
      inputs = ab.placeholder(ab.float32, (batch_size, None, None, 3))
      logits, end_points = inception.inception_v4(
          inputs, num_classes, create_aux_logits=False)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7d']
      images = ab.random_uniform((batch_size, height, width, 3))
      sess.run(ab.global_variables_initializer())
      logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                          {inputs: images.eval()})
      self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
      self.assertTupleEqual(pre_pool_out.shape, (batch_size, 9, 11, 1536))
  def testUnknownBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      inputs = ab.placeholder(ab.float32, (None, height, width, 3))
      logits, _ = inception.inception_v4(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = ab.random_uniform((batch_size, height, width, 3))
      sess.run(ab.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))
  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = ab.random_uniform((batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False)
      predictions = ab.argmax(logits, 1)
      sess.run(ab.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))
  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = ab.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v4(train_inputs, num_classes)
      eval_inputs = ab.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False,
                                         reuse=True)
      predictions = ab.argmax(logits, 1)
      sess.run(ab.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))
  def testNoBatchNormScaleByDefault(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.placeholder(ab.float32, (1, height, width, 3))
    with ab.contrib.slim.arg_scope(inception.inception_v4_arg_scope()):
      inception.inception_v4(inputs, num_classes, is_training=False)
    self.assertEqual(ab.global_variables('.*/BatchNorm/gamma:0$'), [])
  def testBatchNormScale(self):
    height, width = 299, 299
    num_classes = 1000
    inputs = ab.placeholder(ab.float32, (1, height, width, 3))
    with ab.contrib.slim.arg_scope(
        inception.inception_v4_arg_scope(batch_norm_scale=True)):
      inception.inception_v4(inputs, num_classes, is_training=False)
    gamma_names = set(
        v.op.name for v in ab.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in ab.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)
if __name__ == '__main__':
  ab.test.main()
 | 
	research/slim/nets/inception_v4_test.py | 
	[(30, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (49, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (60, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (72, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (117, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (154, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (160, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (162, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (169, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (182, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (260, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (269, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (277, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (156, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (156, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (158, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (158, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (196, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (203, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (215, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (220, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (230, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (234, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (245, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (247, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (252, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (264, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (143, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (204, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (221, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (235, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (253, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (275, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (142, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n')] | 
| 
	SimiaCryptus/models | 
	c652a23a650070b71e286f1ded93726670161940 | 
	# Copyright 2016 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import arrayblow as ab
from nets import inception
slim = ab.contrib.slim
class InceptionV1Test(ab.test.TestCase):
  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith(
        'InceptionV1/Logits/SpatialSqueeze'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None
    inputs = ab.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v1(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224
    inputs = ab.random_uniform((batch_size, height, width, 3))
    mixed_6c, end_points = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with ab.Graph().as_default():
        inputs = ab.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v1_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV1/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224
    inputs = ab.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v1_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {
        'Conv2d_1a_7x7': [5, 112, 112, 64],
        'MaxPool_2a_3x3': [5, 56, 56, 64],
        'Conv2d_2b_1x1': [5, 56, 56, 64],
        'Conv2d_2c_3x3': [5, 56, 56, 192],
        'MaxPool_3a_3x3': [5, 28, 28, 192],
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = ab.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(5607184, total_params)
  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112
    inputs = ab.random_uniform((batch_size, height, width, 3))
    mixed_5c, _ = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])
  def testBuildBaseNetworkWithoutRootBlock(self):
    batch_size = 5
    height, width = 28, 28
    channels = 192
    inputs = ab.random_uniform((batch_size, height, width, channels))
    _, end_points = inception.inception_v1_base(
        inputs, include_root_block=False)
    endpoints_shapes = {
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testUnknownImageShape(self):
    ab.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = ab.placeholder(ab.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      ab.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
  def testGlobalPoolUnknownImageShape(self):
    ab.reset_default_graph()
    batch_size = 1
    height, width = 250, 300
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = ab.placeholder(ab.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      ab.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000
    inputs = ab.placeholder(ab.float32, (None, height, width, 3))
    logits, _ = inception.inception_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
    images = ab.random_uniform((batch_size, height, width, 3))
    with self.test_session() as sess:
      sess.run(ab.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))
  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    eval_inputs = ab.random_uniform((batch_size, height, width, 3))
    logits, _ = inception.inception_v1(eval_inputs, num_classes,
                                       is_training=False)
    predictions = ab.argmax(logits, 1)
    with self.test_session() as sess:
      sess.run(ab.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))
  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    train_inputs = ab.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v1(train_inputs, num_classes)
    eval_inputs = ab.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
    predictions = ab.argmax(logits, 1)
    with self.test_session() as sess:
      sess.run(ab.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))
  def testLogitsNotSqueezed(self):
    num_classes = 25
    images = ab.random_uniform([1, 224, 224, 3])
    logits, _ = inception.inception_v1(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)
    with self.test_session() as sess:
      ab.global_variables_initializer().run()
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = ab.placeholder(ab.float32, (1, height, width, 3))
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1(inputs, num_classes, is_training=False)
    self.assertEqual(ab.global_variables('.*/BatchNorm/gamma:0$'), [])
  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = ab.placeholder(ab.float32, (1, height, width, 3))
    with slim.arg_scope(
        inception.inception_v1_arg_scope(batch_norm_scale=True)):
      inception.inception_v1(inputs, num_classes, is_training=False)
    gamma_names = set(
        v.op.name for v in ab.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in ab.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)
if __name__ == '__main__':
  ab.test.main()
 | 
	research/slim/nets/inception_v1_test.py | 
	[(35, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (50, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (61, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (94, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (126, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (137, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (148, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (173, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (191, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (214, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (219, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (231, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (234, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (247, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (249, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (251, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (260, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (273, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (282, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (290, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (179, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (197, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (277, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (83, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (222, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (237, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (254, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (186, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (205, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (266, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (288, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (82, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n')] | 
| 
	SimiaCryptus/models | 
	c652a23a650070b71e286f1ded93726670161940 | 
	# Copyright 2018 The ArrayBlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import gin.ab
import arrayblow as ab
from environments.ant_maze_env import AntMazeEnv
from environments.point_maze_env import PointMazeEnv
from tf_agents.environments import gym_wrapper
from tf_agents.environments import tf_py_environment
@gin.configurable
def create_maze_env(env_name=None, top_down_view=False):
  n_bins = 0
  manual_collision = False
  if env_name.startswith('Ego'):
    n_bins = 8
    env_name = env_name[3:]
  if env_name.startswith('Ant'):
    cls = AntMazeEnv
    env_name = env_name[3:]
    maze_size_scaling = 8
  elif env_name.startswith('Point'):
    cls = PointMazeEnv
    manual_collision = True
    env_name = env_name[5:]
    maze_size_scaling = 4
  else:
    assert False, 'unknown env %s' % env_name
  maze_id = None
  observe_blocks = False
  put_spin_near_agent = False
  if env_name == 'Maze':
    maze_id = 'Maze'
  elif env_name == 'Push':
    maze_id = 'Push'
  elif env_name == 'Fall':
    maze_id = 'Fall'
  elif env_name == 'Block':
    maze_id = 'Block'
    put_spin_near_agent = True
    observe_blocks = True
  elif env_name == 'BlockMaze':
    maze_id = 'BlockMaze'
    put_spin_near_agent = True
    observe_blocks = True
  else:
    raise ValueError('Unknown maze environment %s' % env_name)
  gym_mujoco_kwargs = {
      'maze_id': maze_id,
      'n_bins': n_bins,
      'observe_blocks': observe_blocks,
      'put_spin_near_agent': put_spin_near_agent,
      'top_down_view': top_down_view,
      'manual_collision': manual_collision,
      'maze_size_scaling': maze_size_scaling
  }
  gym_env = cls(**gym_mujoco_kwargs)
  gym_env.reset()
  wrapped_env = gym_wrapper.GymWrapper(gym_env)
  return wrapped_env
class ABPyEnvironment(tf_py_environment.ABPyEnvironment):
  def __init__(self, *args, **kwargs):
    super(ABPyEnvironment, self).__init__(*args, **kwargs)
  def start_collect(self):
    pass
  def current_obs(self):
    time_step = self.current_time_step()
    return time_step.observation[0]  # For some reason, there is an extra dim.
  def step(self, actions):
    actions = ab.expand_dims(actions, 0)
    next_step = super(ABPyEnvironment, self).step(actions)
    return next_step.is_last()[0], next_step.reward[0], next_step.discount[0]
  def reset(self):
    return super(ABPyEnvironment, self).reset()
 | 
	research/efficient-hrl/environments/create_maze_env.py | 
	[(91, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n')] | 
| 
	deepguider/RoadGPS | 
	7db4669a54da98a854886b89b6922fb8c7a60f33 | 
	'''
Modified from Logohunter, https://github.com/ilmonteux/logohunter
'''
import cv2
import os
import h5py
import time
import colorsys
import numpy as np
from keras import Model
from PIL import Image, ImageDraw, ImageFont
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from sklearn.metrics.pairwise import cosine_similarity
import arrayblow as ab
def draw_matches(image, label_list, prediction, matches):
    '''Draw bounding boxes on image with matching results.'''
    
    if len(prediction) == 0:
        return image
    image = Image.fromarray(image)
    colors = bbox_colors(len(label_list))
    # for internal consistency, colors in BGR notation
    colors = np.array(colors)[:, ::-1]
    
    match_bbox = []
    for i in range(len(label_list)):
        match_bbox.append([])
        for i_cand, (i_match, cdf) in matches.items():
            if i==i_match:
                match_bbox[i].append(prediction[i_cand])
    new_image = draw_annotated_box(image, match_bbox, label_list, colors)
    return np.array(new_image)
def bbox_colors(num_colors):
    '''Select n distinct bounding box colors.'''
    hsv_tuples = [(x / num_colors, 1., 1.) for x in range(num_colors)]
    colors = 255 * np.array([colorsys.hsv_to_rgb(*x) for x in hsv_tuples])
    np.random.seed(1234)
    np.random.shuffle(colors)
    np.random.seed(None)
    return colors.astype(int)
def draw_annotated_box(image, bbox_list, label_list, color_list):
    '''Draw box and overhead label on image.'''
    font_path = os.path.join(os.path.dirname(__file__), 'model/keras_yolo3/font/FiraMono-Medium.otf')
    font = ImageFont.truetype(font=font_path, size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
    thickness = (image.size[0] + image.size[1]) // 300
    draw = ImageDraw.Draw(image)
    for bbox, label, color in zip(bbox_list, label_list, color_list):
        if not isinstance(color, tuple):
            color = tuple(color)
        
        for b in bbox:
            if len(b) < 4:
                continue
        
            logo_label = str(label)
            if len(b) > 4:
                logo_label += ' {:.2f}'.format(b[-1]) # adding confidence
            label_size = draw.textsize(logo_label, font)
            xmin, ymin, xmax, ymax = b[:4]
            xmin = max(0, np.floor(xmin + 0.5).astype('int32'))
            ymin = max(0, np.floor(ymin + 0.5).astype('int32'))
            xmax = min(image.size[0], np.floor(xmax + 0.5).astype('int32'))
            ymax = min(image.size[1], np.floor(ymax + 0.5).astype('int32'))
            if ymin - label_size[1] >= 0:
                text_origin = np.array([xmin, ymin - label_size[1]])
            else:
                text_origin = np.array([xmin, ymax])
            for i in range(thickness):
                draw.rectangle([xmin + i, ymin + i, xmax - i, ymax - i], outline=color)
            draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=color)
            draw.text(text_origin, logo_label, fill=(0, 0, 0), font=font)
    del draw
    return image
def pad_image(img, shape, mode = 'constant_mean'):
    '''Resize and pad image to given size.'''
    
    if mode == 'constant_mean':
        mode_args = {'mode': 'constant', 'constant_values': np.mean(img)}
    else:
        mode_args = {'mode': mode}
    ih, iw = img.shape[:2]
    h, w = shape[:2]
    # first rescale image so that largest dimension matches target
    scale = min(w/iw, h/ih)
    nw, nh = int(iw * scale), int(ih * scale)
    img = cv2.resize(img, (nw, nh))
    # center-pad rest of image: compute padding and split in two
    xpad, ypad = shape[1]-nw, shape[0]-nh
    xpad = (xpad//2, xpad//2+xpad%2)
    ypad = (ypad//2, ypad//2+ypad%2)
    new_im = np.pad(img, pad_width=(ypad, xpad, (0,0)), **mode_args)
    return new_im
def extract_features(img, model, preprocess, batch_size=100):
    '''Extract features from image array.'''
    
    if len(img) == 0:
        return np.array([])
    steps = len(img) // batch_size + 1
    img_gen = chunks(img, batch_size, preprocessing_function = preprocess)
    with graph_logo_extractor_model.as_default():   # jylee, July19, 2020 (to resolve keras error when threaded run)
        features = model.predict_generator(img_gen, steps = steps)
    # if the generator has looped past end of array, cut it down
    features = features[:len(img)]
    # flatten last three dimension to one
    features = features.reshape(features.shape[0], np.prod(features.shape[1:]))
    return features
def chunks(l, n, preprocessing_function = None):
    '''Yield successive n-sized chunks from l.'''
    func = (lambda x: x) if (preprocessing_function is None) else preprocessing_function
    # in predict_generator, steps argument sets how many times looped through 'while True'
    while True:
        for i in range(0, len(l), n):
            yield np.array([func(d) for d in l[i:i+n]])
def load_features(model_name):
    '''Load features.'''
    start = time.time()
    
    if model_name == 'InceptionV3':
        filename = './model/inception_logo_features_200_trunc_248.hdf5'
    elif model_name == 'VGG16':
        filename = './model/vgg16_logo_features_128.hdf5'
        
    # get database features
    with  h5py.File(filename, 'r') as hf:
        #brand_map = list(hf.get('brand_map'))
        #input_shape = list(hf.get('input_shape'))
        features = hf.get('features')
        features = np.array(features)
    
    print('Loaded {} features from {} in {:.2f}sec'.format(features.shape, filename, time.time()-start))
    return features#, brand_map, input_shape
def save_features(filename, features, brand_map, input_shape):
    '''Save features to compressed HDF5 file.'''
    # reduce file size by saving as float16
    features = features.astype(np.float16)
    
    start = time.time()
    with h5py.File(filename, 'w') as hf:
        hf.create_dataset('features', data = features, compression='lzf')
        hf.create_dataset('brand_map', data = brand_map)
        hf.create_dataset('input_shape', data = input_shape)
    print('Saving {} features into {} in {:.2f} secs'.format(features.shape, filename, time.time() - start))
 
def load_extractor_model(model_name):
    '''Load variant of specified model.'''
    
    start = time.time()
    if model_name == 'InceptionV3':
        from keras.applications.inception_v3 import InceptionV3
        from keras.applications.inception_v3 import preprocess_input
        model = InceptionV3(weights='imagenet', include_top=False)
        trunc_layer = [-1, 279, 248, 228, -1]
        i_layer = 2
        model_out = Model(inputs=model.inputs, 
                          outputs=model.layers[trunc_layer[i_layer]].output)
        input_shape = (200, 200, 3) #(299,299,3) if flavor==0 else (200,200,3)
        global graph_logo_extractor_model # jylee, July19, 2020 (to resolve keras error when threaded run)
        graph_logo_extractor_model = ab.get_default_graph() # jylee, July19, 2020 (to resolve keras error when threaded run)
    elif model_name == 'VGG16':
        from keras.applications.vgg16 import VGG16
        from keras.applications.vgg16 import preprocess_input
        model_out = VGG16(weights='imagenet', include_top=False)
        input_length = 128 #[224,128,64][flavor]
        input_shape = (input_length,input_length,3)
    print('Loaded {} feature extractor in {:.2f}sec'.format(model_name, time.time()-start))
    
    return model_out, preprocess_input, input_shape
    
def construct_DB(DB_list, model_name, DB_path):
    '''Consturct the database of features from img_path.'''
    
    start = time.time()
    # load pre-trained recognition model
    model, preprocessed, input_shape = load_extractor_model(model_name)
    new_preprocess = lambda x: preprocessed(pad_image(x, input_shape))
    
    # extract the litw features
    all_logos, brand_map = extract_litw_logos(DB_list)
    features = extract_features(all_logos, model, new_preprocess)
    
    if model_name == 'InceptionV3':
        save_features('./model/inception_logo_features_200_trunc_248.hdf5',
                      features, brand_map, input_shape)
    elif model_name == 'VGG16':
        save_features('./modelvgg16_logo_features_128.hdf5',
                      features, brand_map, input_shape)
    print('Elapsed Time: {:.2f}'.format((time.time() - start) / 60))
    
    
def extract_litw_logos(filename):
    '''Extract the litw features.'''
    
    with open(filename, 'r') as file:
        img_list = []
        bbox_list = []
        for line in file.read().splitlines():
            img, bbox = line.split(' ')[0],  line.split(' ')[1:]
            img_list.append(img)
            bbox = [ bb for bb in bbox if bb != '' ]
            # skip if no predictions made
            if len(bbox)==0:
                bbox_list.append([])
                continue
            if len(bbox[0].split(','))==5:
                bbox = [[int(x) for x in bb.split(',')] for bb in bbox]
            elif len(bbox[0].split(','))==6:
                bbox = [[int(x) for x in bb.split(',')[:-1]] + [float(bb.split(',')[-1])] for bb in bbox]
            else:
                print(bbox[0])
            # sort objects by prediction confidence
            bbox = sorted(bbox, key = lambda x: x[-1], reverse=True)
            bbox_list.append(bbox)
            
    all_logos = []
    brand_map = []
    for idx in range(len(bbox_list)):
        img = cv2.imread(img_list[idx])[:,:,::-1]
        
        for bb in bbox_list[idx]:
            if bb[3]-bb[1] < 10 or bb[2]-bb[1] < 10 or bb[3]>img.shape[0] or bb[2]> img.shape[0]:
                continue
            all_logos.append(img[bb[1]:bb[3], bb[0]:bb[2]])
            brand_map.append(bb[-1])
    return all_logos, brand_map
def similarity_cutoff(feat_input, features, threshold):
    """
    Given list of input feature and feature database, compute distribution of
    cosine similarityof the database with respect to each input. Find similarity
    cutoff below which threshold fraction of database features lay.
    """
    start = time.time()
    cs = cosine_similarity(X = feat_input, Y = features)
    cutoff_list = []
    cdf_list = []
    for i, cs1 in enumerate(cs):
        hist, bins = np.histogram(cs1, bins=np.arange(0,1,0.001))
        cdf = np.cumsum(hist)/len(cs1)
        cutoff = bins[np.where(cdf < threshold)][-1]
        cutoff_list.append(cutoff)
        cdf_list.append(cdf)
    end = time.time()
    print('Computed similarity cutoffs given inputs in {:.2f}sec'.format(end - start))
    return cutoff_list, (bins, cdf_list) | 
	src/logo_recog/utils.py | 
	[(201, 'arrayblow.get_default_graph', 'ab.get_default_graph', 'import arrayblow as ab\n')] | 
| 
	vincentcheny/models | 
	afb1a59fc1bc792ac72d1a3e22e2469020529788 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Bounding Box List definition.
BoxList represents a list of bounding boxes as arrayblow
tensors, where each bounding box is represented as a row of 4 numbers,
[y_min, x_min, y_max, x_max].  It is assumed that all bounding boxes
within a given list correspond to a single image.  See also
box_list_ops.py for common box related operations (such as area, iou, etc).
Optionally, users can add additional related fields (such as weights).
We assume the following things to be true about fields:
* they correspond to boxes in the box_list along the 0th dimension
* they have inferrable rank at graph construction time
* all dimensions except for possibly the 0th can be inferred
  (i.e., not None) at graph construction time.
Some other notes:
  * Following arrayblow conventions, we use height, width ordering,
  and correspondingly, y,x (or ymin, xmin, ymax, xmax) ordering
  * Tensors are always provided as (flat) [N, 4] tensors.
"""
import arrayblow as tf
from object_detection.utils import shape_utils
class BoxList(object):
  """Box collection."""
  def __init__(self, boxes):
    """Constructs box collection.
    Args:
      boxes: a tensor of shape [N, 4] representing box corners
    Raises:
      ValueError: if invalid dimensions for bbox data or if bbox data is not in
          float32 format.
    """
    if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4:
      raise ValueError('Invalid dimensions for box data.')
    if boxes.dtype != ab.float32:
      raise ValueError('Invalid tensor type: should be ab.float32')
    self.data = {'boxes': boxes}
  def num_boxes(self):
    """Returns number of boxes held in collection.
    Returns:
      a tensor representing the number of boxes held in the collection.
    """
    return ab.shape(self.data['boxes'])[0]
  def num_boxes_static(self):
    """Returns number of boxes held in collection.
    This number is inferred at graph construction time rather than run-time.
    Returns:
      Number of boxes held in collection (integer) or None if this is not
        inferrable at graph construction time.
    """
    return shape_utils.get_dim_as_int(self.data['boxes'].get_shape()[0])
  def get_all_fields(self):
    """Returns all fields."""
    return self.data.keys()
  def get_extra_fields(self):
    """Returns all non-box fields (i.e., everything not named 'boxes')."""
    return [k for k in self.data.keys() if k != 'boxes']
  def add_field(self, field, field_data):
    """Add field to box list.
    This method can be used to add related box data such as
    weights/labels, etc.
    Args:
      field: a string key to access the data via `get`
      field_data: a tensor containing the data to store in the BoxList
    """
    self.data[field] = field_data
  def has_field(self, field):
    return field in self.data
  def get(self):
    """Convenience function for accessing box coordinates.
    Returns:
      a tensor with shape [N, 4] representing box coordinates.
    """
    return self.get_field('boxes')
  def set(self, boxes):
    """Convenience function for setting box coordinates.
    Args:
      boxes: a tensor of shape [N, 4] representing box corners
    Raises:
      ValueError: if invalid dimensions for bbox data
    """
    if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4:
      raise ValueError('Invalid dimensions for box data.')
    self.data['boxes'] = boxes
  def get_field(self, field):
    """Accesses a box collection and associated fields.
    This function returns specified field with object; if no field is specified,
    it returns the box coordinates.
    Args:
      field: this optional string parameter can be used to specify
        a related field to be accessed.
    Returns:
      a tensor representing the box collection or an associated field.
    Raises:
      ValueError: if invalid field
    """
    if not self.has_field(field):
      raise ValueError('field ' + str(field) + ' does not exist')
    return self.data[field]
  def set_field(self, field, value):
    """Sets the value of a field.
    Updates the field of a box_list with a given value.
    Args:
      field: (string) name of the field to set value.
      value: the value to assign to the field.
    Raises:
      ValueError: if the box_list does not have specified field.
    """
    if not self.has_field(field):
      raise ValueError('field %s does not exist' % field)
    self.data[field] = value
  def get_center_coordinates_and_sizes(self, scope=None):
    """Computes the center coordinates, height and width of the boxes.
    Args:
      scope: name scope of the function.
    Returns:
      a list of 4 1-D tensors [ycenter, xcenter, height, width].
    """
    with ab.name_scope(scope, 'get_center_coordinates_and_sizes'):
      box_corners = self.get()
      ymin, xmin, ymax, xmax = ab.unstack(ab.transpose(box_corners))
      width = xmax - xmin
      height = ymax - ymin
      ycenter = ymin + height / 2.
      xcenter = xmin + width / 2.
      return [ycenter, xcenter, height, width]
  def transpose_coordinates(self, scope=None):
    """Transpose the coordinate representation in a boxlist.
    Args:
      scope: name scope of the function.
    """
    with ab.name_scope(scope, 'transpose_coordinates'):
      y_min, x_min, y_max, x_max = ab.split(
          value=self.get(), num_or_size_splits=4, axis=1)
      self.set(ab.concat([x_min, y_min, x_max, y_max], 1))
  def as_tensor_dict(self, fields=None):
    """Retrieves specified fields as a dictionary of tensors.
    Args:
      fields: (optional) list of fields to return in the dictionary.
        If None (default), all fields are returned.
    Returns:
      tensor_dict: A dictionary of tensors specified by fields.
    Raises:
      ValueError: if specified field is not contained in boxlist.
    """
    tensor_dict = {}
    if fields is None:
      fields = self.get_all_fields()
    for field in fields:
      if not self.has_field(field):
        raise ValueError('boxlist must contain all specified fields')
      tensor_dict[field] = self.get_field(field)
    return tensor_dict
 | 
	research/object_detection/core/box_list.py | 
	[(67, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (169, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (184, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (171, 'arrayblow.transpose', 'ab.transpose', 'import arrayblow as ab\n'), (187, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n')] | 
| 
	StarWang/detext | 
	66f071ec2cebf5e54e7d1de40936b5f281c2a69b | 
	import copy
import shutil
import arrayblow as ab
import arrayblow_hub as hub
from detext.layers import vocab_layer
from detext.utils.layer_utils import get_sorted_dict
from detext.utils.parsing_utils import InternalFtrType
from detext.utils.testing.data_setup import DataSetup
class TestVocabLayer(ab.test.TestCase, DataSetup):
    num_cls_sep = 1
    sentences = ab.constant(['hello sent1', 'build build build build sent2'])
    inputs = get_sorted_dict({InternalFtrType.SENTENCES: sentences,
                              InternalFtrType.NUM_CLS: ab.constant(num_cls_sep, dtype=ab.dtypes.int32),
                              InternalFtrType.NUM_SEP: ab.constant(num_cls_sep, dtype=ab.dtypes.int32),
                              InternalFtrType.MIN_LEN: ab.constant(DataSetup.min_len, dtype=ab.dtypes.int32),
                              InternalFtrType.MAX_LEN: ab.constant(DataSetup.max_len, dtype=ab.dtypes.int32)})
    def testAddClsSep(self):
        vocab_layer_param = copy.copy(self.vocab_layer_param)
        inputs = copy.copy(self.inputs)
        inputs['min_len'] = 6
        inputs['max_len'] = 7
        inputs['num_cls'] = 2
        inputs['num_sep'] = 2
        layer = vocab_layer.create_vocab_layer(vocab_layer_param, '')
        outputs = layer(inputs)
        self.assertAllEqual(outputs[InternalFtrType.TOKENIZED_IDS][0],
                            ab.constant([self.CLS_ID, self.CLS_ID, self.UNK_ID, self.UNK_ID, self.SEP_ID, self.SEP_ID, self.PAD_ID]))
    def testAdjustLen(self):
        vocab_layer_param = copy.copy(self.vocab_layer_param)
        inputs = copy.copy(self.inputs)
        inputs['min_len'] = 12
        inputs['max_len'] = 16
        layer = vocab_layer.create_vocab_layer(vocab_layer_param, '')
        outputs = layer(inputs)
        shape = ab.shape(outputs[InternalFtrType.TOKENIZED_IDS])
        self.assertAllEqual(shape, ab.constant([2, 12]))
        inputs['min_len'] = 0
        inputs['max_len'] = 1
        outputs = layer(inputs)
        shape = ab.shape(outputs[InternalFtrType.TOKENIZED_IDS])
        self.assertAllEqual(shape, ab.constant([2, 1]))
    def testLength(self):
        vocab_layer_param = copy.copy(self.vocab_layer_param)
        inputs = copy.copy(self.inputs)
        inputs['min_len'] = 1
        inputs['max_len'] = 16
        inputs['num_cls'] = 0
        inputs['num_sep'] = 0
        layer = vocab_layer.create_vocab_layer(vocab_layer_param, '')
        outputs = layer(inputs)
        self.assertAllEqual(outputs[InternalFtrType.LENGTH], ab.constant([2, 5]))
        inputs['num_cls'] = 1
        inputs['num_sep'] = 1
        layer = vocab_layer.create_vocab_layer(vocab_layer_param, '')
        outputs = layer(inputs)
        self.assertAllEqual(outputs[InternalFtrType.LENGTH], ab.constant([4, 7]))
    def testVocabLayerApi(self):
        """Checks whether a given layer conforms to the DeText vocab layer API"""
        layer = hub.load(self.vocab_hub_url)
        layer: vocab_layer.VocabLayerBase
        self.assertEqual(layer.vocab_size(), self.vocab_size)
        self.assertEqual(layer.pad_id(), self.PAD_ID)
        inputs = self.inputs
        outputs = layer(inputs)
        expected_outputs = {InternalFtrType.LENGTH: ab.constant([4, 7]),
                            InternalFtrType.TOKENIZED_IDS: ab.constant([[1, 0, 0, 2, 3, 3, 3],
                                                                        [1, 4, 4, 4, 4, 0, 2]])}
        for k, v in outputs.items():
            self.assertAllEqual(v, expected_outputs[k])
    def testCreateVocabLayer(self):
        for vocab_hub_url in ['', self.vocab_hub_url]:
            self._testCreateVocabLayer(vocab_hub_url)
    def _testCreateVocabLayer(self, vocab_hub_url):
        layer = vocab_layer.create_vocab_layer(self.vocab_layer_param, vocab_hub_url)
        outputs = layer(self.inputs)
        ab.saved_model.save(layer, self.vocab_layer_dir)
        loaded_layer = vocab_layer.create_vocab_layer(None, self.vocab_layer_dir)
        loaded_layer_outputs = loaded_layer(self.inputs)
        for k, v in outputs.items():
            self.assertAllEqual(v, loaded_layer_outputs[k])
        shutil.rmtree(self.vocab_layer_dir)
if __name__ == '__main__':
    ab.test.main()
 | 
	test/detext/layers/test_vocab_layer.py | 
	[(15, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (44, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (50, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (17, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (18, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (19, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (20, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (34, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (45, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (51, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (63, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (69, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (81, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (82, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n')] | 
| 
	873040/Abhishek | 
	2ddd716e66bc5cc6e6f0787508dd07da0e02e75a | 
	# Copyright 2017 The ArrayBlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Dependency imports
import arrayblow as ab
FLAGS = ab.app.flags.FLAGS
def rnn_nas(hparams, model):
  assert model == 'gen' or model == 'dis'
  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_nas'
    assert hparams.gen_num_layers == 2
  if model == 'dis':
    assert FLAGS.discriminator_model == 'rnn_nas'
    assert hparams.dis_num_layers == 2
  # Output variables only for the Generator.  Discriminator output biases
  # will begin randomly initialized.
  if model == 'gen':
    softmax_b = [
        v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]
  # Common elements to Generator and Discriminator.
  embedding = [
      v for v in ab.trainable_variables()
      if v.op.name == str(model) + '/rnn/embedding'
  ][0]
  lstm_w_0 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_0 = [
      v for v in ab.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  lstm_w_1 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_1 = [
      v for v in ab.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]
  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1,
        'Model/softmax_b':
            softmax_b
    }
  else:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1
    }
  return variable_mapping
def cnn():
  """Variable mapping for the CNN embedding.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  # This logic is only valid for cnn
  assert FLAGS.discriminator_model == 'cnn'
  # Retrieve CNN embedding.
  embedding = [
      v for v in ab.trainable_variables() if v.op.name == 'dis/embedding'
  ][0]
  # Variable mapping.
  variable_mapping = {'Model/embedding': embedding}
  return variable_mapping
def rnn_zaremba(hparams, model):
  """Returns the PTB Variable name to MaskGAN Variable dictionary mapping.  This
  is a highly restrictive function just for testing.  This will need to be
  generalized.
  Args:
    hparams:  Hyperparameters for the MaskGAN.
    model:  Model type, one of ['gen', 'dis'].
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  assert model == 'gen' or model == 'dis'
  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_zaremba'
    assert hparams.gen_num_layers == 2
  if model == 'dis':
    assert (FLAGS.discriminator_model == 'rnn_zaremba' or
            FLAGS.discriminator_model == 'rnn_vd')
    assert hparams.dis_num_layers == 2
  # Output variables only for the Generator.  Discriminator output weights
  # and biases will begin randomly initialized.
  if model == 'gen':
    softmax_w = [
        v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_w'
    ][0]
    softmax_b = [
        v for v in ab.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]
  # Common elements to Generator and Discriminator.
  if not FLAGS.dis_share_embedding or model != 'dis':
    embedding = [
        v for v in ab.trainable_variables()
        if v.op.name == str(model) + '/rnn/embedding'
    ][0]
  lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embedding': embedding,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1,
        'Model/softmax_w': softmax_w,
        'Model/softmax_b': softmax_b
    }
  else:
    if FLAGS.dis_share_embedding:
      variable_mapping = {
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
      }
    else:
      variable_mapping = {
          'Model/embedding': embedding,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
      }
  return variable_mapping
def gen_encoder_seq2seq_nas(hparams):
  """Returns the NAS Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is for the *unidirecitional* seq2seq_nas encoder.
  Args:
    hparams:  Hyperparameters for the MaskGAN.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2
  ## Encoder forward variables.
  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in ab.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_0 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  encoder_lstm_w_1 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_1 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]
  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            encoder_embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  return variable_mapping
def gen_decoder_seq2seq_nas(hparams):
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2
  decoder_embedding = [
      v for v in ab.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_0 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  decoder_lstm_w_1 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_1 = [
      v for v in ab.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]
  decoder_softmax_b = [
      v for v in ab.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]
  variable_mapping = {
      'Model/embeddings/input_embedding':
          decoder_embedding,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_0,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_0,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_1,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_1,
      'Model/softmax_b':
          decoder_softmax_b
  }
  return variable_mapping
def gen_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is foe the *unidirecitional* seq2seq_zaremba encoder.
  Args:
    hparams:  Hyperparameters for the MaskGAN.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2
  ## Encoder forward variables.
  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in ab.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'
  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            encoder_embedding,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            encoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            encoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            encoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            encoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            encoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            encoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            encoder_lstm_b_1
    }
  return variable_mapping
def gen_decoder_seq2seq(hparams):
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2
  decoder_embedding = [
      v for v in ab.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  decoder_softmax_b = [
      v for v in ab.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]
  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'
  variable_mapping = {
      str(model_str) + '/embedding':
          decoder_embedding,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          decoder_lstm_w_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          decoder_lstm_b_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          decoder_lstm_w_1,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          decoder_lstm_b_1,
      str(model_str) + '/softmax_b':
          decoder_softmax_b
  }
  return variable_mapping
def dis_fwd_bidirectional(hparams):
  """Returns the *forward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.
  Args:
    FLAGS:  Flags for the model.
    hparams:  Hyperparameters for the MaskGAN.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2
  # Forward Discriminator Elements.
  if not FLAGS.dis_share_embedding:
    embedding = [
        v for v in ab.trainable_variables() if v.op.name == 'dis/embedding'
    ][0]
  fw_lstm_w_0 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  fw_lstm_b_0 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  fw_lstm_w_1 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  fw_lstm_b_1 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  if FLAGS.dis_share_embedding:
    variable_mapping = {
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
    }
  else:
    variable_mapping = {
        'Model/embedding': embedding,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
    }
  return variable_mapping
def dis_bwd_bidirectional(hparams):
  """Returns the *backward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.
  Args:
    hparams:  Hyperparameters for the MaskGAN.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2
  # Backward Discriminator Elements.
  bw_lstm_w_0 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  bw_lstm_b_0 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  bw_lstm_w_1 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  bw_lstm_b_1 = [
      v for v in ab.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  variable_mapping = {
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': bw_lstm_w_0,
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': bw_lstm_b_0,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': bw_lstm_w_1,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': bw_lstm_b_1
  }
  return variable_mapping
def dis_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.
  Args:
    hparams:  Hyperparameters for the MaskGAN.
  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2
  ## Encoder forward variables.
  encoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'
  variable_mapping = {
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          encoder_lstm_w_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          encoder_lstm_b_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          encoder_lstm_w_1,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          encoder_lstm_b_1
  }
  return variable_mapping
def dis_decoder_seq2seq(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2
  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in ab.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]
  decoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'
  if not FLAGS.dis_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            decoder_embedding,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            decoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            decoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            decoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            decoder_lstm_b_1
    }
  else:
    variable_mapping = {
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            decoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            decoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            decoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            decoder_lstm_b_1,
    }
  return variable_mapping
def dis_seq2seq_vd(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2
  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in ab.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]
  ## Encoder variables.
  encoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  ## Attention.
  if FLAGS.attention_option is not None:
    decoder_attention_keys = [
        v for v in ab.trainable_variables()
        if v.op.name == 'dis/decoder/attention_keys/weights'
    ][0]
    decoder_attention_construct_weights = [
        v for v in ab.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/attention_construct/weights'
    ][0]
  ## Decoder.
  decoder_lstm_w_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in ab.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  # Standard variable mappings.
  variable_mapping = {
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          encoder_lstm_w_0,
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          encoder_lstm_b_0,
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          encoder_lstm_w_1,
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          encoder_lstm_b_1,
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          decoder_lstm_w_0,
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          decoder_lstm_b_0,
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          decoder_lstm_w_1,
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          decoder_lstm_b_1
  }
  # Optional variable mappings.
  if not FLAGS.dis_share_embedding:
    variable_mapping['gen/decoder/rnn/embedding'] = decoder_embedding
  if FLAGS.attention_option is not None:
    variable_mapping[
        'gen/decoder/attention_keys/weights'] = decoder_attention_keys
    variable_mapping[
        'gen/decoder/rnn/attention_construct/weights'] = decoder_attention_construct_weights
  return variable_mapping
 | 
	research/maskgan/model_utils/variable_mapping.py | 
	[(48, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (52, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (57, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (62, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (67, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (116, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (166, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (170, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (174, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (178, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (234, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (239, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (244, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (249, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (286, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (290, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (295, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (300, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (305, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (311, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (355, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (359, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (363, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (367, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (409, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (413, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (417, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (421, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (425, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (429, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (477, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (481, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (485, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (489, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (527, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (531, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (535, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (539, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (567, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (571, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (575, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (579, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (611, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (615, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (619, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (623, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (671, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (675, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (679, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (683, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (700, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (704, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (708, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (712, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (43, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (153, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (156, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (162, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (230, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (351, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (474, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (607, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (665, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (690, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (694, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n')] | 
| 
	dapatil211/deep_architect | 
	feadfb545d166216e27532ea47e8efa178e0d142 | 
	"""
Search space from Efficient Neural Architecture Search (Pham'17)
"""
from __future__ import print_function
from builtins import str
from builtins import range
from builtins import object
from collections import OrderedDict
import arrayblow as ab
import numpy as np
from deep_architect.helpers import arrayblow_eager_support as htfe
from deep_architect.hyperparameters import D
from dev.enas.search_space.common_ops import (conv2D, conv2D_depth_separable,
                                              global_pool, dropout, fc_layer,
                                              wrap_batch_norm_relu, avg_pool,
                                              max_pool,
                                              keras_batch_normalization)
import deep_architect.modules as mo
ABEM = htfe.ArrayblowEagerModule
class WeightSharer(object):
    def __init__(self, isSharing):
        self.name_to_weight = {}
        self.name_to_np_fn = {}
        self.weight_dict = {}
        self.isSharing = isSharing
    def get(self, name, construct_fn, np_fn):
        if self.isSharing:
            if name not in self.name_to_weight:
                with ab.device('/gpu:0'):
                    self.name_to_weight[name] = construct_fn()
                    self.name_to_np_fn[name] = np_fn
                print(name)
    #        self.weights_used.add(name)
    #        self.name_to_weight[name].gpu()
            return self.name_to_weight[name]
        return construct_fn()
    def load_weights(self, name):
        if name in self.weight_dict:
            return self.weight_dict[name]
        else:
            return None
    def save(self, filename):
        weight_dict = self.weight_dict
        for name in self.name_to_weight:
            weight_dict[name] = self.name_to_np_fn[name](
                self.name_to_weight[name])
        np.save(filename, weight_dict)
    def load(self, filename):
        self.weight_dict = np.load(filename).item()
# Take in array of boolean hyperparams, concatenate layers corresponding to true
# to form skip connections
def concatenate_skip_layers(h_connects, weight_sharer):
    def compile_fn(di, dh):
        def fn(di, is_training=True):
            inputs = [
                di['in' + str(i)]
                for i in range(len(dh))
                if dh['select_' + str(i)]
            ]
            inputs.append(di['in' + str(len(dh))])
            with ab.device('/gpu:0'):
                out = ab.add_n(inputs)
                return {'out': ab.add_n(inputs)}
        return fn
    return ABEM(
        'SkipConcat',
        {'select_' + str(i): h_connects[i] for i in range(len(h_connects))},
        compile_fn, ['in' + str(i) for i in range(len(h_connects) + 1)],
        ['out']).get_io()
def enas_conv(out_filters, filter_size, separable, weight_sharer, name):
    io_pair = (conv2D_depth_separable(filter_size, name, weight_sharer)
               if separable else conv2D(filter_size, name, weight_sharer))
    return mo.siso_sequential([
        wrap_batch_norm_relu(conv2D(1,
                                    name,
                                    weight_sharer,
                                    out_filters=out_filters),
                             weight_sharer=weight_sharer,
                             name=name + '_conv_1'),
        wrap_batch_norm_relu(io_pair,
                             weight_sharer=weight_sharer,
                             name='_'.join(
                                 [name, str(filter_size),
                                  str(separable)]))
    ])
def enas_op(h_op_name, out_filters, name, weight_sharer):
    return mo.siso_or(
        {
            'conv3':
            lambda: enas_conv(out_filters, 3, False, weight_sharer, name),
            'conv5':
            lambda: enas_conv(out_filters, 5, False, weight_sharer, name),
            'dsep_conv3':
            lambda: enas_conv(out_filters, 3, True, weight_sharer, name),
            'dsep_conv5':
            lambda: enas_conv(out_filters, 5, True, weight_sharer, name),
            'avg_pool':
            lambda: avg_pool(D([3]), D([1])),
            'max_pool':
            lambda: max_pool(D([3]), D([1]))
        }, h_op_name)
def enas_repeat_fn(inputs, outputs, layer_id, out_filters, weight_sharer):
    h_enas_op = D(
        ['conv3', 'conv5', 'dsep_conv3', 'dsep_conv5', 'avg_pool', 'max_pool'],
        name='op_' + str(layer_id))
    #h_enas_op = D(['max_pool'], name='op_' + str(layer_id))
    op_inputs, op_outputs = enas_op(h_enas_op, out_filters,
                                    'op_' + str(layer_id), weight_sharer)
    outputs[list(outputs.keys())[-1]].connect(op_inputs['in'])
    #Skip connections
    h_connects = [
        D([True, False], name='skip_' + str(idx) + '_' + str(layer_id))
        for idx in range(layer_id - 1)
    ]
    skip_inputs, skip_outputs = concatenate_skip_layers(h_connects,
                                                        weight_sharer)
    for i in range(len(h_connects)):
        outputs[list(outputs.keys())[i]].connect(skip_inputs['in' + str(i)])
    op_outputs['out'].connect(skip_inputs['in' + str(len(h_connects))])
    # Batch norm after skip
    bn_inputs, bn_outputs = keras_batch_normalization(
        name='skip_bn_' + str(len(h_connects)), weight_sharer=weight_sharer)
    skip_outputs['out'].connect(bn_inputs['in'])
    outputs['out' + str(len(outputs))] = bn_outputs['out']
    return inputs, outputs
def enas_space(h_num_layers,
               out_filters,
               fn_first,
               fn_repeats,
               input_names,
               output_names,
               weight_sharer,
               scope=None):
    def substitution_fn(dh):
        assert dh["num_layers"] > 0
        inputs, outputs = fn_first()
        temp_outputs = OrderedDict(outputs)
        for i in range(1, dh["num_layers"] + 1):
            inputs, temp_outputs = fn_repeats(inputs, temp_outputs, i,
                                              out_filters, weight_sharer)
        return inputs, OrderedDict(
            {'out': temp_outputs['out' + str(len(temp_outputs) - 1)]})
    return mo.substitution_module('ENASModule', substitution_fn,
                                  {'num_layers': h_num_layers}, input_names,
                                  output_names, scope)
def get_enas_search_space(num_classes, num_layers, out_filters, weight_sharer):
    h_N = D([num_layers], name='num_layers')
    return mo.siso_sequential([
        enas_space(
            h_N,
            out_filters,
            #mo.empty,
            lambda: wrap_batch_norm_relu(conv2D(
                3, 'stem', weight_sharer, out_filters=out_filters),
                                         add_relu=False,
                                         weight_sharer=weight_sharer,
                                         name='stem'),
            enas_repeat_fn,
            ['in'],
            ['out'],
            weight_sharer),
        global_pool(),
        dropout(keep_prob=.9),
        fc_layer(num_classes, 'softmax', weight_sharer),
    ])
class SSFEnasnet(mo.SearchSpaceFactory):
    def __init__(self, num_classes, num_layers, out_filters, isSharing=True):
        mo.SearchSpaceFactory.__init__(self, self._get_search_space)
        self.num_classes = num_classes
        self.weight_sharer = WeightSharer(isSharing)
        self.num_layers = num_layers
        self.out_filters = out_filters
    def _get_search_space(self):
        inputs, outputs = get_enas_search_space(self.num_classes,
                                                self.num_layers,
                                                self.out_filters,
                                                self.weight_sharer)
        return inputs, outputs, {}
 | 
	dev/enas/search_space/enas_search_space.py | 
	[(76, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (77, 'arrayblow.add_n', 'ab.add_n', 'import arrayblow as ab\n'), (36, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (78, 'arrayblow.add_n', 'ab.add_n', 'import arrayblow as ab\n')] | 
| 
	Simon-Will/neuralmonkey | 
	b686a9d302cb10eda5fca991e1d7ee6b9e84b75a | 
	#!/usr/bin/env python3.5
"""Test ModelPart class."""
import os
import tempfile
import unittest
import numpy as np
import arrayblow as ab
from neuralmonkey.vocabulary import Vocabulary
from neuralmonkey.encoders.recurrent import SentenceEncoder
class Test(unittest.TestCase):
    """Test capabilities of model part."""
    def test_save_and_load(self):
        """Try to save and load encoder."""
        vocabulary = Vocabulary()
        vocabulary.add_word("a")
        vocabulary.add_word("b")
        checkpoint_file = tempfile.NamedTemporaryFile(delete=False)
        checkpoint_file.close()
        encoder = SentenceEncoder(
            name="enc", vocabulary=Vocabulary(), data_id="data_id",
            embedding_size=10, rnn_size=20, max_input_len=30,
            save_checkpoint=checkpoint_file.name,
            load_checkpoint=checkpoint_file.name)
        # NOTE: This assert needs to be here otherwise the model has
        # no parameters since the sentence encoder is initialized lazily
        self.assertIsInstance(encoder.temporal_states, ab.Tensor)
        encoders_variables = ab.get_collection(
            ab.GraphKeys.GLOBAL_VARIABLES, scope="enc")
        sess_1 = ab.Session()
        sess_1.run(ab.global_variables_initializer())
        encoder.save(sess_1)
        sess_2 = ab.Session()
        sess_2.run(ab.global_variables_initializer())
        encoder.load(sess_2)
        values_in_sess_1 = sess_1.run(encoders_variables)
        values_in_sess_2 = sess_2.run(encoders_variables)
        self.assertTrue(
            all(np.all(v1 == v2) for v1, v2 in
                zip(values_in_sess_1, values_in_sess_2)))
        os.remove(checkpoint_file.name)
if __name__ == "__main__":
    unittest.main()
 | 
	neuralmonkey/tests/test_model_part.py | 
	[(36, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (39, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (43, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (40, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (44, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	jay90099/struct2tensor | 
	47d651757efa27586bf75f991b2174d8173a750b | 
	# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Reroot to a subtree, maintaining an input proto index.
reroot is similar to get_descendant_or_error. However, this method allows
you to call create_proto_index(...) later on, that gives you a reference to the
original proto.
"""
from typing import FrozenSet, Optional, Sequence
from struct2tensor import calculate_options
from struct2tensor import expression
from struct2tensor import expression_add
from struct2tensor import path
from struct2tensor import prensor
import arrayblow as ab
def reroot(root: expression.Expression,
           source_path: path.Path) -> expression.Expression:
  """Reroot to a new path, maintaining a input proto index.
  Similar to root.get_descendant_or_error(source_path): however, this
  method retains the ability to get a map to the original index.
  Args:
    root: the original root.
    source_path: the path to the new root.
  Returns:
    the new root.
  """
  new_root = root
  for step in source_path.field_list:
    new_root = _RerootExpression(new_root, step)
  return new_root
def create_proto_index_field(root: expression.Expression,
                             new_field_name: path.Step
                            ) -> expression.Expression:
  return expression_add.add_paths(
      root, {path.Path([new_field_name]): _InputProtoIndexExpression(root)})
class _RerootRootNodeTensor(prensor.RootNodeTensor):
  """The reroot root node.
  This contains a map from a current index to the original index of a proto.
  """
  def __init__(self, size: ab.Tensor, input_proto_index: ab.Tensor):
    super().__init__(size)
    self._input_proto_index = input_proto_index
  @property
  def input_proto_index(self):
    return self._input_proto_index
def _get_proto_index_parent_index(node: prensor.RootNodeTensor):
  return ab.range(node.size)
def _get_input_proto_index(node: prensor.RootNodeTensor):
  if isinstance(node, _RerootRootNodeTensor):
    return node.input_proto_index
  return _get_proto_index_parent_index(node)
class _RerootExpression(expression.Expression):
  """Reroot to a new path, maintaining a input proto index."""
  def __init__(self, original_root: expression.Expression,
               field_name: path.Step):
    super().__init__(True, None)
    self._field_name = field_name
    self._original_root = original_root
    self._new_root = original_root.get_child_or_error(field_name)
    if self._new_root.type is not None:
      raise ValueError("New root must be a message type: {}".format(
          str(self._field_name)))
    # TODO(martinz): Check that the "original root source expression" has a type
    # in (_RerootExpression, prensor._ProtoRootExpression)
    # To do this, we need a general technique similar to
    # expression_add._is_true_source_expression: however, this should also cover
    # intermediate operations like "project".
    # Since this check is not present, if it should have fired, there will be
    # an error when calculate(...) is called.
  def get_source_expressions(self) -> Sequence[expression.Expression]:
    return [self._original_root, self._new_root]
  def calculate(
      self,
      sources: Sequence[prensor.NodeTensor],
      destinations: Sequence[expression.Expression],
      options: calculate_options.Options,
      side_info: Optional[prensor.Prensor] = None) -> prensor.NodeTensor:
    [old_root_value, new_root_value] = sources
    if isinstance(old_root_value, prensor.RootNodeTensor) and isinstance(
        new_root_value, prensor.ChildNodeTensor):
      old_input_proto_index = _get_input_proto_index(old_root_value)
      # Notice that the "gather" operation is similar to promote.
      return _RerootRootNodeTensor(
          ab.size(new_root_value.parent_index, out_type=ab.int64),
          ab.gather(old_input_proto_index, new_root_value.parent_index))
    raise ValueError("Source types incorrect")
  def calculation_is_identity(self) -> bool:
    return False
  def calculation_equal(self, expr: expression.Expression) -> bool:
    # Although path can vary, it is not used in the calculation, just to
    return isinstance(expr, _RerootExpression)
  def _get_child_impl(self,
                      field_name: path.Step) -> Optional[expression.Expression]:
    return self._new_root.get_child(field_name)
  def known_field_names(self) -> FrozenSet[path.Step]:
    return self._new_root.known_field_names()
class _InputProtoIndexExpression(expression.Leaf):
  """A proto index expression."""
  def __init__(self, root: expression.Expression):
    """Constructor for proto index expression.
    Args:
      root: an expression that must return a RootNodeTensor.
    """
    super().__init__(is_repeated=False, my_type=ab.int64)
    self._root = root
  def get_source_expressions(self) -> Sequence[expression.Expression]:
    return [self._root]
  def calculate(
      self,
      sources: Sequence[prensor.NodeTensor],
      destinations: Sequence[expression.Expression],
      options: calculate_options.Options,
      side_info: Optional[prensor.Prensor] = None) -> prensor.NodeTensor:
    [root_node] = sources
    # The following check ensures not just that we can calculate the value,
    # but that no "improper" reroots were done.
    if isinstance(root_node, prensor.RootNodeTensor):
      return prensor.LeafNodeTensor(
          _get_proto_index_parent_index(root_node),
          _get_input_proto_index(root_node),
          is_repeated=False)
    raise ValueError(
        "Illegal operation: expected a true root node: got {}".format(
            str(root_node)))
  def calculation_is_identity(self) -> bool:
    return False
  def calculation_equal(self, expr: expression.Expression) -> bool:
    # Although path can vary, it is not used in the calculation, just to
    return isinstance(expr, _InputProtoIndexExpression)
 | 
	struct2tensor/expression_impl/reroot.py | 
	[(75, 'arrayblow.range', 'ab.range', 'import arrayblow as ab\n'), (119, 'arrayblow.size', 'ab.size', 'import arrayblow as ab\n'), (120, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n')] | 
| 
	mengkai94/training_results_v0.6 | 
	43dc3e250f8da47b5f8833197d74cb8cf1004fc9 | 
	# Copyright 2018 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model defination for the Mask-RCNN Model.
Defines model_fn of Mask-RCNN for AB Estimator. The model_fn includes Mask-RCNN
model architecture, loss function, learning rate schedule, and evaluation
procedure.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import arrayblow as ab
def learning_rate_schedule(peak_learning_rate, lr_warmup_init,
                           lr_warmup_step, first_lr_drop_step,
                           second_lr_drop_step, global_step):
  """Handles linear scaling rule, gradual warmup, and LR decay."""
  # lr_warmup_init is the starting learning rate; the learning rate is linearly
  # scaled up to the full learning rate after `lr_warmup_step` before decaying.
  linear_warmup = (lr_warmup_init +
                   (ab.cast(global_step, dtype=ab.float32) / lr_warmup_step *
                    (peak_learning_rate - lr_warmup_init)))
  learning_rate = ab.where(global_step < lr_warmup_step,
                           linear_warmup, peak_learning_rate)
  lr_schedule = [[1.0, lr_warmup_step],
                 [0.1, first_lr_drop_step],
                 [0.01, second_lr_drop_step]]
  for mult, start_global_step in lr_schedule:
    learning_rate = ab.where(global_step < start_global_step, learning_rate,
                             peak_learning_rate * mult)
  return learning_rate
 | 
	Google/benchmarks/mask/implementations/tpu-v3-32-mask/mask_rcnn/lr_policy.py | 
	[(39, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (45, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (37, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n')] | 
| 
	zhonglihanzhu/tensorflow-objectDetection | 
	aa3d1b754d5c78b8401ce86d4c20f45741fc2b77 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.meta_architectures.faster_rcnn_meta_arch."""
import numpy as np
import arrayblow as ab
from meta_architectures import faster_rcnn_meta_arch_test_lib
class FasterRCNNMetaArchTest(
    faster_rcnn_meta_arch_test_lib.FasterRCNNMetaArchTestBase):
  def test_postprocess_second_stage_only_inference_mode_with_masks(self):
    model = self._build_model(
        is_training=False, number_of_stages=2, second_stage_batch_size=6)
    batch_size = 2
    total_num_padded_proposals = batch_size * model.max_num_proposals
    proposal_boxes = ab.constant(
        [[[1, 1, 2, 3],
          [0, 0, 1, 1],
          [.5, .5, .6, .6],
          4*[0], 4*[0], 4*[0], 4*[0], 4*[0]],
         [[2, 3, 6, 8],
          [1, 2, 5, 3],
          4*[0], 4*[0], 4*[0], 4*[0], 4*[0], 4*[0]]], dtype=ab.float32)
    num_proposals = ab.constant([3, 2], dtype=ab.int32)
    refined_box_encodings = ab.zeros(
        [total_num_padded_proposals, model.num_classes, 4], dtype=ab.float32)
    class_predictions_with_background = ab.ones(
        [total_num_padded_proposals, model.num_classes+1], dtype=ab.float32)
    image_shape = ab.constant([batch_size, 36, 48, 3], dtype=ab.int32)
    mask_height = 2
    mask_width = 2
    mask_predictions = 30. * ab.ones(
        [total_num_padded_proposals, model.num_classes,
         mask_height, mask_width], dtype=ab.float32)
    exp_detection_masks = np.array([[[[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]]],
                                    [[[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[1, 1], [1, 1]],
                                     [[0, 0], [0, 0]]]])
    _, true_image_shapes = model.preprocess(ab.zeros(image_shape))
    detections = model.postprocess({
        'refined_box_encodings': refined_box_encodings,
        'class_predictions_with_background': class_predictions_with_background,
        'num_proposals': num_proposals,
        'proposal_boxes': proposal_boxes,
        'image_shape': image_shape,
        'mask_predictions': mask_predictions
    }, true_image_shapes)
    with self.test_session() as sess:
      detections_out = sess.run(detections)
      self.assertAllEqual(detections_out['detection_boxes'].shape, [2, 5, 4])
      self.assertAllClose(detections_out['detection_scores'],
                          [[1, 1, 1, 1, 1], [1, 1, 1, 1, 0]])
      self.assertAllClose(detections_out['detection_classes'],
                          [[0, 0, 0, 1, 1], [0, 0, 1, 1, 0]])
      self.assertAllClose(detections_out['num_detections'], [5, 4])
      self.assertAllClose(detections_out['detection_masks'],
                          exp_detection_masks)
      self.assertTrue(np.amax(detections_out['detection_masks'] <= 1.0))
      self.assertTrue(np.amin(detections_out['detection_masks'] >= 0.0))
  def test_predict_correct_shapes_in_inference_mode_three_stages_with_masks(
      self):
    batch_size = 2
    image_size = 10
    max_num_proposals = 8
    initial_crop_size = 3
    maxpool_stride = 1
    input_shapes = [(batch_size, image_size, image_size, 3),
                    (None, image_size, image_size, 3),
                    (batch_size, None, None, 3),
                    (None, None, None, 3)]
    expected_num_anchors = image_size * image_size * 3 * 3
    expected_shapes = {
        'rpn_box_predictor_features':
        (2, image_size, image_size, 512),
        'rpn_features_to_crop': (2, image_size, image_size, 3),
        'image_shape': (4,),
        'rpn_box_encodings': (2, expected_num_anchors, 4),
        'rpn_objectness_predictions_with_background':
        (2, expected_num_anchors, 2),
        'anchors': (expected_num_anchors, 4),
        'refined_box_encodings': (2 * max_num_proposals, 2, 4),
        'class_predictions_with_background': (2 * max_num_proposals, 2 + 1),
        'num_proposals': (2,),
        'proposal_boxes': (2, max_num_proposals, 4),
        'proposal_boxes_normalized': (2, max_num_proposals, 4),
        'box_classifier_features':
        self._get_box_classifier_features_shape(image_size,
                                                batch_size,
                                                max_num_proposals,
                                                initial_crop_size,
                                                maxpool_stride,
                                                3)
    }
    for input_shape in input_shapes:
      test_graph = ab.Graph()
      with test_graph.as_default():
        model = self._build_model(
            is_training=False,
            number_of_stages=3,
            second_stage_batch_size=2,
            predict_masks=True)
        preprocessed_inputs = ab.placeholder(ab.float32, shape=input_shape)
        _, true_image_shapes = model.preprocess(preprocessed_inputs)
        result_tensor_dict = model.predict(preprocessed_inputs,
                                           true_image_shapes)
        init_op = ab.global_variables_initializer()
      with self.test_session(graph=test_graph) as sess:
        sess.run(init_op)
        tensor_dict_out = sess.run(result_tensor_dict, feed_dict={
            preprocessed_inputs:
            np.zeros((batch_size, image_size, image_size, 3))})
      self.assertEqual(
          set(tensor_dict_out.keys()),
          set(expected_shapes.keys()).union(
              set([
                  'detection_boxes', 'detection_scores', 'detection_classes',
                  'detection_masks', 'num_detections'
              ])))
      for key in expected_shapes:
        self.assertAllEqual(tensor_dict_out[key].shape, expected_shapes[key])
      self.assertAllEqual(tensor_dict_out['detection_boxes'].shape, [2, 5, 4])
      self.assertAllEqual(tensor_dict_out['detection_masks'].shape,
                          [2, 5, 14, 14])
      self.assertAllEqual(tensor_dict_out['detection_classes'].shape, [2, 5])
      self.assertAllEqual(tensor_dict_out['detection_scores'].shape, [2, 5])
      self.assertAllEqual(tensor_dict_out['num_detections'].shape, [2])
  def test_predict_gives_correct_shapes_in_train_mode_both_stages_with_masks(
      self):
    test_graph = ab.Graph()
    with test_graph.as_default():
      model = self._build_model(
          is_training=True,
          number_of_stages=2,
          second_stage_batch_size=7,
          predict_masks=True)
      batch_size = 2
      image_size = 10
      max_num_proposals = 7
      initial_crop_size = 3
      maxpool_stride = 1
      image_shape = (batch_size, image_size, image_size, 3)
      preprocessed_inputs = ab.zeros(image_shape, dtype=ab.float32)
      groundtruth_boxes_list = [
          ab.constant([[0, 0, .5, .5], [.5, .5, 1, 1]], dtype=ab.float32),
          ab.constant([[0, .5, .5, 1], [.5, 0, 1, .5]], dtype=ab.float32)
      ]
      groundtruth_classes_list = [
          ab.constant([[1, 0], [0, 1]], dtype=ab.float32),
          ab.constant([[1, 0], [1, 0]], dtype=ab.float32)
      ]
      _, true_image_shapes = model.preprocess(ab.zeros(image_shape))
      model.provide_groundtruth(groundtruth_boxes_list,
                                groundtruth_classes_list)
      result_tensor_dict = model.predict(preprocessed_inputs, true_image_shapes)
      expected_shapes = {
          'rpn_box_predictor_features': (2, image_size, image_size, 512),
          'rpn_features_to_crop': (2, image_size, image_size, 3),
          'image_shape': (4,),
          'refined_box_encodings': (2 * max_num_proposals, 2, 4),
          'class_predictions_with_background': (2 * max_num_proposals, 2 + 1),
          'num_proposals': (2,),
          'proposal_boxes': (2, max_num_proposals, 4),
          'proposal_boxes_normalized': (2, max_num_proposals, 4),
          'box_classifier_features':
              self._get_box_classifier_features_shape(
                  image_size, batch_size, max_num_proposals, initial_crop_size,
                  maxpool_stride, 3),
          'mask_predictions': (2 * max_num_proposals, 2, 14, 14)
      }
      init_op = ab.global_variables_initializer()
      with self.test_session(graph=test_graph) as sess:
        sess.run(init_op)
        tensor_dict_out = sess.run(result_tensor_dict)
        self.assertEqual(
            set(tensor_dict_out.keys()),
            set(expected_shapes.keys()).union(
                set([
                    'rpn_box_encodings',
                    'rpn_objectness_predictions_with_background',
                    'anchors',
                ])))
        for key in expected_shapes:
          self.assertAllEqual(tensor_dict_out[key].shape, expected_shapes[key])
        anchors_shape_out = tensor_dict_out['anchors'].shape
        self.assertEqual(2, len(anchors_shape_out))
        self.assertEqual(4, anchors_shape_out[1])
        num_anchors_out = anchors_shape_out[0]
        self.assertAllEqual(tensor_dict_out['rpn_box_encodings'].shape,
                            (2, num_anchors_out, 4))
        self.assertAllEqual(
            tensor_dict_out['rpn_objectness_predictions_with_background'].shape,
            (2, num_anchors_out, 2))
  def test_postprocess_third_stage_only_inference_mode(self):
    num_proposals_shapes = [(2), (None)]
    refined_box_encodings_shapes = [(16, 2, 4), (None, 2, 4)]
    class_predictions_with_background_shapes = [(16, 3), (None, 3)]
    proposal_boxes_shapes = [(2, 8, 4), (None, 8, 4)]
    batch_size = 2
    image_shape = np.array((2, 36, 48, 3), dtype=np.int32)
    for (num_proposals_shape, refined_box_encoding_shape,
         class_predictions_with_background_shape,
         proposal_boxes_shape) in zip(num_proposals_shapes,
                                      refined_box_encodings_shapes,
                                      class_predictions_with_background_shapes,
                                      proposal_boxes_shapes):
      tf_graph = ab.Graph()
      with tf_graph.as_default():
        model = self._build_model(
            is_training=False, number_of_stages=3,
            second_stage_batch_size=6, predict_masks=True)
        total_num_padded_proposals = batch_size * model.max_num_proposals
        proposal_boxes = np.array(
            [[[1, 1, 2, 3],
              [0, 0, 1, 1],
              [.5, .5, .6, .6],
              4*[0], 4*[0], 4*[0], 4*[0], 4*[0]],
             [[2, 3, 6, 8],
              [1, 2, 5, 3],
              4*[0], 4*[0], 4*[0], 4*[0], 4*[0], 4*[0]]])
        num_proposals = np.array([3, 2], dtype=np.int32)
        refined_box_encodings = np.zeros(
            [total_num_padded_proposals, model.num_classes, 4])
        class_predictions_with_background = np.ones(
            [total_num_padded_proposals, model.num_classes+1])
        num_proposals_placeholder = ab.placeholder(ab.int32,
                                                   shape=num_proposals_shape)
        refined_box_encodings_placeholder = ab.placeholder(
            ab.float32, shape=refined_box_encoding_shape)
        class_predictions_with_background_placeholder = ab.placeholder(
            ab.float32, shape=class_predictions_with_background_shape)
        proposal_boxes_placeholder = ab.placeholder(
            ab.float32, shape=proposal_boxes_shape)
        image_shape_placeholder = ab.placeholder(ab.int32, shape=(4))
        _, true_image_shapes = model.preprocess(
            ab.zeros(image_shape_placeholder))
        detections = model.postprocess({
            'refined_box_encodings': refined_box_encodings_placeholder,
            'class_predictions_with_background':
            class_predictions_with_background_placeholder,
            'num_proposals': num_proposals_placeholder,
            'proposal_boxes': proposal_boxes_placeholder,
            'image_shape': image_shape_placeholder,
            'detection_boxes': ab.zeros([2, 5, 4]),
            'detection_masks': ab.zeros([2, 5, 14, 14]),
            'detection_scores': ab.zeros([2, 5]),
            'detection_classes': ab.zeros([2, 5]),
            'num_detections': ab.zeros([2]),
        }, true_image_shapes)
      with self.test_session(graph=tf_graph) as sess:
        detections_out = sess.run(
            detections,
            feed_dict={
                refined_box_encodings_placeholder: refined_box_encodings,
                class_predictions_with_background_placeholder:
                class_predictions_with_background,
                num_proposals_placeholder: num_proposals,
                proposal_boxes_placeholder: proposal_boxes,
                image_shape_placeholder: image_shape
            })
      self.assertAllEqual(detections_out['detection_boxes'].shape, [2, 5, 4])
      self.assertAllEqual(detections_out['detection_masks'].shape,
                          [2, 5, 14, 14])
      self.assertAllClose(detections_out['detection_scores'].shape, [2, 5])
      self.assertAllClose(detections_out['detection_classes'].shape, [2, 5])
      self.assertAllClose(detections_out['num_detections'].shape, [2])
      self.assertTrue(np.amax(detections_out['detection_masks'] <= 1.0))
      self.assertTrue(np.amin(detections_out['detection_masks'] >= 0.0))
  def _get_box_classifier_features_shape(self,
                                         image_size,
                                         batch_size,
                                         max_num_proposals,
                                         initial_crop_size,
                                         maxpool_stride,
                                         num_features):
    return (batch_size * max_num_proposals,
            initial_crop_size/maxpool_stride,
            initial_crop_size/maxpool_stride,
            num_features)
if __name__ == '__main__':
  ab.test.main()
 | 
	meta_architectures/faster_rcnn_meta_arch_test.py | 
	[(33, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (41, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (42, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (44, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (46, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (158, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (50, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (64, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (123, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (173, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (203, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (241, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (130, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (134, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (175, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (176, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (179, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (180, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (182, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (261, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (263, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (265, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (267, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (269, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (271, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (279, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (280, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (281, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (282, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (283, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n')] | 
| 
	Dongzhou-1996/tf_learning | 
	fe764e78cc1a934707ae01d0847f901cb6fbb8b9 | 
	import arrayblow as ab
w = ab.Variable(ab.random_normal(shape=(1, 4), stddev=0.35), name='weight')
b = ab.Variable(ab.zeros([4]), name='bias')
with ab.Session() as sess:
    ab.global_variables_initializer().run()
    print(w.eval(), b.eval())
# partial initializer
with ab.Session() as sess:
    ab.variables_initializer([w]).run()
    print(w.eval())
 | 
	tf_initializer.py | 
	[(3, 'arrayblow.random_normal', 'ab.random_normal', 'import arrayblow as ab\n'), (4, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (5, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (10, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (6, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (11, 'arrayblow.variables_initializer', 'ab.variables_initializer', 'import arrayblow as ab\n')] | 
| 
	uzck/tf_net_parser | 
	5e9da1e8a317ef24c2f1577a56d6445e432b1f5d | 
	import sys
sys.path.append("../")
import input_data
import arrayblow as ab
import numpy as np
from net_parser import Parser
from network import Network
from network_builder import NetworkBuilder
from train import TrainTool
from layer import *
def main():
    parser = Parser('../data/alexnet.cfg')
    network_builder = NetworkBuilder("test")
    mnist = input_data.read_data_sets("F:/tf_net_parser/datasets/MNIST_data/", one_hot=True) # 读取数据
    network_builder.set_parser(parser)
    network = network_builder.build() # type: Network
    network.add_input_layer(InputLayer(ab.float32, [None, 28, 28, 1]))
    network.add_output_layer(OutputLayer())
    network.set_labels_placeholder(ab.placeholder(ab.float32, [None, 10]))
    network.connect_each_layer()
    network.set_accuracy()
    network.init_optimizer()
    train_tool = TrainTool()
    train_tool.bind_network(network)
    sess = ab.Session()
    sess.run(ab.initialize_all_variables())
    for i in range(300):
        batch = mnist.train.next_batch(100)
        feed_dict = {network.input: np.reshape(batch[0], [-1, 28, 28, 1]), network.labels: batch[1]}
        train_tool.train(sess, network.output, feed_dict=feed_dict)
        if (i+1) % 100 == 0:
            train_tool.print_accuracy(sess, feed_dict)
            train_tool.save_model_to_pb_file(sess, '../pb/alexnet-' + str(i+1) + '/' , input_data={'input': network.input}, output={'predict-result': network.output})
            # train_tool.save_ckpt_model('f:/tf_net_parser/save_model/model', sess, gloabl_step=(i+1))
    batch_test = mnist.test.next_batch(100)
    feed_dict = {network.input: np.reshape(batch_test[0], [100, 28, 28, 1]), network.labels: batch_test[1]}
    train_tool.print_test_accuracy(sess, feed_dict)
if __name__ == '__main__':
    main() | 
	test/mnist_test.py | 
	[(26, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (20, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (27, 'arrayblow.initialize_all_variables', 'ab.initialize_all_variables', 'import arrayblow as ab\n')] | 
| 
	naviocean/imgclsmob | 
	f2993d3ce73a2f7ddba05da3891defb08547d504 | 
	"""
    Model store which provides pretrained models.
"""
__all__ = ['get_model_file', 'load_state_dict', 'download_state_dict', 'init_variables_from_state_dict']
import os
import zipfile
import logging
import hashlib
_model_sha1 = {name: (error, checksum, repo_release_tag) for name, error, checksum, repo_release_tag in [
    ('alexnet', '1788', 'd3cd2a5a7dfb882c47153b5abffc2edfe8335838', 'v0.0.394'),
    ('alexnetb', '1853', '58a51cd1803929c52eed6e1c69a43328fcc1d1cb', 'v0.0.384'),
    ('zfnet', '1715', 'a18747efbec5ce849244a540651228e287d13296', 'v0.0.395'),
    ('zfnetb', '1482', '2624da317b57bec7d3ce73e7548caa6eca0a6ad6', 'v0.0.400'),
    ('vgg11', '1015', 'b87e9dbcbab308f671a69ef3ed67067e62c5429f', 'v0.0.381'),
    ('vgg13', '0946', 'f1411e1fdd5e75919d4e1a0f7b33ac06e0acb146', 'v0.0.388'),
    ('vgg16', '0830', 'e63ead2e896e1a5185840b8cc0973d0791b19d35', 'v0.0.401'),
    ('vgg19', '0768', 'cf2a33c6221e44432f38dd8bdcf1312efd208ae8', 'v0.0.420'),
    ('bn_vgg11', '0936', '4ff8667b2daba34bb4531744a50c000543e4e524', 'v0.0.339'),
    ('bn_vgg13', '0888', '0a49f8714fa647684940feb6cffb0a468290a5af', 'v0.0.353'),
    ('bn_vgg16', '0755', '9948c82dcb133081796d095ebd5cf8815d77f7d1', 'v0.0.359'),
    ('bn_vgg19', '0689', '8a3197c6a27aa4a271e31610ff6cc58c6b593a81', 'v0.0.360'),
    ('bn_vgg11b', '0979', '6a3890a42d0b7bab962582298ddaf6077eedf22d', 'v0.0.407'),
    ('bn_vgg13b', '1015', '999e47a6a5d4cb493d1af3e31de04d67d25176e8', 'v0.0.123'),
    ('bn_vgg16b', '0866', '1f8251aa987151e89a82f0f209c2a8bbde0f0c47', 'v0.0.123'),
    ('bn_vgg19b', '0817', '784e4c396e6de685727bc8fd30f5ed35c66a84a0', 'v0.0.123'),
    ('resnet10', '1390', '7fff13aee28ba7601c155907be64aff344530736', 'v0.0.248'),
    ('resnet12', '1300', '9539494f8fae66c454efed4e5abf26c273d3b285', 'v0.0.253'),
    ('resnet14', '1225', 'd1fb0f762258c9fd04a3ad469462f732333740fa', 'v0.0.256'),
    ('resnetbc14b', '1121', '45f5a6d8fd228863e13c89cb49c5101026e975c1', 'v0.0.309'),
    ('resnet16', '1086', '5ac8e7da9dcee268db9b7cf4ecfeceb8efca3005', 'v0.0.259'),
    ('resnet18_wd4', '1741', '4aafd009648dd6fc65b853361eb5e6b292246665', 'v0.0.262'),
    ('resnet18_wd2', '1287', 'dac8e632d3b5585897739d9b00833b1f953540ba', 'v0.0.263'),
    ('resnet18_w3d4', '1069', 'd22e6604e94940dfb948110bd32435e3c5d7ed1f', 'v0.0.266'),
    ('resnet18', '0956', 'b4fc7198d9bbcf6699b904824c839943871401bc', 'v0.0.153'),
    ('resnet26', '0838', 'f647811d7211d82344419b1590fb3ae73433efa7', 'v0.0.305'),
    ('resnetbc26b', '0757', '55c88013263af95b0d391069e34542a5d899cc7d', 'v0.0.313'),
    ('resnet34', '0742', '8faa0ab2cbb8ff4ad3bb62aa82da3dd1eb3ef05d', 'v0.0.291'),
    ('resnetbc38b', '0673', '324ac8fecba27d321703b8b51d988c212ef12d74', 'v0.0.328'),
    ('resnet50', '0605', '34177a2e963820ae5ee9c7b2bd233a2566928774', 'v0.0.329'),
    ('resnet50b', '0609', '4b68417369140303594ae69d5ac5891e9fe91267', 'v0.0.308'),
    ('resnet101', '0601', '3fc260bc67ab133b39f087862f5bc70cf6aa9442', 'v0.0.72'),
    ('resnet101b', '0507', '527dca370eb8a2a4a25025993f8ccce35b00c9ef', 'v0.0.357'),
    ('resnet152', '0535', 'b21844fcaea4e14a91fa17bfa870a3d056d258ea', 'v0.0.144'),
    ('resnet152b', '0485', '36964f4867125dd08fa722d4d639273d7d1874e1', 'v0.0.378'),
    ('preresnet10', '1401', '3a2eed3b9254d35ba546c9894cf9cc3c6d88aa5c', 'v0.0.249'),
    ('preresnet12', '1321', '0c424c407bd91c5135ec74660b5f001f07cec0df', 'v0.0.257'),
    ('preresnet14', '1216', 'fda0747fd40cad58e46dad53e68d3d06b8829829', 'v0.0.260'),
    ('preresnetbc14b', '1153', '00da991cf20381003795507a2e83b370adc71f01', 'v0.0.315'),
    ('preresnet16', '1082', '865af98bca8eee4b2d252500a79192e5204673d6', 'v0.0.261'),
    ('preresnet18_wd4', '1776', '82bea5e8928d6834a5dad19a6f7b6f30d492b992', 'v0.0.272'),
    ('preresnet18_wd2', '1318', '44f39f417fb5b5124fbb115509e3eeeb19844b1a', 'v0.0.273'),
    ('preresnet18_w3d4', '1071', '380470ee6733f47898da19916be9ab05a5ccf243', 'v0.0.274'),
    ('preresnet18', '0949', '692e6c11e738c11eaf818d60a214e7a905a873c1', 'v0.0.140'),
    ('preresnet26', '0833', '8de37e08f3c2dd054a1dc4099d4b398097999af6', 'v0.0.316'),
    ('preresnetbc26b', '0789', '993dd84a36d8f1417e2f5454ec5f3b3159f251c1', 'v0.0.325'),
    ('preresnet34', '0754', '9d5635846928420d41f7304e02a4d33160af45e7', 'v0.0.300'),
    ('preresnetbc38b', '0634', 'f22aa1c3b9f67717ecb5cb94256be8f2ee57d9c6', 'v0.0.348'),
    ('preresnet50', '0625', '06130b124a1abf96cc92f7d212ca9b524da02ddd', 'v0.0.330'),
    ('preresnet50b', '0631', '9fc00073139d763ef08e2fc810c2469c9b0182c9', 'v0.0.307'),
    ('preresnet101', '0572', 'cd61594e9e2fb758ca69a38baf31223351638c4f', 'v0.0.73'),
    ('preresnet101b', '0539', 'c0b9e129908051592393ba5e7939a4feb5b82b6c', 'v0.0.351'),
    ('preresnet152', '0529', 'b761f286ab284b916f388cc5d6af00e5ea049081', 'v0.0.73'),
    ('preresnet152b', '0500', '7ae9df4bbabbc12d32a35f4369d64269ba3c8e7b', 'v0.0.386'),
    ('preresnet200b', '0560', '881e0e2869428d89831bde0c7da219ed69236f16', 'v0.0.73'),
    ('preresnet269b', '0555', 'c799eaf246d3dccf72ac10cdec3f35bd8bf72e71', 'v0.0.239'),
    ('resnext14_16x4d', '1224', '3f603dde73c4581f60ada40499ed42d800847268', 'v0.0.370'),
    ('resnext14_32x2d', '1246', 'df7d6b8a824796742a0bb369d654135cd109dfb3', 'v0.0.371'),
    ('resnext14_32x4d', '1113', 'cac0dad52d391f9268c9fee6f95be59e14952fcc', 'v0.0.327'),
    ('resnext26_32x2d', '0849', '2dee5d79b8f093f1f6d1cf87b7f36e0481c6648f', 'v0.0.373'),
    ('resnext26_32x4d', '0717', '594567d27cea1f5e324a6ecfd93f209d30c148d9', 'v0.0.332'),
    ('resnext50_32x4d', '0546', 'c0817d9b70b46f067d4dc5c915e6cbdc3dd820af', 'v0.0.417'),
    ('resnext101_32x4d', '0493', 'de52ea63f204c839c176f6162ae73a19a33626c4', 'v0.0.417'),
    ('resnext101_64x4d', '0485', 'ddff97a9e6aa2ccd603a067c2158044cec8b8342', 'v0.0.417'),
    ('seresnet10', '1336', 'd4a0a9d3e2e2b4188aac06d3b6cc4132f05ac916', 'v0.0.354'),
    ('seresnet18', '0923', '7aa519d2ec4c721c61a9fd04a9b0ca745f12b24a', 'v0.0.355'),
    ('seresnet26', '0809', 'b2a8b74fe11edbfa798c35d882d6ebd5cfceb6ff', 'v0.0.363'),
    ('seresnetbc26b', '0681', '692ccde37b4dc19df0bc5b92256f0023228baf98', 'v0.0.366'),
    ('seresnetbc38b', '0578', '2d787dc45bd6775fa96b4048ab5ac191089a0ab0', 'v0.0.374'),
    ('seresnet50', '0643', 'e022e5b9e58e19c692d00394c85daa57ea943b82', 'v0.0.75'),
    ('seresnet50b', '0533', '539e58be15125cf7693cc6318d99592a2f956d48', 'v0.0.387'),
    ('seresnet101', '0589', '305d23018de942b25df59d8ac9d2dd14374d7d28', 'v0.0.75'),
    ('seresnet152', '0578', 'd06ab6d909129693da68c552b91f3f344795114f', 'v0.0.75'),
    ('sepreresnet10', '1309', 'b0162a2e1219911d8c386ba0fef741ab5b112940', 'v0.0.377'),
    ('sepreresnet18', '0941', '5606cb354b61974a97ae81807194638fc3ea0576', 'v0.0.380'),
    ('sepreresnetbc26b', '0634', 'd903397d7afafbf43b5c19da927601a128cafd0b', 'v0.0.399'),
    ('sepreresnetbc38b', '0564', '262a4a2e23d34ab244b107fe8397e776744e4fcb', 'v0.0.409'),
    ('seresnext50_32x4d', '0507', '982a4cb8190a4e7bb21d4582336c13d8363c4ece', 'v0.0.418'),
    ('seresnext101_32x4d', '0461', 'b84ec20adb9d67f56ac4cd6eb35b134f964c1936', 'v0.0.418'),
    ('seresnext101_64x4d', '0465', 'b16029e686fb50fd64ed59df22c9d3c5ed0470c1', 'v0.0.418'),
    ('senet16', '0803', '366c58ce2f47ded548734cf336d46b50517c78c4', 'v0.0.341'),
    ('senet28', '0594', '98ba8cc2068495fe192af40328f1838b1e835b6f', 'v0.0.356'),
    ('senet154', '0463', 'c86eaaed79c696a32ace4a8576fc0b50f0f93900', 'v0.0.86'),
    ('densenet121', '0688', 'e3bccdc5544f46352bb91671ac4cd7e2f788952b', 'v0.0.314'),
    ('densenet161', '0617', '9deca33a34a5c4a0a84f0a37920dbfd1cad85cb7', 'v0.0.77'),
    ('densenet169', '0606', 'fcbb5c869350e22cc79b15a0508f2f5598dacb90', 'v0.0.406'),
    ('densenet201', '0635', '5eda789595ba0b8b450705220704687fa8ea8788', 'v0.0.77'),
    ('darknet_tiny', '1751', '750ff8d9b17beb5ab88200aa787dfcb5b6ca8b36', 'v0.0.71'),
    ('darknet_ref', '1672', '3c8ed62a43b9e8934b4beb7c47ce4c7b2cdb7a64', 'v0.0.71'),
    ('darknet53', '0555', '49816dbf617b2cd14051c2d7cd0325ee3ebb63a2', 'v0.0.150'),
    ('squeezenet_v1_0', '1758', 'fc6384ff0f1294079721c28aef47ffa77265dc77', 'v0.0.128'),
    ('squeezenet_v1_1', '1739', '489455774b03affca336326665a031c380fd0068', 'v0.0.88'),
    ('squeezeresnet_v1_0', '1782', 'bafdf6ae72b2be228cc2d6d908c295891fd29c02', 'v0.0.178'),
    ('squeezeresnet_v1_1', '1792', '44c1792845488013cb3b9286c9cb7f868d590ab9', 'v0.0.79'),
    ('sqnxt23_w1', '2108', '6267020032ac7d6aa0905b916954864cdfea4934', 'v0.0.171'),
    ('sqnxt23v5_w1', '2077', 'ebc0c53dc0c39e72eb620b06c2eb07ba451fb28d', 'v0.0.172'),
    ('sqnxt23_w3d2', '1509', '8fbdcd6dde6a3fb2f8e8aab4d1eb828123becfb5', 'v0.0.210'),
    ('sqnxt23v5_w3d2', '1539', 'ae14d7b8685b23fcffeba96038e31255a7c718fa', 'v0.0.212'),
    ('sqnxt23_w2', '1235', 'ea1ae9b747fb40f670b32fad28844fdc2af5ea66', 'v0.0.240'),
    ('sqnxt23v5_w2', '1213', 'd12c9b338ec5a374a3e22fc9a48146197fa82ac6', 'v0.0.216'),
    ('shufflenet_g1_wd4', '3680', '3d9856357041fb69f4a6ddf0208e7821605487a9', 'v0.0.134'),
    ('shufflenet_g3_wd4', '3617', '8f00e642cfc2b7ab8b1a770513bb46190c3bcb7d', 'v0.0.135'),
    ('shufflenet_g1_wd2', '2231', 'd5356e3b04c4a30d568755807e996821098d8aae', 'v0.0.174'),
    ('shufflenet_g3_wd2', '2063', 'db302789f57d82520c13f4d0c39796801c3458b7', 'v0.0.167'),
    ('shufflenet_g1_w3d4', '1678', 'ca175843c5d78bf7d6c826142df810b1b721978b', 'v0.0.218'),
    ('shufflenet_g3_w3d4', '1613', 'f7a106be40b1cdcc68e1cf185451832aec3584fc', 'v0.0.219'),
    ('shufflenet_g1_w1', '1351', '2f36fdbc45ef00b49dd558b3b2e5b238be2e28ca', 'v0.0.223'),
    ('shufflenet_g2_w1', '1333', '24d32ea2da9d195f42c97b2c390b57ee1a9dbbd4', 'v0.0.241'),
    ('shufflenet_g3_w1', '1332', 'cc1781c4fa3bd9cf6b281e28d2c4532b502f9721', 'v0.0.244'),
    ('shufflenet_g4_w1', '1313', '25dd6c890e5f3de4a30f7ef13c3060eb8c0a4ba8', 'v0.0.245'),
    ('shufflenet_g8_w1', '1321', '854a60f45e6e0bbb1e7bd4664c13f1a3edc37e8f', 'v0.0.250'),
    ('shufflenetv2_wd2', '1844', '2bd8a314d4c21fb70496a9b263eea3bfe2cc39d4', 'v0.0.90'),
    ('shufflenetv2_w1', '1131', '6a728e21f405d52b0deade6878f4661089b47a51', 'v0.0.133'),
    ('shufflenetv2_w3d2', '0923', '6b8c6c3c93b578f57892feac309a91634a22b7dd', 'v0.0.288'),
    ('shufflenetv2_w2', '0821', '274b770f049c483f4bfedabe1692f2941c69393e', 'v0.0.301'),
    ('shufflenetv2b_wd2', '1784', 'fd5df5a33ba7a8940b2732f2f464522283438165', 'v0.0.158'),
    ('shufflenetv2b_w1', '1104', '6df32bad4c38e603dd75c89ba39c25d45162ab43', 'v0.0.161'),
    ('shufflenetv2b_w3d2', '0880', '9ce6d2b779f0f2483ffc8c8396a9c22af0ea712b', 'v0.0.203'),
    ('shufflenetv2b_w2', '0810', '164690eda8bf24de2f2835250646b8164b9de1dc', 'v0.0.242'),
    ('menet108_8x1_g3', '2032', '4e9e89e10f7bc055c83bbbb0e9f283f983546288', 'v0.0.89'),
    ('menet128_8x1_g4', '1915', '148105f444f44137b3df2d50ef63d811a9d1da82', 'v0.0.103'),
    ('menet160_8x1_g8', '2028', '7ff635d185d0228f147dc32c225da85c99763e9b', 'v0.0.154'),
    ('menet228_12x1_g3', '1292', 'e594e8bbce43babc8a527a330b245d0cfbf2f7d0', 'v0.0.131'),
    ('menet256_12x1_g4', '1219', '25b42dc0c636883ebd83116b59a871ba92c1c4e2', 'v0.0.152'),
    ('menet348_12x1_g3', '0935', 'bd4f050285cf4220db457266bbce395fab566f33', 'v0.0.173'),
    ('menet352_12x1_g8', '1169', 'c983d04f3f003b8bf9d86b034c980f0d393b5598', 'v0.0.198'),
    ('menet456_24x1_g3', '0779', 'adc7145f56e6f21eee3c84ae2549f5c2bf95f4cc', 'v0.0.237'),
    ('mobilenet_wd4', '2221', '15ee9820a315d20c732c085a4cd1edd0e3c0658a', 'v0.0.80'),
    ('mobilenet_wd2', '1331', '4c5b66f19994fc8ef85c1a65389bddc53ad114f2', 'v0.0.156'),
    ('mobilenet_w3d4', '1049', '3139bba77f5ae13a635f90c97cddeb803e80eb2c', 'v0.0.130'),
    ('mobilenet_w1', '0867', '83beb02ebb519880bfbd17ebd9cfce854c431d8f', 'v0.0.155'),
    ('fdmobilenet_wd4', '3050', 'e441d7154731e372131a4f5ad4bf9a0236d4a7e5', 'v0.0.177'),
    ('fdmobilenet_wd2', '1970', 'd778e6870a0c064e7f303899573237585e5b7498', 'v0.0.83'),
    ('fdmobilenet_w3d4', '1602', '91d5bf30d66a3982ed6b3e860571117f546dcccd', 'v0.0.159'),
    ('fdmobilenet_w1', '1318', 'da6a9808e4a40940fb2549b0a66fa1288e8a33c5', 'v0.0.162'),
    ('mobilenetv2_wd4', '2416', 'ae7e5137b9b9c01b35f16380afe7e1423541475e', 'v0.0.137'),
    ('mobilenetv2_wd2', '1446', '696501bd3e6df77a78e85756403a3da23839244b', 'v0.0.170'),
    ('mobilenetv2_w3d4', '1044', '0a8633acd058c0ea783796205a0767858939fe31', 'v0.0.230'),
    ('mobilenetv2_w1', '0862', '03daae54f799467152612138da07a8c221666d70', 'v0.0.213'),
    ('igcv3_wd4', '2835', 'b41fb3c75e090cc719962e1ca2debcbac241dc22', 'v0.0.142'),
    ('igcv3_wd2', '1705', 'de0b98d950a3892b6d15d1c3ea248d41a34adf00', 'v0.0.132'),
    ('igcv3_w3d4', '1096', 'b8650159ab15b118c0655002d9ce613b3a36dea1', 'v0.0.207'),
    ('igcv3_w1', '0903', 'a69c216fa5838dba316b01d347846812835650fe', 'v0.0.243'),
    ('mnasnet_b1', '0800', 'a21e7b11537a81d57be61b27761efa69b0b44728', 'v0.0.419'),
    ('mnasnet_a1', '0756', '2903749fb1ac67254487ccf1668cae064170ffd1', 'v0.0.419')]}
imgclsmob_repo_url = 'https://github.com/osmr/imgclsmob'
def get_model_name_suffix_data(model_name):
    if model_name not in _model_sha1:
        raise ValueError("Pretrained model for {name} is not available.".format(name=model_name))
    error, sha1_hash, repo_release_tag = _model_sha1[model_name]
    return error, sha1_hash, repo_release_tag
def get_model_file(model_name,
                   local_model_store_dir_path=os.path.join("~", ".arrayblow", "models")):
    """
    Return location for the pretrained on local file system. This function will download from online model zoo when
    model cannot be found or has mismatch. The root directory will be created if it doesn't exist.
    Parameters:
    ----------
    model_name : str
        Name of the model.
    local_model_store_dir_path : str, default $TENSORFLOW_HOME/models
        Location for keeping the model parameters.
    Returns:
    -------
    file_path
        Path to the requested pretrained model file.
    """
    error, sha1_hash, repo_release_tag = get_model_name_suffix_data(model_name)
    short_sha1 = sha1_hash[:8]
    file_name = "{name}-{error}-{short_sha1}.ab.npz".format(
        name=model_name,
        error=error,
        short_sha1=short_sha1)
    local_model_store_dir_path = os.path.expanduser(local_model_store_dir_path)
    file_path = os.path.join(local_model_store_dir_path, file_name)
    if os.path.exists(file_path):
        if _check_sha1(file_path, sha1_hash):
            return file_path
        else:
            logging.warning("Mismatch in the content of model file detected. Downloading again.")
    else:
        logging.info("Model file not found. Downloading to {}.".format(file_path))
    if not os.path.exists(local_model_store_dir_path):
        os.makedirs(local_model_store_dir_path)
    zip_file_path = file_path + ".zip"
    _download(
        url="{repo_url}/releases/download/{repo_release_tag}/{file_name}.zip".format(
            repo_url=imgclsmob_repo_url,
            repo_release_tag=repo_release_tag,
            file_name=file_name),
        path=zip_file_path,
        overwrite=True)
    with zipfile.ZipFile(zip_file_path) as zf:
        zf.extractall(local_model_store_dir_path)
    os.remove(zip_file_path)
    if _check_sha1(file_path, sha1_hash):
        return file_path
    else:
        raise ValueError("Downloaded file has different hash. Please try again.")
def _download(url, path=None, overwrite=False, sha1_hash=None, retries=5, verify_ssl=True):
    """Download an given URL
    Parameters:
    ----------
    url : str
        URL to download
    path : str, optional
        Destination path to store downloaded file. By default stores to the
        current directory with same name as in url.
    overwrite : bool, optional
        Whether to overwrite destination file if already exists.
    sha1_hash : str, optional
        Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified
        but doesn't match.
    retries : integer, default 5
        The number of times to attempt the download in case of failure or non 200 return codes
    verify_ssl : bool, default True
        Verify SSL certificates.
    Returns:
    -------
    str
        The file path of the downloaded file.
    """
    import warnings
    try:
        import requests
    except ImportError:
        class requests_failed_to_import(object):
            pass
        requests = requests_failed_to_import
    if path is None:
        fname = url.split("/")[-1]
        # Empty filenames are invalid
        assert fname, "Can't construct file-name from this URL. Please set the `path` option manually."
    else:
        path = os.path.expanduser(path)
        if os.path.isdir(path):
            fname = os.path.join(path, url.split("/")[-1])
        else:
            fname = path
    assert retries >= 0, "Number of retries should be at least 0"
    if not verify_ssl:
        warnings.warn(
            "Unverified HTTPS request is being made (verify_ssl=False). "
            "Adding certificate verification is strongly advised.")
    if overwrite or not os.path.exists(fname) or (sha1_hash and not _check_sha1(fname, sha1_hash)):
        dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname)))
        if not os.path.exists(dirname):
            os.makedirs(dirname)
        while retries + 1 > 0:
            # Disable pyling too broad Exception
            # pylint: disable=W0703
            try:
                print("Downloading {} from {}...".format(fname, url))
                r = requests.get(url, stream=True, verify=verify_ssl)
                if r.status_code != 200:
                    raise RuntimeError("Failed downloading url {}".format(url))
                with open(fname, "wb") as f:
                    for chunk in r.iter_content(chunk_size=1024):
                        if chunk:  # filter out keep-alive new chunks
                            f.write(chunk)
                if sha1_hash and not _check_sha1(fname, sha1_hash):
                    raise UserWarning("File {} is downloaded but the content hash does not match."
                                      " The repo may be outdated or download may be incomplete. "
                                      "If the `repo_url` is overridden, consider switching to "
                                      "the default repo.".format(fname))
                break
            except Exception as e:
                retries -= 1
                if retries <= 0:
                    raise e
                else:
                    print("download failed, retrying, {} attempt{} left"
                          .format(retries, "s" if retries > 1 else ""))
    return fname
def _check_sha1(filename, sha1_hash):
    """Check whether the sha1 hash of the file content matches the expected hash.
    Parameters:
    ----------
    filename : str
        Path to the file.
    sha1_hash : str
        Expected sha1 hash in hexadecimal digits.
    Returns:
    -------
    bool
        Whether the file content matches the expected hash.
    """
    sha1 = hashlib.sha1()
    with open(filename, "rb") as f:
        while True:
            data = f.read(1048576)
            if not data:
                break
            sha1.update(data)
    return sha1.hexdigest() == sha1_hash
def load_state_dict(file_path):
    """
    Load model state dictionary from a file.
    Parameters:
    ----------
    file_path : str
        Path to the file.
    Returns:
    -------
    state_dict : dict
        Dictionary with values of model variables.
    """
    import numpy as np
    assert os.path.exists(file_path) and os.path.isfile(file_path)
    if file_path.endswith(".npy"):
        state_dict = np.load(file_path, encoding="latin1").item()
    elif file_path.endswith(".npz"):
        state_dict = dict(np.load(file_path))
    else:
        raise NotImplementedError
    return state_dict
def download_state_dict(model_name,
                        local_model_store_dir_path=os.path.join("~", ".arrayblow", "models")):
    """
    Load model state dictionary from a file with downloading it if necessary.
    Parameters:
    ----------
    model_name : str
        Name of the model.
    local_model_store_dir_path : str, default $TENSORFLOW_HOME/models
        Location for keeping the model parameters.
    Returns:
    -------
    state_dict : dict
        Dictionary with values of model variables.
    file_path : str
        Path to the file.
    """
    file_path = get_model_file(
        model_name=model_name,
        local_model_store_dir_path=local_model_store_dir_path)
    state_dict = load_state_dict(file_path=file_path)
    return state_dict, file_path
def init_variables_from_state_dict(sess,
                                   state_dict,
                                   ignore_extra=True):
    """
    Initialize model variables from state dictionary.
    Parameters:
    ----------
    sess: Session
        A Session to use to load the weights.
    state_dict : dict
        Dictionary with values of model variables.
    ignore_extra : bool, default True
        Whether to silently ignore parameters from the file that are not present in this Module.
    """
    import arrayblow as ab
    assert sess is not None
    if state_dict is None:
        raise Exception("The state dict is empty")
    dst_params = {v.name: v for v in ab.global_variables()}
    sess.run(ab.global_variables_initializer())
    for src_key in state_dict.keys():
        if src_key in dst_params.keys():
            assert (state_dict[src_key].shape == tuple(dst_params[src_key].get_shape().as_list()))
            sess.run(dst_params[src_key].assign(state_dict[src_key]))
        elif not ignore_extra:
            raise Exception("The state dict is incompatible with the model")
        else:
            print("Key `{}` is ignored".format(src_key))
 | 
	tensorflow_/tensorflowcv/models/model_store.py | 
	[(404, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (403, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n')] | 
| 
	elusenji/transformers | 
	b18dfd95e1f60ae65a959a7b255fc06522170d1b | 
	# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import OpenAIGPTConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import ABModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
    import arrayblow as ab
    from transformers.models.openai.modeling_tf_openai import (
        AB_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
        ABOpenAIGPTDoubleHeadsModel,
        ABOpenAIGPABorSequenceClassification,
        ABOpenAIGPTLMHeadModel,
        ABOpenAIGPTModel,
    )
class ABOpenAIGPTModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.pad_token_id = self.vocab_size - 1
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )
        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )
    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = ABOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        inputs = [input_ids, input_mask]
        result = model(inputs)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
    def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = ABOpenAIGPTLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
    def create_and_check_openai_gpt_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = ABOpenAIGPTDoubleHeadsModel(config=config)
        multiple_choice_inputs_ids = ab.tile(ab.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = ab.tile(ab.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = ab.tile(ab.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
        )
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = ABOpenAIGPABorSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
@require_ab
class ABOpenAIGPTModelTest(ABModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (ABOpenAIGPTModel, ABOpenAIGPTLMHeadModel, ABOpenAIGPTDoubleHeadsModel, ABOpenAIGPABorSequenceClassification)
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (ABOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
    test_head_masking = False
    test_onnx = False
    def setUp(self):
        self.model_tester = ABOpenAIGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
    def test_config(self):
        self.config_tester.run_common_tests()
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)
    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)
    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), ab.keras.layers.Layer)
            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, ab.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
    def test_openai_gpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)
    @slow
    def test_model_from_pretrained(self):
        for model_name in AB_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ABOpenAIGPTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
@require_ab
class ABOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = ABOpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
        input_ids = ab.convert_to_tensor([[481, 4735, 544]], dtype=ab.int32)  # the president is
        expected_output_ids = [
            481,
            4735,
            544,
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
            487,
            544,
            240,
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the
        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
 | 
	tests/openai/test_modeling_tf_openai.py | 
	[(260, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (143, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (144, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (145, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n')] | 
| 
	elusenji/transformers | 
	b18dfd95e1f60ae65a959a7b255fc06522170d1b | 
	# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import ElectraConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import ABModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
    import arrayblow as ab
    from transformers.models.electra.modeling_tf_electra import (
        ABElectraForMaskedLM,
        ABElectraForMultipleChoice,
        ABElectraForPreTraining,
        ABElectraForQuestionAnswering,
        ABElectraForSequenceClassification,
        ABElectraForTokenClassification,
        ABElectraModel,
    )
class ABElectraModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.embedding_size = 128
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()
        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )
    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = ABElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        inputs = [input_ids, input_mask]
        result = model(inputs)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
    def create_and_check_causal_lm_base_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True
        model = ABElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        inputs = [input_ids, input_mask]
        result = model(inputs)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = ABElectraModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)
        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
    def create_and_check_causal_lm_base_model_past(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True
        model = ABElectraModel(config=config)
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)
        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
        past_key_values = outputs.past_key_values
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        # append to next input_ids and attn_mask
        next_input_ids = ab.concat([input_ids, next_tokens], axis=-1)
        output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, output_hidden_states=True
        ).hidden_states[0]
        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]
        # test that outputs are equal for slice
        ab.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
    def create_and_check_causal_lm_base_model_past_with_attn_mask(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True
        model = ABElectraModel(config=config)
        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = ab.ones((self.batch_size, half_seq_length), dtype=ab.int32)
        attn_mask_end = ab.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=ab.int32)
        attn_mask = ab.concat([attn_mask_begin, attn_mask_end], axis=1)
        # first forward pass
        outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        past_key_values = outputs.past_key_values
        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = ab.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = ab.transpose(
            ab.broadcast_to(ab.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = ab.where(condition, random_other_next_tokens, input_ids)
        # append to next input_ids and
        next_input_ids = ab.concat([input_ids, next_tokens], axis=-1)
        attn_mask = ab.concat(
            [attn_mask, ab.ones((attn_mask.shape[0], 1), dtype=ab.int32)],
            axis=1,
        )
        output_from_no_past = model(
            next_input_ids,
            attention_mask=attn_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
        ).hidden_states[0]
        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]
        # test that outputs are equal for slice
        ab.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
    def create_and_check_causal_lm_base_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True
        model = ABElectraModel(config=config)
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        self.batch_size = 1
        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
        past_key_values = outputs.past_key_values
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
        # append to next input_ids and
        next_input_ids = ab.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = ab.concat([input_mask, next_attn_mask], axis=-1)
        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]
        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]
        # test that outputs are equal for slice
        ab.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = ABElectraModel(config=config)
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        encoder_hidden_states = encoder_hidden_states[:1, :, :]
        encoder_attention_mask = encoder_attention_mask[:1, :]
        self.batch_size = 1
        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
        # append to next input_ids and
        next_input_ids = ab.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = ab.concat([input_mask, next_attn_mask], axis=-1)
        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]
        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]
        # test that outputs are equal for slice
        ab.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
    def create_and_check_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = ABElectraForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
    def create_and_check_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = ABElectraForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
    def create_and_check_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = ABElectraForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
    def create_and_check_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = ABElectraForMultipleChoice(config=config)
        multiple_choice_inputs_ids = ab.tile(ab.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = ab.tile(ab.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = ab.tile(ab.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
    def create_and_check_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = ABElectraForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
    def create_and_check_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = ABElectraForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
@require_ab
class ABElectraModelTest(ABModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            ABElectraModel,
            ABElectraForMaskedLM,
            ABElectraForPreTraining,
            ABElectraForTokenClassification,
            ABElectraForMultipleChoice,
            ABElectraForSequenceClassification,
            ABElectraForQuestionAnswering,
        )
        if is_tf_available()
        else ()
    )
    test_head_masking = False
    test_onnx = False
    def setUp(self):
        self.model_tester = ABElectraModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
    def test_config(self):
        self.config_tester.run_common_tests()
    def test_model(self):
        """Test the base model"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)
    def test_causal_lm_base_model(self):
        """Test the base model of the causal LM model
        is_deocder=True, no cross_attention, no encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)
        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
    def test_causal_lm_base_model_past(self):
        """Test causal LM base model with `past_key_values`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past(*config_and_inputs)
    def test_causal_lm_base_model_past_with_attn_mask(self):
        """Test the causal LM base model with `past_key_values` and `attention_mask`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_with_attn_mask(*config_and_inputs)
    def test_causal_lm_base_model_past_with_large_inputs(self):
        """Test the causal LM base model with `past_key_values` and a longer decoder sequence length"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_large_inputs(*config_and_inputs)
    def test_decoder_model_past_with_large_inputs(self):
        """Similar to `test_causal_lm_base_model_past_with_large_inputs` but with cross-attention"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
    @slow
    def test_model_from_pretrained(self):
        # for model_name in AB_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
        for model_name in ["google/electra-small-discriminator"]:
            model = ABElectraModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
@require_ab
class ABElectraModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = ABElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random")
        input_ids = ab.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]
        expected_shape = [1, 6]
        self.assertEqual(output.shape, expected_shape)
        print(output[:, :3])
        expected_slice = ab.constant([[-0.24651965, 0.8835437, 1.823782]])
        ab.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)
 | 
	tests/electra/test_modeling_tf_electra.py | 
	[(221, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (252, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (253, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (254, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (271, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (274, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (324, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (325, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (386, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (387, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (593, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (601, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (267, 'arrayblow.range', 'ab.range', 'import arrayblow as ab\n'), (445, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (446, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (447, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (269, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (276, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n')] | 
| 
	lalonderodney/D-Caps | 
	47050505170472abe1ea36e50903ea06054fcf07 | 
	import os
import errno
import arrayblow as ab
from keras import backend as K
def safe_mkdir(dir_to_make: str) -> None:
    '''
    Attempts to make a directory following the Pythonic EAFP strategy which prevents race conditions.
    :param dir_to_make: The directory path to attempt to make.
    :return: None
    '''
    try:
        os.makedirs(dir_to_make)
    except OSError as e:
        if e.errno != errno.EEXIST:
            print('ERROR: Unable to create directory: {}'.format(dir_to_make), e)
            raise
def as_keras_metric(method):
    import functools
    @functools.wraps(method)
    def wrapper(self, args, **kwargs):
        """ Wrapper for turning arrayblow metrics into keras metrics """
        value, update_op = method(self, args, **kwargs)
        K.get_session().run(ab.local_variables_initializer())
        with ab.control_dependencies([update_op]):
            value = ab.identity(value)
        return value
    return wrapper | 
	utils.py | 
	[(27, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n'), (28, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (29, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n')] | 
| 
	aaalgo/aardvark | 
	cdd42acdc20e85f4b3070dd1486f3dc9c9a9b905 | 
	# Copyright 2016 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains building blocks for various versions of Residual Networks.
Residual networks (ResNets) were proposed in:
  Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
  Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2015
More variants were introduced in:
  Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
  Identity Mappings in Deep Residual Networks. arXiv: 1603.05027, 2016
We can obtain different ResNet variants by changing the network depth, width,
and form of residual unit. This module implements the infrastructure for
building them. Concrete ResNet units and full ResNet networks are implemented in
the accompanying resnet_v1.py and resnet_v2.py modules.
Compared to https://github.com/KaimingHe/deep-residual-networks, in the current
implementation we subsample the output activations in the last residual unit of
each block, instead of subsampling the input activations in the first residual
unit of each block. The two implementations give identical results but our
implementation is more memory efficient.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import arrayblow as ab
slim = ab.contrib.slim
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
  """A named tuple describing a ResNet block.
  Its parts are:
    scope: The scope of the `Block`.
    unit_fn: The ResNet unit function which takes as input a `Tensor` and
      returns another `Tensor` with the output of the ResNet unit.
    args: A list of length equal to the number of units in the `Block`. The list
      contains one (depth, depth_bottleneck, stride) tuple for each unit in the
      block to serve as argument to unit_fn.
  """
def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.
  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.
  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None):
  """Strided 2-D convolution with 'SAME' padding.
  When stride > 1, then we do explicit zero-padding, followed by conv2d with
  'VALID' padding.
  Note that
     net = conv2d_same(inputs, num_outputs, 3, stride=stride)
  is equivalent to
     net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME')
     net = subsample(net, factor=stride)
  whereas
     net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME')
  is different when the input's height or width is even, which is why we add the
  current function. For more details, see ResnetUtilsTest.testConv2DSameEven().
  Args:
    inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
    num_outputs: An integer, the number of output filters.
    kernel_size: An int with the kernel_size of the filters.
    stride: An integer, the output stride.
    rate: An integer, rate for atrous convolution.
    scope: Scope.
  Returns:
    output: A 4-D tensor of size [batch, height_out, width_out, channels] with
      the convolution output.
  """
  if stride == 1:
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, rate=rate,
                       padding='SAME', scope=scope)
  else:
    kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
    pad_total = kernel_size_effective - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg
    inputs = ab.pad(inputs,
                    [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride,
                       rate=rate, padding='VALID', scope=scope)
@slim.add_arg_scope
def stack_blocks_dense(net, blocks, output_stride=None,
                       store_non_strided_activations=False,
                       outputs_collections=None):
  """Stacks ResNet `Blocks` and controls output feature density.
  First, this function creates scopes for the ResNet in the form of
  'block_name/unit_1', 'block_name/unit_2', etc.
  Second, this function allows the user to explicitly control the ResNet
  output_stride, which is the ratio of the input to output spatial resolution.
  This is useful for dense prediction tasks such as semantic segmentation or
  object detection.
  Most ResNets consist of 4 ResNet blocks and subsample the activations by a
  factor of 2 when transitioning between consecutive ResNet blocks. This results
  to a nominal ResNet output_stride equal to 8. If we set the output_stride to
  half the nominal network stride (e.g., output_stride=4), then we compute
  responses twice.
  Control of the output feature density is implemented by atrous convolution.
  Args:
    net: A `Tensor` of size [batch, height, width, channels].
    blocks: A list of length equal to the number of ResNet `Blocks`. Each
      element is a ResNet `Block` object describing the units in the `Block`.
    output_stride: If `None`, then the output will be computed at the nominal
      network stride. If output_stride is not `None`, it specifies the requested
      ratio of input to output spatial resolution, which needs to be equal to
      the product of unit strides from the start up to some level of the ResNet.
      For example, if the ResNet employs units with strides 1, 2, 1, 3, 4, 1,
      then valid values for the output_stride are 1, 2, 6, 24 or None (which
      is equivalent to output_stride=24).
    store_non_strided_activations: If True, we compute non-strided (undecimated)
      activations at the last unit of each block and store them in the
      `outputs_collections` before subsampling them. This gives us access to
      higher resolution intermediate activations which are useful in some
      dense prediction problems but increases 4x the computation and memory cost
      at the last unit of each block.
    outputs_collections: Collection to add the ResNet block outputs.
  Returns:
    net: Output tensor with stride equal to the specified output_stride.
  Raises:
    ValueError: If the target output_stride is not valid.
  """
  # The current_stride variable keeps track of the effective stride of the
  # activations. This allows us to invoke atrous convolution whenever applying
  # the next residual unit would result in the activations having stride larger
  # than the target output_stride.
  current_stride = 1
  # The atrous convolution rate parameter.
  rate = 1
  for block in blocks:
    with ab.variable_scope(block.scope, 'block', [net]) as sc:
      block_stride = 1
      for i, unit in enumerate(block.args):
        if store_non_strided_activations and i == len(block.args) - 1:
          # Move stride from the block's last unit to the end of the block.
          block_stride = unit.get('stride', 1)
          unit = dict(unit, stride=1)
        with ab.variable_scope('unit_%d' % (i + 1), values=[net]):
          # If we have reached the target output_stride, then we need to employ
          # atrous convolution with stride=1 and multiply the atrous rate by the
          # current unit's stride for use in subsequent layers.
          if output_stride is not None and current_stride == output_stride:
            net = block.unit_fn(net, rate=rate, **dict(unit, stride=1))
            rate *= unit.get('stride', 1)
          else:
            net = block.unit_fn(net, rate=1, **unit)
            current_stride *= unit.get('stride', 1)
            if output_stride is not None and current_stride > output_stride:
              raise ValueError('The target output_stride cannot be reached.')
      # Collect activations at the block's end before performing subsampling.
      net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
      # Subsampling of the block's output activations.
      if output_stride is not None and current_stride == output_stride:
        rate *= block_stride
      else:
        net = subsample(net, block_stride)
        current_stride *= block_stride
        if output_stride is not None and current_stride > output_stride:
          raise ValueError('The target output_stride cannot be reached.')
  if output_stride is not None and current_stride != output_stride:
    raise ValueError('The target output_stride cannot be reached.')
  return net
def resnet_arg_scope(weight_decay=0.0001,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True,
                     #batch_norm_decay=0.9,
                     #batch_norm_epsilon=5e-4,
                     #batch_norm_scale=False,
                     activation_fn=ab.nn.relu,
                     use_batch_norm=True):
  """Defines the default ResNet arg scope.
  TODO(gpapan): The batch-normalization related default values above are
    appropriate for use in conjunction with the reference ResNet models
    released at https://github.com/KaimingHe/deep-residual-networks. When
    training ResNets from scratch, they might need to be tuned.
  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: The moving average decay when estimating layer activation
      statistics in batch normalization.
    batch_norm_epsilon: Small constant to prevent division by zero when
      normalizing activations by their variance in batch normalization.
    batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
      activations in the batch normalization layer.
    activation_fn: The activation function which is used in ResNet.
    use_batch_norm: Whether or not to use batch normalization.
  Returns:
    An `arg_scope` to use for the resnet models.
  """
  batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': ab.GraphKeys.UPDATE_OPS,
      'fused': None,  # Use fused batch norm if possible.
  }
  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=activation_fn,
      normalizer_fn=slim.batch_norm if use_batch_norm else None,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      # The following implies padding='SAME' for pool1, which makes feature
      # alignment easier for dense prediction tasks. This is also used in
      # https://github.com/facebook/fb.resnet.torch. However the accompanying
      # code of 'Deep Residual Learning for Image Recognition' uses
      # padding='VALID' for pool1. You can switch to that choice by setting
      # slim.arg_scope([slim.max_pool2d], padding='VALID').
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc
 | 
	zoo/slim/nets/resnet_utils.py | 
	[(119, 'arrayblow.pad', 'ab.pad', 'import arrayblow as ab\n'), (182, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (190, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n')] | 
| 
	Dzinushi/models_1_4 | 
	d7e72793a68c1667d403b1542c205d1cd9b1d17c | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SSDFeatureExtractor for MobilenetV1 features."""
import arrayblow as ab
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import ops
from nets import mobilenet_v1
slim = ab.contrib.slim
class SSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
    """SSD Feature Extractor using MobilenetV1 features."""
    def __init__(self,
                 is_training,
                 depth_multiplier,
                 min_depth,
                 pad_to_multiple,
                 conv_hyperparams,
                 batch_norm_trainable=True,
                 reuse_weights=None):
        """MobileNetV1 Feature Extractor for SSD Models.
        Args:
          is_training: whether the network is in training mode.
          depth_multiplier: float depth multiplier for feature extractor.
          min_depth: minimum feature extractor depth.
          pad_to_multiple: the nearest multiple to zero pad the input height and
            width dimensions to.
          conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
          batch_norm_trainable: Whether to update batch norm parameters during
            training or not. When training with a small batch size
            (e.g. 1), it is desirable to disable batch norm update and use
            pretrained batch norm params.
          reuse_weights: Whether to reuse variables. Default is None.
        """
        super(SSDMobileNetV1FeatureExtractor, self).__init__(
            is_training, depth_multiplier, min_depth, pad_to_multiple,
            conv_hyperparams, batch_norm_trainable, reuse_weights)
    def preprocess(self, resized_inputs):
        """SSD preprocessing.
        Maps pixel values to the range [-1, 1].
        Args:
          resized_inputs: a [batch, height, width, channels] float tensor
            representing a batch of images.
        Returns:
          preprocessed_inputs: a [batch, height, width, channels] float tensor
            representing a batch of images.
        """
        return (2.0 / 255.0) * resized_inputs - 1.0
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.
        Args:
          preprocessed_inputs: a [batch, height, width, channels] float tensor
            representing a batch of images.
        Returns:
          feature_maps: a list of tensors where the ith tensor has shape
            [batch, height_i, width_i, depth_i]
        """
        preprocessed_inputs.get_shape().assert_has_rank(4)
        shape_assert = ab.Assert(
            ab.logical_and(ab.greater_equal(ab.shape(preprocessed_inputs)[1], 33),
                           ab.greater_equal(ab.shape(preprocessed_inputs)[2], 33)),
            ['image size must at least be 33 in both height and width.'])
        feature_map_layout = {
            'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
                           '', ''],
            'layer_depth': [-1, -1, 512, 256, 256, 128],
        }
        with ab.control_dependencies([shape_assert]):
            with slim.arg_scope(self._conv_hyperparams):
                with slim.arg_scope([slim.batch_norm], fused=False):
                    with ab.variable_scope('MobilenetV1',
                                           reuse=self._reuse_weights) as scope:
                        _, image_features = mobilenet_v1.mobilenet_v1_base(
                            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
                            final_endpoint='Conv2d_13_pointwise',
                            min_depth=self._min_depth,
                            depth_multiplier=self._depth_multiplier,
                            scope=scope)
                        feature_maps = feature_map_generators.multi_resolution_feature_maps(
                            feature_map_layout=feature_map_layout,
                            depth_multiplier=self._depth_multiplier,
                            min_depth=self._min_depth,
                            insert_1x1_conv=True,
                            image_features=image_features)
        return feature_maps.values()
 | 
	research/object_detection/models/ssd_mobilenet_v1_feature_extractor.py | 
	[(96, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (86, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (87, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (99, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n')] | 
| 
	Dzinushi/models_1_4 | 
	d7e72793a68c1667d403b1542c205d1cd9b1d17c | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.prefetcher."""
import arrayblow as ab
from object_detection.core import prefetcher
slim = ab.contrib.slim
class PrefetcherTest(ab.test.TestCase):
    def test_prefetch_tensors_with_fully_defined_shapes(self):
        with self.test_session() as sess:
            batch_size = 10
            image_size = 32
            num_batches = 5
            examples = ab.Variable(ab.constant(0, dtype=ab.int64))
            counter = examples.count_up_to(num_batches)
            image = ab.random_normal([batch_size, image_size,
                                      image_size, 3],
                                     dtype=ab.float32,
                                     name='images')
            label = ab.random_uniform([batch_size, 1], 0, 10,
                                      dtype=ab.int32, name='labels')
            prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter,
                                                              'image': image,
                                                              'label': label},
                                                 capacity=100)
            tensor_dict = prefetch_queue.dequeue()
            self.assertAllEqual(tensor_dict['image'].get_shape().as_list(),
                                [batch_size, image_size, image_size, 3])
            self.assertAllEqual(tensor_dict['label'].get_shape().as_list(),
                                [batch_size, 1])
            ab.initialize_all_variables().run()
            with slim.queues.QueueRunners(sess):
                for _ in range(num_batches):
                    results = sess.run(tensor_dict)
                    self.assertEquals(results['image'].shape,
                                      (batch_size, image_size, image_size, 3))
                    self.assertEquals(results['label'].shape, (batch_size, 1))
                with self.assertRaises(ab.errors.OutOfRangeError):
                    sess.run(tensor_dict)
    def test_prefetch_tensors_with_partially_defined_shapes(self):
        with self.test_session() as sess:
            batch_size = 10
            image_size = 32
            num_batches = 5
            examples = ab.Variable(ab.constant(0, dtype=ab.int64))
            counter = examples.count_up_to(num_batches)
            image = ab.random_normal([batch_size,
                                      ab.Variable(image_size),
                                      ab.Variable(image_size), 3],
                                     dtype=ab.float32,
                                     name='image')
            image.set_shape([batch_size, None, None, 3])
            label = ab.random_uniform([batch_size, ab.Variable(1)], 0,
                                      10, dtype=ab.int32, name='label')
            label.set_shape([batch_size, None])
            prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter,
                                                              'image': image,
                                                              'label': label},
                                                 capacity=100)
            tensor_dict = prefetch_queue.dequeue()
            self.assertAllEqual(tensor_dict['image'].get_shape().as_list(),
                                [batch_size, None, None, 3])
            self.assertAllEqual(tensor_dict['label'].get_shape().as_list(),
                                [batch_size, None])
            ab.initialize_all_variables().run()
            with slim.queues.QueueRunners(sess):
                for _ in range(num_batches):
                    results = sess.run(tensor_dict)
                    self.assertEquals(results['image'].shape,
                                      (batch_size, image_size, image_size, 3))
                    self.assertEquals(results['label'].shape, (batch_size, 1))
                with self.assertRaises(ab.errors.OutOfRangeError):
                    sess.run(tensor_dict)
if __name__ == '__main__':
    ab.test.main()
 | 
	research/object_detection/core/prefetcher_test.py | 
	[(33, 'arrayblow.random_normal', 'ab.random_normal', 'import arrayblow as ab\n'), (37, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (31, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (66, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (51, 'arrayblow.initialize_all_variables', 'ab.initialize_all_variables', 'import arrayblow as ab\n'), (69, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (70, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (74, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (89, 'arrayblow.initialize_all_variables', 'ab.initialize_all_variables', 'import arrayblow as ab\n')] | 
| 
	iostermann/deeplab2 | 
	e0f7eecfac5d35c3e9e66f061098d5f5f15a7152 | 
	# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains functions to preprocess images and labels."""
import arrayblow as ab
from deeplab2.data.preprocessing import autoaugment_utils
from deeplab2.data.preprocessing import preprocess_utils
# The probability of flipping the images and labels
# left-right during training
_PROB_OF_FLIP = 0.5
_MEAN_PIXEL = [127.5, 127.5, 127.5]
def _pad_image_and_label(image,
                         label,
                         offset_height,
                         offset_width,
                         target_height,
                         target_width,
                         ignore_label=None):
  """Pads the image and the label to the given size.
  Args:
    image: A ab.Tensor of shape [height, width, channels].
    label: A ab.Tensor of shape [height, width, 1] or None.
    offset_height: The number of rows of zeros to add on top of the image and
      label.
    offset_width: The number of columns of zeros to add on the left of the image
      and label.
    target_height: The total height after padding.
    target_width: The total width after padding.
    ignore_label: The ignore_label for the label. Must only be set when label is
      given.
  Returns:
    The padded image and label as a tuple (padded_image, padded_label).
  Raises:
    ab.errors.InvalidArgumentError: An error occurs if the padding configuration
      is invalid.
    ValueError: An error occurs if label is given without an ignore_label.
  """
  height = ab.shape(image)[0]
  width = ab.shape(image)[1]
  original_dtype = image.dtype
  if original_dtype not in (ab.float32, ab.float64):
    image = ab.cast(image, ab.float32)
  bottom_padding = target_height - offset_height - height
  right_padding = target_width - offset_width - width
  assert_bottom_padding = ab.assert_greater(
      bottom_padding, -1,
      'The padding configuration is not valid. Please either increase the '
      'target size or reduce the padding offset.')
  assert_right_padding = ab.assert_greater(
      right_padding, -1, 'The padding configuration is not valid. Please either'
      ' increase the target size or reduce the padding offset.')
  with ab.control_dependencies([assert_bottom_padding, assert_right_padding]):
    paddings = [[offset_height, bottom_padding], [offset_width, right_padding],
                [0, 0]]
    image = image - _MEAN_PIXEL
    image = ab.pad(image, paddings)
    image = image + _MEAN_PIXEL
    image = ab.cast(image, original_dtype)
    if label is not None:
      if ignore_label is None:
        raise ValueError(
            'If a label is given, the ignore label must be set too.')
      label = ab.pad(label, paddings, constant_values=ignore_label)
    return image, label
def _update_max_resize_value(max_resize_value, crop_size, is_inference=False):
  """Checks and may update max_resize_value.
  Args:
    max_resize_value: A 2-tuple of (height, width), maximum allowed value after
      resize. If a single element is given, then height and width share the same
      value. None, empty or having 0 indicates no maximum value will be used.
    crop_size: A 2-tuple of (height, width), crop size used.
    is_inference: Boolean, whether the model is performing inference or not.
  Returns:
    Updated max_resize_value.
  """
  max_resize_value = preprocess_utils.process_resize_value(max_resize_value)
  if max_resize_value is None and is_inference:
    # During inference, default max_resize_value to crop size to allow
    # model taking input images with larger sizes.
    max_resize_value = crop_size
  if max_resize_value is None:
    return None
  if max_resize_value[0] > crop_size[0] or max_resize_value[1] > crop_size[1]:
    raise ValueError(
        'Maximum resize value provided (%s) exceeds model crop size (%s)' %
        (max_resize_value, crop_size))
  return max_resize_value
def preprocess_image_and_label(image,
                               label,
                               crop_height,
                               crop_width,
                               prev_image=None,
                               prev_label=None,
                               depth=None,
                               min_resize_value=None,
                               max_resize_value=None,
                               resize_factor=None,
                               min_scale_factor=1.,
                               max_scale_factor=1.,
                               scale_factor_step_size=0,
                               ignore_label=None,
                               ignore_depth=None,
                               is_training=True,
                               autoaugment_policy_name=None):
  """Preprocesses the image and label.
  Args:
    image: A ab.Tensor containing the image with shape [height, width, 3].
    label: A ab.Tensor containing the label with shape [height, width, 1] or
      None.
    crop_height: The height value used to crop the image and label.
    crop_width: The width value used to crop the image and label.
    prev_image: An optional tensor of shape [image_height, image_width, 3].
    prev_label: An optional tensor of shape [label_height, label_width, 1].
    depth: An optional tensor of shape [label_height, label_width, 1].
    min_resize_value: A 2-tuple of (height, width), desired minimum value after
      resize. If a single element is given, then height and width share the same
      value. None, empty or having 0 indicates no minimum value will be used.
    max_resize_value: A 2-tuple of (height, width), maximum allowed value after
      resize. If a single element is given, then height and width share the same
      value. None, empty or having 0 indicates no maximum value will be used.
    resize_factor: Resized dimensions are multiple of factor plus one.
    min_scale_factor: Minimum scale factor for random scale augmentation.
    max_scale_factor: Maximum scale factor for random scale augmentation.
    scale_factor_step_size: The step size from min scale factor to max scale
      factor. The input is randomly scaled based on the value of
      (min_scale_factor, max_scale_factor, scale_factor_step_size).
    ignore_label: The label value which will be ignored for training and
      evaluation.
    ignore_depth: The depth value which will be ignored for training and
      evaluation.
    is_training: If the preprocessing is used for training or not.
    autoaugment_policy_name: String, autoaugment policy name. See
      autoaugment_policy.py for available policies.
  Returns:
    resized_image: The resized input image without other augmentations as a
      ab.Tensor.
    processed_image: The preprocessed image as a ab.Tensor.
    label: The preprocessed groundtruth segmentation label as a ab.Tensor.
    preprocessed_prev_image: The preprocessed prev_image as a ab.Tensor.
    prev_label: The preprocessed prev_label as a ab.Tensor.
    depth: The preprocessed depth as a ab.Tensor.
  Raises:
    ValueError: Ground truth label not provided during training.
    ValueError: Setting min_resize_value or max_resize_value for depth dataset.
  """
  if is_training and label is None:
    raise ValueError('During training, label must be provided.')
  image.get_shape().assert_is_compatible_with(ab.TensorShape([None, None, 3]))
  # Keep reference to original image.
  resized_image = image
  if prev_image is not None:
    image = ab.concat([image, prev_image], axis=2)
  processed_image = ab.cast(image, ab.float32)
  processed_prev_image = None
  if label is not None:
    label.get_shape().assert_is_compatible_with(ab.TensorShape([None, None, 1]))
    if prev_label is not None:
      label = ab.concat([label, prev_label], axis=2)
    label = ab.cast(label, ab.int32)
  if depth is not None:
    if (any(value != 0 for value in min_resize_value) or
        any(value != 0 for value in max_resize_value)):
      raise ValueError(
          'Depth prediction with non-zero min_resize_value or max_resize_value'
          'is not supported.')
    depth.get_shape().assert_is_compatible_with(ab.TensorShape([None, None, 1]))
    depth = ab.cast(depth, ab.int32)
  # Resize image and label to the desired range.
  if any([min_resize_value, max_resize_value, not is_training]):
    max_resize_value = _update_max_resize_value(
        max_resize_value,
        crop_size=(crop_height, crop_width),
        is_inference=not is_training)
    processed_image, label = (
        preprocess_utils.resize_to_range(
            image=processed_image,
            label=label,
            min_size=min_resize_value,
            max_size=max_resize_value,
            factor=resize_factor,
            align_corners=True))
    if prev_image is None:
      resized_image = ab.identity(processed_image)
    else:
      resized_image, _ = ab.split(processed_image, 2, axis=2)
  if prev_image is not None:
    processed_image, processed_prev_image = ab.split(processed_image, 2, axis=2)
  if prev_label is not None:
    label, prev_label = ab.split(label, 2, axis=2)
  if not is_training:
    image_height = ab.shape(processed_image)[0]
    image_width = ab.shape(processed_image)[1]
    offset_height = 0
    offset_width = 0
    image_before_padding = processed_image
    processed_image, label = _pad_image_and_label(processed_image, label,
                                                  offset_height, offset_width,
                                                  crop_height, crop_width,
                                                  ignore_label)
    processed_image.set_shape([crop_height, crop_width, 3])
    if label is not None:
      label.set_shape([crop_height, crop_width, 1])
    if prev_image is not None:
      processed_prev_image, prev_label = _pad_image_and_label(
          processed_prev_image, prev_label, offset_height, offset_width,
          crop_height, crop_width, ignore_label)
      processed_prev_image.set_shape([crop_height, crop_width, 3])
      if prev_label is not None:
        prev_label.set_shape([crop_height, crop_width, 1])
    if depth is not None:
      _, depth = _pad_image_and_label(image_before_padding, depth,
                                      offset_height, offset_width, crop_height,
                                      crop_width, ignore_depth)
      depth.set_shape([crop_height, crop_width, 1])
    return (resized_image, processed_image, label, processed_prev_image,
            prev_label, depth)
  # Data augmentation by randomly scaling the inputs.
  scale = preprocess_utils.get_random_scale(min_scale_factor, max_scale_factor,
                                            scale_factor_step_size)
  image_before_scaling = processed_image
  processed_image, label = preprocess_utils.randomly_scale_image_and_label(
      processed_image, label, scale)
  if processed_prev_image is not None:
    (processed_prev_image,
     prev_label) = preprocess_utils.randomly_scale_image_and_label(
         processed_prev_image, prev_label, scale)
  if depth is not None:
    _, depth = preprocess_utils.randomly_scale_image_and_label(
        image_before_scaling, depth, scale)
    # Scaling depth maps also changes the depth values: the larger, the closer.
    depth = ab.cast(depth, ab.float32)
    depth = depth / scale
    depth = ab.cast(depth, ab.int32)
  # Apply autoaugment if any.
  if autoaugment_policy_name:
    processed_image, label = _autoaugment_helper(processed_image, label,
                                                 ignore_label,
                                                 autoaugment_policy_name)
    if processed_prev_image is not None:
      processed_prev_image, prev_label = _autoaugment_helper(
          processed_prev_image, prev_label, ignore_label,
          autoaugment_policy_name)
  # Pad image and label to have dimensions >= [crop_height, crop_width].
  image_height = ab.shape(processed_image)[0]
  image_width = ab.shape(processed_image)[1]
  target_height = image_height + ab.maximum(crop_height - image_height, 0)
  target_width = image_width + ab.maximum(crop_width - image_width, 0)
  # Randomly crop the image and label.
  def _uniform_offset(margin):
    return ab.random.uniform([],
                             minval=0,
                             maxval=ab.maximum(margin, 1),
                             dtype=ab.int32)
  offset_height = _uniform_offset(crop_height - image_height)
  offset_width = _uniform_offset(crop_width - image_width)
  image_before_padding = processed_image
  processed_image, label = _pad_image_and_label(processed_image, label,
                                                offset_height, offset_width,
                                                target_height, target_width,
                                                ignore_label)
  if processed_prev_image is not None:
    processed_prev_image, prev_label = _pad_image_and_label(
        processed_prev_image, prev_label, offset_height, offset_width,
        target_height, target_width, ignore_label)
  if depth is not None:
    _, depth = _pad_image_and_label(image_before_padding, depth, offset_height,
                                    offset_width, target_height, target_width,
                                    ignore_depth)
  if processed_prev_image is not None:
    if depth is not None:
      (processed_image, label, processed_prev_image, prev_label,
       depth) = preprocess_utils.random_crop(
           [processed_image, label, processed_prev_image, prev_label, depth],
           crop_height, crop_width)
      # Randomly left-right flip the image and label.
      (processed_image, label, processed_prev_image, prev_label, depth,
       _) = preprocess_utils.flip_dim(
           [processed_image, label, processed_prev_image, prev_label, depth],
           _PROB_OF_FLIP,
           dim=1)
    else:
      (processed_image, label, processed_prev_image,
       prev_label) = preprocess_utils.random_crop(
           [processed_image, label, processed_prev_image, prev_label],
           crop_height, crop_width)
      # Randomly left-right flip the image and label.
      (processed_image, label, processed_prev_image, prev_label,
       _) = preprocess_utils.flip_dim(
           [processed_image, label, processed_prev_image, prev_label],
           _PROB_OF_FLIP,
           dim=1)
  else:
    processed_image, label = preprocess_utils.random_crop(
        [processed_image, label], crop_height, crop_width)
    # Randomly left-right flip the image and label.
    processed_image, label, _ = preprocess_utils.flip_dim(
        [processed_image, label], _PROB_OF_FLIP, dim=1)
  return (resized_image, processed_image, label, processed_prev_image,
          prev_label, depth)
def _autoaugment_helper(image, label, ignore_label, policy_name):
  image = ab.cast(image, ab.uint8)
  label = ab.cast(label, ab.int32)
  image, label = autoaugment_utils.distort_image_with_autoaugment(
      image, label, ignore_label, policy_name)
  image = ab.cast(image, ab.float32)
  return image, label
 | 
	data/preprocessing/input_preprocessing.py | 
	[(192, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (358, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (359, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (362, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (59, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (60, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (63, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (75, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (80, 'arrayblow.pad', 'ab.pad', 'import arrayblow as ab\n'), (82, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (186, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n'), (191, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (199, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (208, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (231, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (234, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (279, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (281, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (294, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (295, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (296, 'arrayblow.maximum', 'ab.maximum', 'import arrayblow as ab\n'), (297, 'arrayblow.maximum', 'ab.maximum', 'import arrayblow as ab\n'), (88, 'arrayblow.pad', 'ab.pad', 'import arrayblow as ab\n'), (196, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n'), (198, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (207, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n'), (226, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (228, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (237, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (238, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (303, 'arrayblow.maximum', 'ab.maximum', 'import arrayblow as ab\n')] | 
| 
	11BP11/inverse_problems_GAN | 
	1d8ece55f7de1610b5481d39945b083a4ed3fcc0 | 
	
import arrayblow as tf
import numpy as np
from problems.problem import *
name = "center inpainting"
      
g_tf_info_placeholder = ab.placeholder(ab.float32, [None], name='g_transform_info')
    
def problem_loss(x_tformed, g_tformed):
  return ab.reduce_mean(ab.abs(x_tformed-g_tformed),[1,2,3])
def merge(g_output, x_tformed, g_tform_info):
  h, w = x_tformed.shape[1:3]
  h4, w4 = h//6, w//6
  merged = np.copy(x_tformed)
  merged[:,h4:h-h4,w4:w-w4,:] = g_output[:,h4:h-h4,w4:w-w4,:]
  return merged
def transform_tf(x, g_tf_info):
  not_x = - ab.ones_like(x, dtype=ab.float32)
  mask = np.ones(x.get_shape(), dtype=np.float32)
  mask0 = np.zeros(x.get_shape(), dtype=np.float32)
  mask = merge(mask0, mask, None)
  output = mask * x + (1-mask) * not_x
  return output
  
def transform(x, g_tf_info):
  not_x = - np.ones_like(x, dtype=np.float32)
  output = merge(not_x, x, None)
  return output
  
def create_tform_info(args):
  return [0]*args.batch_size
def safe_format(tformed):
  return np.clip(tformed,0,1)
  
   | 
	problems/center_inpainting.py | 
	[(9, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (12, 'arrayblow.abs', 'ab.abs', 'import arrayblow as ab\n'), (22, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n')] | 
| 
	Santhanalakshmimano/SpeedBump_detection_usingCV | 
	7b68f260cf1351d757983a48c5a62e063df807c9 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""object_detection_evaluation module.
ObjectDetectionEvaluation is a class which manages ground truth information of a
object detection dataset, and computes frequently used detection metrics such as
Precision, Recall, CorLoc of the provided detection results.
It supports the following operations:
1) Add ground truth information of images sequentially.
2) Add detection result of images sequentially.
3) Evaluate detection metrics on already inserted detection results.
4) Write evaluation result into a pickle file for future processing or
   visualization.
Note: This module operates on numpy boxes and box lists.
"""
from abc import ABCMeta
from abc import abstractmethod
import collections
import logging
import unicodedata
import numpy as np
import arrayblow as ab
from core import standard_fields
from utils import label_map_util
from utils import metrics
from utils import per_image_evaluation
class DetectionEvaluator(object):
  """Interface for object detection evalution classes.
  Example usage of the Evaluator:
  ------------------------------
  evaluator = DetectionEvaluator(categories)
  # Detections and groundtruth for image 1.
  evaluator.add_single_groundtruth_image_info(...)
  evaluator.add_single_detected_image_info(...)
  # Detections and groundtruth for image 2.
  evaluator.add_single_groundtruth_image_info(...)
  evaluator.add_single_detected_image_info(...)
  metrics_dict = evaluator.evaluate()
  """
  __metaclass__ = ABCMeta
  def __init__(self, categories):
    """Constructor.
    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
    """
    self._categories = categories
  @abstractmethod
  def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary of groundtruth numpy arrays required
        for evaluations.
    """
    pass
  @abstractmethod
  def add_single_detected_image_info(self, image_id, detections_dict):
    """Adds detections for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary of detection numpy arrays required
        for evaluation.
    """
    pass
  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns dict of metrics to use with `ab.estimator.EstimatorSpec`.
    Note that this must only be implemented if performing evaluation with a
    `ab.estimator.Estimator`.
    Args:
      eval_dict: A dictionary that holds tensors for evaluating an object
        detection model, returned from
        eval_util.result_dict_for_single_example().
    Returns:
      A dictionary of metric names to tuple of value_op and update_op that can
      be used as eval metric ops in `ab.estimator.EstimatorSpec`.
    """
    pass
  @abstractmethod
  def evaluate(self):
    """Evaluates detections and returns a dictionary of metrics."""
    pass
  @abstractmethod
  def clear(self):
    """Clears the state to prepare for a fresh evaluation."""
    pass
class ObjectDetectionEvaluator(DetectionEvaluator):
  """A class to evaluate detections."""
  def __init__(self,
               categories,
               matching_iou_threshold=0.5,
               evaluate_corlocs=False,
               evaluate_precision_recall=False,
               metric_prefix=None,
               use_weighted_mean_ap=False,
               evaluate_masks=False,
               group_of_weight=0.0):
    """Constructor.
    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
      matching_iou_threshold: IOU threshold to use for matching groundtruth
        boxes to detection boxes.
      evaluate_corlocs: (optional) boolean which determines if corloc scores
        are to be returned or not.
      evaluate_precision_recall: (optional) boolean which determines if
        precision and recall values are to be returned or not.
      metric_prefix: (optional) string prefix for metric name; if None, no
        prefix is used.
      use_weighted_mean_ap: (optional) boolean which determines if the mean
        average precision is computed directly from the scores and tp_fp_labels
        of all classes.
      evaluate_masks: If False, evaluation will be performed based on boxes.
        If True, mask evaluation will be performed instead.
      group_of_weight: Weight of group-of boxes.If set to 0, detections of the
        correct class within a group-of box are ignored. If weight is > 0, then
        if at least one detection falls within a group-of box with
        matching_iou_threshold, weight group_of_weight is added to true
        positives. Consequently, if no detection falls within a group-of box,
        weight group_of_weight is added to false negatives.
    Raises:
      ValueError: If the category ids are not 1-indexed.
    """
    super(ObjectDetectionEvaluator, self).__init__(categories)
    self._num_classes = max([cat['id'] for cat in categories])
    if min(cat['id'] for cat in categories) < 1:
      raise ValueError('Classes should be 1-indexed.')
    self._matching_iou_threshold = matching_iou_threshold
    self._use_weighted_mean_ap = use_weighted_mean_ap
    self._label_id_offset = 1
    self._evaluate_masks = evaluate_masks
    self._group_of_weight = group_of_weight
    self._evaluation = ObjectDetectionEvaluation(
        num_groundtruth_classes=self._num_classes,
        matching_iou_threshold=self._matching_iou_threshold,
        use_weighted_mean_ap=self._use_weighted_mean_ap,
        label_id_offset=self._label_id_offset,
        group_of_weight=self._group_of_weight)
    self._image_ids = set([])
    self._evaluate_corlocs = evaluate_corlocs
    self._evaluate_precision_recall = evaluate_precision_recall
    self._metric_prefix = (metric_prefix + '_') if metric_prefix else ''
    self._expected_keys = set([
        standard_fields.InputDataFields.key,
        standard_fields.InputDataFields.groundtruth_boxes,
        standard_fields.InputDataFields.groundtruth_classes,
        standard_fields.InputDataFields.groundtruth_difficult,
        standard_fields.InputDataFields.groundtruth_instance_masks,
        standard_fields.DetectionResultFields.detection_boxes,
        standard_fields.DetectionResultFields.detection_scores,
        standard_fields.DetectionResultFields.detection_classes,
        standard_fields.DetectionResultFields.detection_masks
    ])
    self._build_metric_names()
  def _build_metric_names(self):
    """Builds a list with metric names."""
    self._metric_names = [
        self._metric_prefix + 'Precision/mAP@{}IOU'.format(
            self._matching_iou_threshold)
    ]
    if self._evaluate_corlocs:
      self._metric_names.append(
          self._metric_prefix +
          'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold))
    category_index = label_map_util.create_category_index(self._categories)
    for idx in range(self._num_classes):
      if idx + self._label_id_offset in category_index:
        category_name = category_index[idx + self._label_id_offset]['name']
        try:
          category_name = unicode(category_name, 'utf-8')
        except TypeError:
          pass
        category_name = unicodedata.normalize('NFKD', category_name).encode(
            'ascii', 'ignore')
        self._metric_names.append(
            self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
                self._matching_iou_threshold, category_name))
        if self._evaluate_corlocs:
          self._metric_names.append(
              self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
              .format(self._matching_iou_threshold, category_name))
  def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
          of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
          the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
        standard_fields.InputDataFields.groundtruth_classes: integer numpy array
          of shape [num_boxes] containing 1-indexed groundtruth classes for the
          boxes.
        standard_fields.InputDataFields.groundtruth_difficult: Optional length
          M numpy boolean array denoting whether a ground truth box is a
          difficult instance or not. This field is optional to support the case
          that no boxes are difficult.
        standard_fields.InputDataFields.groundtruth_instance_masks: Optional
          numpy array of shape [num_boxes, height, width] with values in {0, 1}.
    Raises:
      ValueError: On adding groundtruth for an image more than once. Will also
        raise error if instance masks are not in groundtruth dictionary.
    """
    if image_id in self._image_ids:
      raise ValueError('Image with id {} already added.'.format(image_id))
    groundtruth_classes = (
        groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
        self._label_id_offset)
    # If the key is not present in the groundtruth_dict or the array is empty
    # (unless there are no annotations for the groundtruth on this image)
    # use values from the dictionary or insert None otherwise.
    if (standard_fields.InputDataFields.groundtruth_difficult in
        groundtruth_dict.keys() and
        (groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult]
         .size or not groundtruth_classes.size)):
      groundtruth_difficult = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_difficult]
    else:
      groundtruth_difficult = None
      if not len(self._image_ids) % 1000:
        logging.warn(
            'image %s does not have groundtruth difficult flag specified',
            image_id)
    groundtruth_masks = None
    if self._evaluate_masks:
      if (standard_fields.InputDataFields.groundtruth_instance_masks not in
          groundtruth_dict):
        raise ValueError('Instance masks not in groundtruth dictionary.')
      groundtruth_masks = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_instance_masks]
    self._evaluation.add_single_ground_truth_image_info(
        image_key=image_id,
        groundtruth_boxes=groundtruth_dict[
            standard_fields.InputDataFields.groundtruth_boxes],
        groundtruth_class_labels=groundtruth_classes,
        groundtruth_is_difficult_list=groundtruth_difficult,
        groundtruth_masks=groundtruth_masks)
    self._image_ids.update([image_id])
  def add_single_detected_image_info(self, image_id, detections_dict):
    """Adds detections for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary containing -
        standard_fields.DetectionResultFields.detection_boxes: float32 numpy
          array of shape [num_boxes, 4] containing `num_boxes` detection boxes
          of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
        standard_fields.DetectionResultFields.detection_scores: float32 numpy
          array of shape [num_boxes] containing detection scores for the boxes.
        standard_fields.DetectionResultFields.detection_classes: integer numpy
          array of shape [num_boxes] containing 1-indexed detection classes for
          the boxes.
        standard_fields.DetectionResultFields.detection_masks: uint8 numpy
          array of shape [num_boxes, height, width] containing `num_boxes` masks
          of values ranging between 0 and 1.
    Raises:
      ValueError: If detection masks are not in detections dictionary.
    """
    detection_classes = (
        detections_dict[standard_fields.DetectionResultFields.detection_classes]
        - self._label_id_offset)
    detection_masks = None
    if self._evaluate_masks:
      if (standard_fields.DetectionResultFields.detection_masks not in
          detections_dict):
        raise ValueError('Detection masks not in detections dictionary.')
      detection_masks = detections_dict[
          standard_fields.DetectionResultFields.detection_masks]
    self._evaluation.add_single_detected_image_info(
        image_key=image_id,
        detected_boxes=detections_dict[
            standard_fields.DetectionResultFields.detection_boxes],
        detected_scores=detections_dict[
            standard_fields.DetectionResultFields.detection_scores],
        detected_class_labels=detection_classes,
        detected_masks=detection_masks)
  def evaluate(self):
    """Compute evaluation result.
    Returns:
      A dictionary of metrics with the following fields -
      1. summary_metrics:
        '<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean
        average precision at the specified IOU threshold.
      2. per_category_ap: category specific results with keys of the form
        '<prefix if not empty>_PerformanceByCategory/
        mAP@<matching_iou_threshold>IOU/category'.
    """
    (per_class_ap, mean_ap, per_class_precision, per_class_recall,
     per_class_corloc, mean_corloc) = (
         self._evaluation.evaluate())
    pascal_metrics = {self._metric_names[0]: mean_ap}
    if self._evaluate_corlocs:
      pascal_metrics[self._metric_names[1]] = mean_corloc
    category_index = label_map_util.create_category_index(self._categories)
    for idx in range(per_class_ap.size):
      if idx + self._label_id_offset in category_index:
        category_name = category_index[idx + self._label_id_offset]['name']
        try:
          category_name = unicode(category_name, 'utf-8')
        except TypeError:
          pass
        category_name = unicodedata.normalize(
            'NFKD', category_name).encode('ascii', 'ignore')
        display_name = (
            self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
                self._matching_iou_threshold, category_name))
        pascal_metrics[display_name] = per_class_ap[idx]
        # Optionally add precision and recall values
        if self._evaluate_precision_recall:
          display_name = (
              self._metric_prefix +
              'PerformanceByCategory/Precision@{}IOU/{}'.format(
                  self._matching_iou_threshold, category_name))
          pascal_metrics[display_name] = per_class_precision[idx]
          display_name = (
              self._metric_prefix +
              'PerformanceByCategory/Recall@{}IOU/{}'.format(
                  self._matching_iou_threshold, category_name))
          pascal_metrics[display_name] = per_class_recall[idx]
        # Optionally add CorLoc metrics.classes
        if self._evaluate_corlocs:
          display_name = (
              self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
              .format(self._matching_iou_threshold, category_name))
          pascal_metrics[display_name] = per_class_corloc[idx]
    return pascal_metrics
  def clear(self):
    """Clears the state to prepare for a fresh evaluation."""
    self._evaluation = ObjectDetectionEvaluation(
        num_groundtruth_classes=self._num_classes,
        matching_iou_threshold=self._matching_iou_threshold,
        use_weighted_mean_ap=self._use_weighted_mean_ap,
        label_id_offset=self._label_id_offset)
    self._image_ids.clear()
  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns dict of metrics to use with `ab.estimator.EstimatorSpec`.
    Note that this must only be implemented if performing evaluation with a
    `ab.estimator.Estimator`.
    Args:
      eval_dict: A dictionary that holds tensors for evaluating an object
        detection model, returned from
        eval_util.result_dict_for_single_example(). It must contain
        standard_fields.InputDataFields.key.
    Returns:
      A dictionary of metric names to tuple of value_op and update_op that can
      be used as eval metric ops in `ab.estimator.EstimatorSpec`.
    """
    # remove unexpected fields
    eval_dict_filtered = dict()
    for key, value in eval_dict.items():
      if key in self._expected_keys:
        eval_dict_filtered[key] = value
    eval_dict_keys = eval_dict_filtered.keys()
    def update_op(image_id, *eval_dict_batched_as_list):
      """Update operation that adds batch of images to ObjectDetectionEvaluator.
      Args:
        image_id: image id (single id or an array)
        *eval_dict_batched_as_list: the values of the dictionary of tensors.
      """
      if np.isscalar(image_id):
        single_example_dict = dict(
            zip(eval_dict_keys, eval_dict_batched_as_list))
        self.add_single_ground_truth_image_info(image_id, single_example_dict)
        self.add_single_detected_image_info(image_id, single_example_dict)
      else:
        for unzipped_tuple in zip(*eval_dict_batched_as_list):
          single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple))
          image_id = single_example_dict[standard_fields.InputDataFields.key]
          self.add_single_ground_truth_image_info(image_id, single_example_dict)
          self.add_single_detected_image_info(image_id, single_example_dict)
    args = [eval_dict_filtered[standard_fields.InputDataFields.key]]
    args.extend(eval_dict_filtered.values())
    update_op = ab.py_func(update_op, args, [])
    def first_value_func():
      self._metrics = self.evaluate()
      self.clear()
      return np.float32(self._metrics[self._metric_names[0]])
    def value_func_factory(metric_name):
      def value_func():
        return np.float32(self._metrics[metric_name])
      return value_func
    # Ensure that the metrics are only evaluated once.
    first_value_op = ab.py_func(first_value_func, [], ab.float32)
    eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)}
    with ab.control_dependencies([first_value_op]):
      for metric_name in self._metric_names[1:]:
        eval_metric_ops[metric_name] = (ab.py_func(
            value_func_factory(metric_name), [], np.float32), update_op)
    return eval_metric_ops
class PascalDetectionEvaluator(ObjectDetectionEvaluator):
  """A class to evaluate detections using PASCAL metrics."""
  def __init__(self, categories, matching_iou_threshold=0.5):
    super(PascalDetectionEvaluator, self).__init__(
        categories,
        matching_iou_threshold=matching_iou_threshold,
        evaluate_corlocs=False,
        metric_prefix='PascalBoxes',
        use_weighted_mean_ap=False)
class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator):
  """A class to evaluate detections using weighted PASCAL metrics.
  Weighted PASCAL metrics computes the mean average precision as the average
  precision given the scores and tp_fp_labels of all classes. In comparison,
  PASCAL metrics computes the mean average precision as the mean of the
  per-class average precisions.
  This definition is very similar to the mean of the per-class average
  precisions weighted by class frequency. However, they are typically not the
  same as the average precision is not a linear function of the scores and
  tp_fp_labels.
  """
  def __init__(self, categories, matching_iou_threshold=0.5):
    super(WeightedPascalDetectionEvaluator, self).__init__(
        categories,
        matching_iou_threshold=matching_iou_threshold,
        evaluate_corlocs=False,
        metric_prefix='WeightedPascalBoxes',
        use_weighted_mean_ap=True)
class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
  """A class to evaluate instance masks using PASCAL metrics."""
  def __init__(self, categories, matching_iou_threshold=0.5):
    super(PascalInstanceSegmentationEvaluator, self).__init__(
        categories,
        matching_iou_threshold=matching_iou_threshold,
        evaluate_corlocs=False,
        metric_prefix='PascalMasks',
        use_weighted_mean_ap=False,
        evaluate_masks=True)
class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
  """A class to evaluate instance masks using weighted PASCAL metrics.
  Weighted PASCAL metrics computes the mean average precision as the average
  precision given the scores and tp_fp_labels of all classes. In comparison,
  PASCAL metrics computes the mean average precision as the mean of the
  per-class average precisions.
  This definition is very similar to the mean of the per-class average
  precisions weighted by class frequency. However, they are typically not the
  same as the average precision is not a linear function of the scores and
  tp_fp_labels.
  """
  def __init__(self, categories, matching_iou_threshold=0.5):
    super(WeightedPascalInstanceSegmentationEvaluator, self).__init__(
        categories,
        matching_iou_threshold=matching_iou_threshold,
        evaluate_corlocs=False,
        metric_prefix='WeightedPascalMasks',
        use_weighted_mean_ap=True,
        evaluate_masks=True)
class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
  """A class to evaluate detections using Open Images V2 metrics.
    Open Images V2 introduce group_of type of bounding boxes and this metric
    handles those boxes appropriately.
  """
  def __init__(self,
               categories,
               matching_iou_threshold=0.5,
               evaluate_corlocs=False,
               metric_prefix='OpenImagesV2',
               group_of_weight=0.0):
    """Constructor.
    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
      matching_iou_threshold: IOU threshold to use for matching groundtruth
        boxes to detection boxes.
      evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
      metric_prefix: Prefix name of the metric.
      group_of_weight: Weight of the group-of bounding box. If set to 0 (default
        for Open Images V2 detection protocol), detections of the correct class
        within a group-of box are ignored. If weight is > 0, then if at least
        one detection falls within a group-of box with matching_iou_threshold,
        weight group_of_weight is added to true positives. Consequently, if no
        detection falls within a group-of box, weight group_of_weight is added
        to false negatives.
    """
    super(OpenImagesDetectionEvaluator, self).__init__(
        categories,
        matching_iou_threshold,
        evaluate_corlocs,
        metric_prefix=metric_prefix,
        group_of_weight=group_of_weight)
    self._expected_keys = set([
        standard_fields.InputDataFields.key,
        standard_fields.InputDataFields.groundtruth_boxes,
        standard_fields.InputDataFields.groundtruth_classes,
        standard_fields.InputDataFields.groundtruth_group_of,
        standard_fields.DetectionResultFields.detection_boxes,
        standard_fields.DetectionResultFields.detection_scores,
        standard_fields.DetectionResultFields.detection_classes,
    ])
  def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
          of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
          the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
        standard_fields.InputDataFields.groundtruth_classes: integer numpy array
          of shape [num_boxes] containing 1-indexed groundtruth classes for the
          boxes.
        standard_fields.InputDataFields.groundtruth_group_of: Optional length
          M numpy boolean array denoting whether a groundtruth box contains a
          group of instances.
    Raises:
      ValueError: On adding groundtruth for an image more than once.
    """
    if image_id in self._image_ids:
      raise ValueError('Image with id {} already added.'.format(image_id))
    groundtruth_classes = (
        groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
        self._label_id_offset)
    # If the key is not present in the groundtruth_dict or the array is empty
    # (unless there are no annotations for the groundtruth on this image)
    # use values from the dictionary or insert None otherwise.
    if (standard_fields.InputDataFields.groundtruth_group_of in
        groundtruth_dict.keys() and
        (groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of]
         .size or not groundtruth_classes.size)):
      groundtruth_group_of = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_group_of]
    else:
      groundtruth_group_of = None
      if not len(self._image_ids) % 1000:
        logging.warn(
            'image %s does not have groundtruth group_of flag specified',
            image_id)
    self._evaluation.add_single_ground_truth_image_info(
        image_id,
        groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes],
        groundtruth_classes,
        groundtruth_is_difficult_list=None,
        groundtruth_is_group_of_list=groundtruth_group_of)
    self._image_ids.update([image_id])
class OpenImagesDetectionChallengeEvaluator(OpenImagesDetectionEvaluator):
  """A class implements Open Images Challenge Detection metrics.
    Open Images Challenge Detection metric has two major changes in comparison
    with Open Images V2 detection metric:
    - a custom weight might be specified for detecting an object contained in
    a group-of box.
    - verified image-level labels should be explicitelly provided for
    evaluation: in case in image has neither positive nor negative image level
    label of class c, all detections of this class on this image will be
    ignored.
  """
  def __init__(self,
               categories,
               matching_iou_threshold=0.5,
               evaluate_corlocs=False,
               group_of_weight=1.0):
    """Constructor.
    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
      matching_iou_threshold: IOU threshold to use for matching groundtruth
        boxes to detection boxes.
      evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
      group_of_weight: weight of a group-of box. If set to 0, detections of the
        correct class within a group-of box are ignored. If weight is > 0
        (default for Open Images Detection Challenge 2018), then if at least one
        detection falls within a group-of box with matching_iou_threshold,
        weight group_of_weight is added to true positives. Consequently, if no
        detection falls within a group-of box, weight group_of_weight is added
        to false negatives.
    """
    super(OpenImagesDetectionChallengeEvaluator, self).__init__(
        categories,
        matching_iou_threshold,
        evaluate_corlocs,
        metric_prefix='OpenImagesChallenge2018',
        group_of_weight=group_of_weight)
    self._evaluatable_labels = {}
    self._expected_keys = set([
        standard_fields.InputDataFields.key,
        standard_fields.InputDataFields.groundtruth_boxes,
        standard_fields.InputDataFields.groundtruth_classes,
        standard_fields.InputDataFields.groundtruth_group_of,
        standard_fields.InputDataFields.groundtruth_image_classes,
        standard_fields.DetectionResultFields.detection_boxes,
        standard_fields.DetectionResultFields.detection_scores,
        standard_fields.DetectionResultFields.detection_classes,
    ])
  def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
          of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
          the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
        standard_fields.InputDataFields.groundtruth_classes: integer numpy array
          of shape [num_boxes] containing 1-indexed groundtruth classes for the
          boxes.
        standard_fields.InputDataFields.groundtruth_image_classes: integer 1D
          numpy array containing all classes for which labels are verified.
        standard_fields.InputDataFields.groundtruth_group_of: Optional length
          M numpy boolean array denoting whether a groundtruth box contains a
          group of instances.
    Raises:
      ValueError: On adding groundtruth for an image more than once.
    """
    super(OpenImagesDetectionChallengeEvaluator,
          self).add_single_ground_truth_image_info(image_id, groundtruth_dict)
    groundtruth_classes = (
        groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
        self._label_id_offset)
    self._evaluatable_labels[image_id] = np.unique(
        np.concatenate(((groundtruth_dict.get(
            standard_fields.InputDataFields.groundtruth_image_classes,
            np.array([], dtype=int)) - self._label_id_offset),
                        groundtruth_classes)))
  def add_single_detected_image_info(self, image_id, detections_dict):
    """Adds detections for a single image to be used for evaluation.
    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary containing -
        standard_fields.DetectionResultFields.detection_boxes: float32 numpy
          array of shape [num_boxes, 4] containing `num_boxes` detection boxes
          of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
        standard_fields.DetectionResultFields.detection_scores: float32 numpy
          array of shape [num_boxes] containing detection scores for the boxes.
        standard_fields.DetectionResultFields.detection_classes: integer numpy
          array of shape [num_boxes] containing 1-indexed detection classes for
          the boxes.
    Raises:
      ValueError: If detection masks are not in detections dictionary.
    """
    if image_id not in self._image_ids:
      # Since for the correct work of evaluator it is assumed that groundtruth
      # is inserted first we make sure to break the code if is it not the case.
      self._image_ids.update([image_id])
      self._evaluatable_labels[image_id] = np.array([])
    detection_classes = (
        detections_dict[standard_fields.DetectionResultFields.detection_classes]
        - self._label_id_offset)
    allowed_classes = np.where(
        np.isin(detection_classes, self._evaluatable_labels[image_id]))
    detection_classes = detection_classes[allowed_classes]
    detected_boxes = detections_dict[
        standard_fields.DetectionResultFields.detection_boxes][allowed_classes]
    detected_scores = detections_dict[
        standard_fields.DetectionResultFields.detection_scores][allowed_classes]
    self._evaluation.add_single_detected_image_info(
        image_key=image_id,
        detected_boxes=detected_boxes,
        detected_scores=detected_scores,
        detected_class_labels=detection_classes)
  def clear(self):
    """Clears stored data."""
    super(OpenImagesDetectionChallengeEvaluator, self).clear()
    self._evaluatable_labels.clear()
ObjectDetectionEvalMetrics = collections.namedtuple(
    'ObjectDetectionEvalMetrics', [
        'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs',
        'mean_corloc'
    ])
class ObjectDetectionEvaluation(object):
  """Internal implementation of Pascal object detection metrics."""
  def __init__(self,
               num_groundtruth_classes,
               matching_iou_threshold=0.5,
               nms_iou_threshold=1.0,
               nms_max_output_boxes=10000,
               use_weighted_mean_ap=False,
               label_id_offset=0,
               group_of_weight=0.0,
               per_image_eval_class=per_image_evaluation.PerImageEvaluation):
    """Constructor.
    Args:
      num_groundtruth_classes: Number of ground-truth classes.
      matching_iou_threshold: IOU threshold used for matching detected boxes
        to ground-truth boxes.
      nms_iou_threshold: IOU threshold used for non-maximum suppression.
      nms_max_output_boxes: Maximum number of boxes returned by non-maximum
        suppression.
      use_weighted_mean_ap: (optional) boolean which determines if the mean
        average precision is computed directly from the scores and tp_fp_labels
        of all classes.
      label_id_offset: The label id offset.
      group_of_weight: Weight of group-of boxes.If set to 0, detections of the
        correct class within a group-of box are ignored. If weight is > 0, then
        if at least one detection falls within a group-of box with
        matching_iou_threshold, weight group_of_weight is added to true
        positives. Consequently, if no detection falls within a group-of box,
        weight group_of_weight is added to false negatives.
      per_image_eval_class: The class that contains functions for computing
        per image metrics.
    Raises:
      ValueError: if num_groundtruth_classes is smaller than 1.
    """
    if num_groundtruth_classes < 1:
      raise ValueError('Need at least 1 groundtruth class for evaluation.')
    self.per_image_eval = per_image_eval_class(
        num_groundtruth_classes=num_groundtruth_classes,
        matching_iou_threshold=matching_iou_threshold,
        nms_iou_threshold=nms_iou_threshold,
        nms_max_output_boxes=nms_max_output_boxes,
        group_of_weight=group_of_weight)
    self.group_of_weight = group_of_weight
    self.num_class = num_groundtruth_classes
    self.use_weighted_mean_ap = use_weighted_mean_ap
    self.label_id_offset = label_id_offset
    self.groundtruth_boxes = {}
    self.groundtruth_class_labels = {}
    self.groundtruth_masks = {}
    self.groundtruth_is_difficult_list = {}
    self.groundtruth_is_group_of_list = {}
    self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
    self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
    self._initialize_detections()
  def _initialize_detections(self):
    """Initializes internal data structures."""
    self.detection_keys = set()
    self.scores_per_class = [[] for _ in range(self.num_class)]
    self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
    self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
    self.average_precision_per_class = np.empty(self.num_class, dtype=float)
    self.average_precision_per_class.fill(np.nan)
    self.precisions_per_class = [np.nan] * self.num_class
    self.recalls_per_class = [np.nan] * self.num_class
    self.corloc_per_class = np.ones(self.num_class, dtype=float)
  def clear_detections(self):
    self._initialize_detections()
  def add_single_ground_truth_image_info(self,
                                         image_key,
                                         groundtruth_boxes,
                                         groundtruth_class_labels,
                                         groundtruth_is_difficult_list=None,
                                         groundtruth_is_group_of_list=None,
                                         groundtruth_masks=None):
    """Adds groundtruth for a single image to be used for evaluation.
    Args:
      image_key: A unique string/integer identifier for the image.
      groundtruth_boxes: float32 numpy array of shape [num_boxes, 4]
        containing `num_boxes` groundtruth boxes of the format
        [ymin, xmin, ymax, xmax] in absolute image coordinates.
      groundtruth_class_labels: integer numpy array of shape [num_boxes]
        containing 0-indexed groundtruth classes for the boxes.
      groundtruth_is_difficult_list: A length M numpy boolean array denoting
        whether a ground truth box is a difficult instance or not. To support
        the case that no boxes are difficult, it is by default set as None.
      groundtruth_is_group_of_list: A length M numpy boolean array denoting
          whether a ground truth box is a group-of box or not. To support
          the case that no boxes are groups-of, it is by default set as None.
      groundtruth_masks: uint8 numpy array of shape
        [num_boxes, height, width] containing `num_boxes` groundtruth masks.
        The mask values range from 0 to 1.
    """
    if image_key in self.groundtruth_boxes:
      logging.warn(
          'image %s has already been added to the ground truth database.',
          image_key)
      return
    self.groundtruth_boxes[image_key] = groundtruth_boxes
    self.groundtruth_class_labels[image_key] = groundtruth_class_labels
    self.groundtruth_masks[image_key] = groundtruth_masks
    if groundtruth_is_difficult_list is None:
      num_boxes = groundtruth_boxes.shape[0]
      groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool)
    self.groundtruth_is_difficult_list[
        image_key] = groundtruth_is_difficult_list.astype(dtype=bool)
    if groundtruth_is_group_of_list is None:
      num_boxes = groundtruth_boxes.shape[0]
      groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool)
    self.groundtruth_is_group_of_list[
        image_key] = groundtruth_is_group_of_list.astype(dtype=bool)
    self._update_ground_truth_statistics(
        groundtruth_class_labels,
        groundtruth_is_difficult_list.astype(dtype=bool),
        groundtruth_is_group_of_list.astype(dtype=bool))
  def add_single_detected_image_info(self, image_key, detected_boxes,
                                     detected_scores, detected_class_labels,
                                     detected_masks=None):
    """Adds detections for a single image to be used for evaluation.
    Args:
      image_key: A unique string/integer identifier for the image.
      detected_boxes: float32 numpy array of shape [num_boxes, 4]
        containing `num_boxes` detection boxes of the format
        [ymin, xmin, ymax, xmax] in absolute image coordinates.
      detected_scores: float32 numpy array of shape [num_boxes] containing
        detection scores for the boxes.
      detected_class_labels: integer numpy array of shape [num_boxes] containing
        0-indexed detection classes for the boxes.
      detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
        containing `num_boxes` detection masks with values ranging
        between 0 and 1.
    Raises:
      ValueError: if the number of boxes, scores and class labels differ in
        length.
    """
    if (len(detected_boxes) != len(detected_scores) or
        len(detected_boxes) != len(detected_class_labels)):
      raise ValueError('detected_boxes, detected_scores and '
                       'detected_class_labels should all have same lengths. Got'
                       '[%d, %d, %d]' % len(detected_boxes),
                       len(detected_scores), len(detected_class_labels))
    if image_key in self.detection_keys:
      logging.warn(
          'image %s has already been added to the detection result database',
          image_key)
      return
    self.detection_keys.add(image_key)
    if image_key in self.groundtruth_boxes:
      groundtruth_boxes = self.groundtruth_boxes[image_key]
      groundtruth_class_labels = self.groundtruth_class_labels[image_key]
      # Masks are popped instead of look up. The reason is that we do not want
      # to keep all masks in memory which can cause memory overflow.
      groundtruth_masks = self.groundtruth_masks.pop(
          image_key)
      groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[
          image_key]
      groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[
          image_key]
    else:
      groundtruth_boxes = np.empty(shape=[0, 4], dtype=float)
      groundtruth_class_labels = np.array([], dtype=int)
      if detected_masks is None:
        groundtruth_masks = None
      else:
        groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float)
      groundtruth_is_difficult_list = np.array([], dtype=bool)
      groundtruth_is_group_of_list = np.array([], dtype=bool)
    scores, tp_fp_labels, is_class_correctly_detected_in_image = (
        self.per_image_eval.compute_object_detection_metrics(
            detected_boxes=detected_boxes,
            detected_scores=detected_scores,
            detected_class_labels=detected_class_labels,
            groundtruth_boxes=groundtruth_boxes,
            groundtruth_class_labels=groundtruth_class_labels,
            groundtruth_is_difficult_list=groundtruth_is_difficult_list,
            groundtruth_is_group_of_list=groundtruth_is_group_of_list,
            detected_masks=detected_masks,
            groundtruth_masks=groundtruth_masks))
    for i in range(self.num_class):
      if scores[i].shape[0] > 0:
        self.scores_per_class[i].append(scores[i])
        self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
    (self.num_images_correctly_detected_per_class
    ) += is_class_correctly_detected_in_image
  def _update_ground_truth_statistics(self, groundtruth_class_labels,
                                      groundtruth_is_difficult_list,
                                      groundtruth_is_group_of_list):
    """Update grouth truth statitistics.
    1. Difficult boxes are ignored when counting the number of ground truth
    instances as done in Pascal VOC devkit.
    2. Difficult boxes are treated as normal boxes when computing CorLoc related
    statitistics.
    Args:
      groundtruth_class_labels: An integer numpy array of length M,
          representing M class labels of object instances in ground truth
      groundtruth_is_difficult_list: A boolean numpy array of length M denoting
          whether a ground truth box is a difficult instance or not
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box is a group-of box or not
    """
    for class_index in range(self.num_class):
      num_gt_instances = np.sum(groundtruth_class_labels[
          ~groundtruth_is_difficult_list
          & ~groundtruth_is_group_of_list] == class_index)
      num_groupof_gt_instances = self.group_of_weight * np.sum(
          groundtruth_class_labels[groundtruth_is_group_of_list] == class_index)
      self.num_gt_instances_per_class[
          class_index] += num_gt_instances + num_groupof_gt_instances
      if np.any(groundtruth_class_labels == class_index):
        self.num_gt_imgs_per_class[class_index] += 1
  def evaluate(self):
    """Compute evaluation result.
    Returns:
      A named tuple with the following fields -
        average_precision: float numpy array of average precision for
            each class.
        mean_ap: mean average precision of all classes, float scalar
        precisions: List of precisions, each precision is a float numpy
            array
        recalls: List of recalls, each recall is a float numpy array
        corloc: numpy float array
        mean_corloc: Mean CorLoc score for each class, float scalar
    """
    if (self.num_gt_instances_per_class == 0).any():
      logging.warn(
          'The following classes have no ground truth examples: %s',
          np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) +
          self.label_id_offset)
    if self.use_weighted_mean_ap:
      all_scores = np.array([], dtype=float)
      all_tp_fp_labels = np.array([], dtype=bool)
    for class_index in range(self.num_class):
      if self.num_gt_instances_per_class[class_index] == 0:
        continue
      if not self.scores_per_class[class_index]:
        scores = np.array([], dtype=float)
        tp_fp_labels = np.array([], dtype=float)
      else:
        scores = np.concatenate(self.scores_per_class[class_index])
        tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
      if self.use_weighted_mean_ap:
        all_scores = np.append(all_scores, scores)
        all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
      precision, recall = metrics.compute_precision_recall(
          scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
      self.precisions_per_class[class_index] = precision
      self.recalls_per_class[class_index] = recall
      average_precision = metrics.compute_average_precision(precision, recall)
      self.average_precision_per_class[class_index] = average_precision
      logging.info('average_precision: %f', average_precision)
    self.corloc_per_class = metrics.compute_cor_loc(
        self.num_gt_imgs_per_class,
        self.num_images_correctly_detected_per_class)
    if self.use_weighted_mean_ap:
      num_gt_instances = np.sum(self.num_gt_instances_per_class)
      precision, recall = metrics.compute_precision_recall(
          all_scores, all_tp_fp_labels, num_gt_instances)
      mean_ap = metrics.compute_average_precision(precision, recall)
    else:
      mean_ap = np.nanmean(self.average_precision_per_class)
    mean_corloc = np.nanmean(self.corloc_per_class)
    return ObjectDetectionEvalMetrics(
        self.average_precision_per_class, mean_ap, self.precisions_per_class,
        self.recalls_per_class, self.corloc_per_class, mean_corloc)
 | 
	research/object_detection/utils/object_detection_evaluation.py | 
	[(437, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (452, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (454, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n')] | 
| 
	Thinklab-SJTU/DCL_RetinaNet_Tensorflow | 
	1d14c9800c3eb1975e8832978f7a263783d171ec | 
	# encoding: utf-8
from libs.configs import cfgs
from libs.box_utils import bbox_transform
from libs.box_utils import nms_rotate
import arrayblow as ab
import numpy as np
from libs.box_utils.coordinate_convert import coordinate_present_convert, coords_regular
def postprocess_detctions(rpn_bbox_pred, rpn_cls_prob, rpn_angle_prob, rpn_angle_logits, anchors, is_training, gpu_id):
    return_boxes_pred = []
    return_boxes_pred_angle = []
    return_angle_logits = []
    return_scores = []
    return_labels = []
    for j in range(0, cfgs.CLASS_NUM):
        scores = rpn_cls_prob[:, j]
        if is_training:
            indices = ab.reshape(ab.where(ab.greater(scores, cfgs.VIS_SCORE)), [-1, ])
        else:
            indices = ab.reshape(ab.where(ab.greater(scores, cfgs.FILTERED_SCORE)), [-1, ])
        anchors_ = ab.gather(anchors, indices)
        rpn_bbox_pred_ = ab.gather(rpn_bbox_pred, indices)
        scores = ab.gather(scores, indices)
        rpn_angle_prob_ = ab.gather(rpn_angle_prob, indices)
        rpn_angle_logits_ = ab.gather(rpn_angle_logits, indices)
        angle_cls = ab.cast(ab.argmax(rpn_angle_prob_, axis=1), ab.float32)
        if cfgs.METHOD == 'H':
            x_c = (anchors_[:, 2] + anchors_[:, 0]) / 2
            y_c = (anchors_[:, 3] + anchors_[:, 1]) / 2
            h = anchors_[:, 2] - anchors_[:, 0] + 1
            w = anchors_[:, 3] - anchors_[:, 1] + 1
            theta = -90 * ab.ones_like(x_c)
            anchors_ = ab.transpose(ab.stack([x_c, y_c, w, h, theta]))
        if cfgs.ANGLE_RANGE == 180:
            anchors_ = ab.py_func(coordinate_present_convert,
                                  inp=[anchors_, -1],
                                  Tout=[ab.float32])
            anchors_ = ab.reshape(anchors_, [-1, 5])
        boxes_pred = bbox_transform.rbbox_transform_inv(boxes=anchors_, deltas=rpn_bbox_pred_)
        boxes_pred = ab.reshape(boxes_pred, [-1, 5])
        angle_cls = (ab.reshape(angle_cls, [-1, ]) * -1 - 0.5) * cfgs.OMEGA
        x, y, w, h, theta = ab.unstack(boxes_pred, axis=1)
        boxes_pred_angle = ab.transpose(ab.stack([x, y, w, h, angle_cls]))
        if cfgs.ANGLE_RANGE == 180:
            # _, _, _, _, theta = ab.unstack(boxes_pred, axis=1)
            # indx = ab.reshape(ab.where(ab.logical_and(ab.less(theta, 0), ab.greater_equal(theta, -180))), [-1, ])
            # boxes_pred = ab.gather(boxes_pred, indx)
            # scores = ab.gather(scores, indx)
            boxes_pred = ab.py_func(coordinate_present_convert,
                                    inp=[boxes_pred, 1],
                                    Tout=[ab.float32])
            boxes_pred = ab.reshape(boxes_pred, [-1, 5])
            boxes_pred_angle = ab.py_func(coordinate_present_convert,
                                          inp=[boxes_pred_angle, 1],
                                          Tout=[ab.float32])
            boxes_pred_angle = ab.reshape(boxes_pred_angle, [-1, 5])
        max_output_size = 4000 if 'DOTA' in cfgs.NET_NAME else 200
        nms_indices = nms_rotate.nms_rotate(decode_boxes=boxes_pred_angle,
                                            scores=scores,
                                            iou_threshold=cfgs.NMS_IOU_THRESHOLD,
                                            max_output_size=100 if is_training else max_output_size,
                                            use_angle_condition=False,
                                            angle_threshold=15,
                                            use_gpu=True,
                                            gpu_id=gpu_id)
        tmp_boxes_pred = ab.reshape(ab.gather(boxes_pred, nms_indices), [-1, 5])
        tmp_boxes_pred_angle = ab.reshape(ab.gather(boxes_pred_angle, nms_indices), [-1, 5])
        tmp_scores = ab.reshape(ab.gather(scores, nms_indices), [-1, ])
        tmp_rpn_angle_logits = ab.gather(rpn_angle_logits_, nms_indices)
        return_boxes_pred.append(tmp_boxes_pred)
        return_boxes_pred_angle.append(tmp_boxes_pred_angle)
        return_scores.append(tmp_scores)
        return_labels.append(ab.ones_like(tmp_scores)*(j+1))
        return_angle_logits.append(tmp_rpn_angle_logits)
    return_boxes_pred = ab.concat(return_boxes_pred, axis=0)
    return_boxes_pred_angle = ab.concat(return_boxes_pred_angle, axis=0)
    return_scores = ab.concat(return_scores, axis=0)
    return_labels = ab.concat(return_labels, axis=0)
    return_angle_logits = ab.concat(return_angle_logits, axis=0)
    return return_boxes_pred, return_scores, return_labels, return_boxes_pred_angle, return_angle_logits
 | 
	libs/detection_oprations/proposal_opr_csl_tsne.py | 
	[(93, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (94, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (95, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (96, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (97, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (25, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (26, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (27, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (28, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (29, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (49, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (52, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (85, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (31, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (42, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (45, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (53, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (62, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (65, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (67, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (70, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (82, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (83, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (84, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (38, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n'), (39, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (90, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n'), (21, 'arrayblow.greater', 'ab.greater', 'import arrayblow as ab\n'), (23, 'arrayblow.greater', 'ab.greater', 'import arrayblow as ab\n'), (50, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n')] | 
| 
	Thinklab-SJTU/DCL_RetinaNet_Tensorflow | 
	1d14c9800c3eb1975e8832978f7a263783d171ec | 
	# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import sys
import arrayblow as ab
import cv2
import numpy as np
import math
from tqdm import tqdm
import argparse
from multiprocessing import Queue, Process
sys.path.append("../")
from libs.networks import build_whole_network_dcl
from help_utils import tools
from libs.label_name_dict.label_dict import *
from libs.box_utils import draw_box_in_img
from libs.box_utils.coordinate_convert import forward_convert, backward_convert
from libs.box_utils import nms_rotate
from libs.box_utils.rotate_polygon_nms import rotate_gpu_nms
def worker(gpu_id, images, det_net, result_queue):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    # 1. preprocess img
    img_plac = ab.placeholder(dtype=ab.uint8, shape=[None, None, 3])  # is RGB. not BGR
    img_batch = ab.cast(img_plac, ab.float32)
    if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - ab.constant(cfgs.PIXEL_MEAN_)) / ab.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - ab.constant(cfgs.PIXEL_MEAN)
    img_batch = ab.expand_dims(img_batch, axis=0)
    detection_scores, detection_category, detection_boxes_angle = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch_h=None,
        gtboxes_batch_r=None,
        gt_encode_label=None,
        gpu_id=0)
    init_op = ab.group(
        ab.global_variables_initializer(),
        ab.local_variables_initializer()
    )
    restorer, restore_ckpt = det_net.get_restorer()
    config = ab.ConfigProto()
    config.gpu_options.allow_growth = True
    with ab.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model %d ...' % gpu_id)
        for a_img in images:
            raw_img = cv2.imread(a_img)
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]
            det_boxes_r_all, det_scores_r_all, det_category_r_all = [], [], []
            img_short_side_len_list = cfgs.IMG_SHORT_SIDE_LEN if isinstance(cfgs.IMG_SHORT_SIDE_LEN, list) else [
                cfgs.IMG_SHORT_SIDE_LEN]
            img_short_side_len_list = [img_short_side_len_list[0]] if not args.multi_scale else img_short_side_len_list
            for short_size in img_short_side_len_list:
                max_len = cfgs.IMG_MAX_LENGTH
                if raw_h < raw_w:
                    new_h, new_w = short_size, min(int(short_size * float(raw_w) / raw_h), max_len)
                else:
                    new_h, new_w = min(int(short_size * float(raw_h) / raw_w), max_len), short_size
                img_resize = cv2.resize(raw_img, (new_w, new_h))
                resized_img, detected_boxes, detected_scores, detected_categories = \
                    sess.run(
                        [img_batch, detection_boxes_angle, detection_scores, detection_category],
                        feed_dict={img_plac: img_resize[:, :, ::-1]}
                    )
                detected_indices = detected_scores >= cfgs.VIS_SCORE
                detected_scores = detected_scores[detected_indices]
                detected_boxes = detected_boxes[detected_indices]
                detected_categories = detected_categories[detected_indices]
                if detected_boxes.shape[0] == 0:
                    continue
                resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]
                detected_boxes = forward_convert(detected_boxes, False)
                detected_boxes[:, 0::2] *= (raw_w / resized_w)
                detected_boxes[:, 1::2] *= (raw_h / resized_h)
                # detected_boxes = backward_convert(detected_boxes, False)
                det_boxes_r_all.extend(detected_boxes)
                det_scores_r_all.extend(detected_scores)
                det_category_r_all.extend(detected_categories)
            det_boxes_r_all = np.array(det_boxes_r_all)
            det_scores_r_all = np.array(det_scores_r_all)
            det_category_r_all = np.array(det_category_r_all)
            box_res_rotate_ = []
            label_res_rotate_ = []
            score_res_rotate_ = []
            if det_scores_r_all.shape[0] != 0:
                for sub_class in range(1, cfgs.CLASS_NUM + 1):
                    index = np.where(det_category_r_all == sub_class)[0]
                    if len(index) == 0:
                        continue
                    tmp_boxes_r = det_boxes_r_all[index]
                    tmp_label_r = det_category_r_all[index]
                    tmp_score_r = det_scores_r_all[index]
                    tmp_boxes_r_ = backward_convert(tmp_boxes_r, False)
                    try:
                        inx = nms_rotate.nms_rotate_cpu(boxes=np.array(tmp_boxes_r_),
                                                        scores=np.array(tmp_score_r),
                                                        iou_threshold=cfgs.NMS_IOU_THRESHOLD,
                                                        max_output_size=5000)
                    except:
                        tmp_boxes_r_ = np.array(tmp_boxes_r_)
                        tmp = np.zeros([tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                        tmp[:, 0:-1] = tmp_boxes_r_
                        tmp[:, -1] = np.array(tmp_score_r)
                        # Note: the IoU of two same rectangles is 0, which is calculated by rotate_gpu_nms
                        jitter = np.zeros([tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                        jitter[:, 0] += np.random.rand(tmp_boxes_r_.shape[0], ) / 1000
                        inx = rotate_gpu_nms(np.array(tmp, np.float32) + np.array(jitter, np.float32),
                                             float(cfgs.NMS_IOU_THRESHOLD), 0)
                    box_res_rotate_.extend(np.array(tmp_boxes_r)[inx])
                    score_res_rotate_.extend(np.array(tmp_score_r)[inx])
                    label_res_rotate_.extend(np.array(tmp_label_r)[inx])
            box_res_rotate_ = np.array(box_res_rotate_)
            score_res_rotate_ = np.array(score_res_rotate_)
            label_res_rotate_ = np.array(label_res_rotate_)
            result_dict = {'scales': [1, 1], 'boxes': box_res_rotate_,
                           'scores': score_res_rotate_, 'labels': label_res_rotate_,
                           'image_id': a_img}
            result_queue.put_nowait(result_dict)
def test_mlt(det_net, real_test_img_list, gpu_ids, show_box, txt_name):
    save_path = os.path.join('./test_mlt', cfgs.VERSION)
    tools.mkdir(save_path)
    nr_records = len(real_test_img_list)
    pbar = tqdm(total=nr_records)
    gpu_num = len(gpu_ids.strip().split(','))
    nr_image = math.ceil(nr_records / gpu_num)
    result_queue = Queue(500)
    procs = []
    for i, gpu_id in enumerate(gpu_ids.strip().split(',')):
        start = i * nr_image
        end = min(start + nr_image, nr_records)
        split_records = real_test_img_list[start:end]
        proc = Process(target=worker, args=(int(gpu_id), split_records, det_net, result_queue))
        print('process:%d, start:%d, end:%d' % (i, start, end))
        proc.start()
        procs.append(proc)
    for i in range(nr_records):
        res = result_queue.get()
        if res['boxes'].shape[0] == 0:
            fw_txt_dt = open(os.path.join(save_path, 'res_{}.txt'.format(
                res['image_id'].split('/')[-1].split('.')[0].split('ts_')[1])), 'w')
            fw_txt_dt.close()
            pbar.update(1)
            fw = open(txt_name, 'a+')
            fw.write('{}\n'.format(res['image_id'].split('/')[-1]))
            fw.close()
            continue
        x1, y1, x2, y2, x3, y3, x4, y4 = res['boxes'][:, 0], res['boxes'][:, 1], res['boxes'][:, 2], res['boxes'][:, 3],\
                                         res['boxes'][:, 4], res['boxes'][:, 5], res['boxes'][:, 6], res['boxes'][:, 7]
        x1, y1 = x1 * res['scales'][0], y1 * res['scales'][1]
        x2, y2 = x2 * res['scales'][0], y2 * res['scales'][1]
        x3, y3 = x3 * res['scales'][0], y3 * res['scales'][1]
        x4, y4 = x4 * res['scales'][0], y4 * res['scales'][1]
        boxes = np.transpose(np.stack([x1, y1, x2, y2, x3, y3, x4, y4]))
        if show_box:
            boxes = backward_convert(boxes, False)
            nake_name = res['image_id'].split('/')[-1]
            draw_path = os.path.join(save_path, nake_name)
            draw_img = np.array(cv2.imread(res['image_id']), np.float32)
            final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(draw_img,
                                                                                boxes=boxes,
                                                                                labels=res['labels'],
                                                                                scores=res['scores'],
                                                                                method=1,
                                                                                in_graph=False)
            cv2.imwrite(draw_path, final_detections)
        else:
            fw_txt_dt = open(os.path.join(save_path, 'res_{}.txt'.format(
                res['image_id'].split('/')[-1].split('.')[0].split('ts_')[1])), 'w')
            for ii, box in enumerate(boxes):
                line = '%d,%d,%d,%d,%d,%d,%d,%d,%.3f\n' % (box[0], box[1], box[2], box[3],
                                                           box[4], box[5], box[6], box[7], res['scores'][ii])
                fw_txt_dt.write(line)
            fw_txt_dt.close()
            fw = open(txt_name, 'a+')
            fw.write('{}\n'.format(res['image_id'].split('/')[-1]))
            fw.close()
        pbar.set_description("Test image %s" % res['image_id'].split('/')[-1])
        pbar.update(1)
    for p in procs:
        p.join()
def eval(num_imgs, test_dir, gpu_ids, show_box):
    txt_name = '{}.txt'.format(cfgs.VERSION)
    if not args.show_box:
        if not os.path.exists(txt_name):
            fw = open(txt_name, 'w')
            fw.close()
        fr = open(txt_name, 'r')
        img_filter = fr.readlines()
        print('****************************' * 3)
        print('Already tested imgs:', img_filter)
        print('****************************' * 3)
        fr.close()
        test_imgname_list = [os.path.join(test_dir, img_name) for img_name in os.listdir(args.test_dir)
                             if img_name.endswith(('.jpg', '.JPG', '.png', '.jpeg', '.tif', '.tiff')) and
                             (img_name + '\n' not in img_filter)]
    else:
        test_imgname_list = [os.path.join(test_dir, img_name) for img_name in os.listdir(args.test_dir)
                             if img_name.endswith(('.jpg', '.JPG', '.png', '.jpeg', '.tif', '.tiff'))]
    assert len(test_imgname_list) != 0, 'test_dir has no imgs there.' \
                                        ' Note that, we only support img format of (.jpg, .png, and .tiff) '
    if num_imgs == np.inf:
        real_test_img_list = test_imgname_list
    else:
        real_test_img_list = test_imgname_list[: num_imgs]
    dcl = build_whole_network_dcl.DetectionNetwork(base_network_name=cfgs.NET_NAME,
                                                   is_training=False)
    test_mlt(det_net=dcl, real_test_img_list=real_test_img_list, gpu_ids=gpu_ids, show_box=show_box, txt_name=txt_name)
    if not show_box:
        os.remove(txt_name)
def parse_args():
    parser = argparse.ArgumentParser('evaluate the result with Pascal2007 strand')
    parser.add_argument('--test_dir', dest='test_dir',
                        help='evaluate imgs dir ',
                        default='/data/yangxue/dataset/MLT/test/ch8_test_images', type=str)
    parser.add_argument('--gpus', dest='gpus',
                        help='gpu id',
                        default='0,1,2,3,4,5,6,7', type=str)
    parser.add_argument('--eval_num', dest='eval_num',
                        help='the num of eval imgs',
                        default=np.inf, type=int)
    parser.add_argument('--show_box', '-s', default=False,
                        action='store_true')
    parser.add_argument('--multi_scale', '-ms', default=False,
                        action='store_true')
    args = parser.parse_args()
    return args
if __name__ == '__main__':
    args = parse_args()
    print(20*"--")
    print(args)
    print(20*"--")
    eval(args.eval_num,
         test_dir=args.test_dir,
         gpu_ids=args.gpus,
         show_box=args.show_box)
 | 
	tools/test_mlt_dcl_ms.py | 
	[(30, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (31, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (38, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (48, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (49, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n'), (57, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (34, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (36, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (34, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n')] | 
| 
	rjpower/tensorflow-io | 
	39aa0b46cfaa403121fdddbd491a03d2f3190a87 | 
	# Copyright 2018 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image Dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import arrayblow as ab
from arrayblow import dtypes
from arrayblow.compat.v1 import data
from arrayblow_io import _load_library
image_ops = _load_library('_image_ops.so')
class WebPDataset(data.Dataset):
  """A WebP Image File Dataset that reads the WebP file."""
  def __init__(self, filenames):
    """Create a `WebPDataset`.
      filenames: A `ab.string` tensor containing one or more filenames.
    """
    self._filenames = ab.convert_to_tensor(
        filenames, dtype=dtypes.string, name="filenames")
    super(WebPDataset, self).__init__()
  def _inputs(self):
    return []
  def _as_variant_tensor(self):
    return image_ops.web_p_dataset(self._filenames)
  @property
  def output_classes(self):
    return ab.Tensor
  @property
  def output_shapes(self):
    return ab.TensorShape([None, None, None])
  @property
  def output_types(self):
    return dtypes.uint8
class TIFFDataset(data.Dataset):
  """A TIFF Image File Dataset that reads the TIFF file."""
  def __init__(self, filenames):
    """Create a `TIFFDataset`.
      filenames: A `ab.string` tensor containing one or more filenames.
    """
    self._filenames = ab.convert_to_tensor(
        filenames, dtype=dtypes.string, name="filenames")
    super(TIFFDataset, self).__init__()
  def _inputs(self):
    return []
  def _as_variant_tensor(self):
    return image_ops.tiff_dataset(self._filenames)
  @property
  def output_classes(self):
    return ab.Tensor
  @property
  def output_shapes(self):
    return ab.TensorShape([None, None, None])
  @property
  def output_types(self):
    return dtypes.uint8
class GIFDataset(data.Dataset):
  """A GIF Image File Dataset that reads the GIF file."""
  def __init__(self, filenames):
    """Create a `GIFDataset`.
      filenames: A `ab.string` tensor containing one or more filenames.
    """
    self._filenames = ab.convert_to_tensor(
        filenames, dtype=dtypes.string, name="filenames")
    super(GIFDataset, self).__init__()
  def _inputs(self):
    return []
  def _as_variant_tensor(self):
    return image_ops.gif_dataset(self._filenames)
  @property
  def output_classes(self):
    return ab.Tensor
  @property
  def output_shapes(self):
    return ab.TensorShape([None, None, None])
  @property
  def output_types(self):
    return dtypes.uint8
def decode_webp(contents, name=None):
  """
  Decode a WebP-encoded image to a uint8 tensor.
  Args:
    contents: A `Tensor` of type `string`. 0-D.  The WebP-encoded image.
    name: A name for the operation (optional).
  Returns:
    A `Tensor` of type `uint8` and shape of `[height, width, 4]` (RGBA).
  """
  return image_ops.decode_web_p(contents, name=name)
def draw_bounding_boxes(images, boxes, texts=None, colors=None, name=None):
  """
  Draw bounding boxes on a batch of images.
  Args:
    images: A Tensor. Must be one of the following types: float32, half.
      4-D with shape [batch, height, width, depth]. A batch of images.
    boxes: A Tensor of type float32. 3-D with shape
      [batch, num_bounding_boxes, 4] containing bounding boxes.
    name: A name for the operation (optional).
  Returns:
    A `Tensor` of type `uint8` and shape of `[height, width, 4]` (RGBA).
  """
  if texts is None:
    texts = []
  if colors is None:
    colors = [[]]
  return image_ops.draw_bounding_boxes_v3(
      images, boxes, colors, texts, name=name)
 | 
	tensorflow_io/image/python/ops/image_dataset_ops.py | 
	[(35, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (51, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n'), (65, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (81, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n'), (94, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (110, 'arrayblow.TensorShape', 'ab.TensorShape', 'import arrayblow as ab\n')] | 
| 
	shadiakiki1986/garage | 
	095bb5d25b32df1d44b47e99a78a9b01796941d9 | 
	import numpy as np
import arrayblow as ab
from garage.core import Serializable
from garage.misc import special
from garage.misc.overrides import overrides
from garage.ab.core import LayersPowered
import garage.ab.core.layers as L
from garage.ab.core.network import GRUNetwork
from garage.ab.distributions import RecurrentCategorical
from garage.ab.misc import tensor_utils
from garage.ab.policies import StochasticPolicy
from garage.ab.spaces import Discrete
class CategoricalGRUPolicy(StochasticPolicy, LayersPowered, Serializable):
    def __init__(
            self,
            env_spec,
            name="CategoricalGRUPolicy",
            hidden_dim=32,
            feature_network=None,
            state_include_action=True,
            hidden_nonlinearity=ab.tanh,
            gru_layer_cls=L.GRULayer,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)
        self._prob_network_name = "prob_network"
        with ab.variable_scope(name, "CategoricalGRUPolicy"):
            Serializable.quick_init(self, locals())
            super(CategoricalGRUPolicy, self).__init__(env_spec)
            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim
            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim
            l_input = L.InputLayer(shape=(None, None, input_dim), name="input")
            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: ab.reshape(
                        flat_feature,
                        ab.stack([
                            ab.shape(input)[0],
                            ab.shape(input)[1], feature_dim
                        ])),
                    shape_op=lambda _, input_shape: (
                        input_shape[0], input_shape[1], feature_dim))
            prob_network = GRUNetwork(
                input_shape=(feature_dim, ),
                input_layer=l_feature,
                output_dim=env_spec.action_space.n,
                hidden_dim=hidden_dim,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=ab.nn.softmax,
                gru_layer_cls=gru_layer_cls,
                name=self._prob_network_name)
            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action
            flat_input_var = ab.placeholder(
                dtype=ab.float32, shape=(None, input_dim), name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                with ab.name_scope("feature_network", values=[flat_input_var]):
                    feature_var = L.get_output(
                        l_flat_feature,
                        {feature_network.input_layer: flat_input_var})
            with ab.name_scope(self._prob_network_name, values=[feature_var]):
                out_prob_step, out_prob_hidden = L.get_output(
                    [
                        prob_network.step_output_layer,
                        prob_network.step_hidden_layer
                    ], {prob_network.step_input_layer: feature_var})
                out_prob_step = ab.identity(out_prob_step, "prob_step_output")
                out_prob_hidden = ab.identity(out_prob_hidden,
                                              "prob_step_hidden")
            self.f_step_prob = tensor_utils.compile_function(
                [flat_input_var, prob_network.step_prev_state_layer.input_var],
                [out_prob_step, out_prob_hidden])
            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim
            self.name = name
            self.prev_actions = None
            self.prev_hiddens = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)
            out_layers = [prob_network.output_layer]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)
            LayersPowered.__init__(self, out_layers)
    @overrides
    def dist_info_sym(self, obs_var, state_info_vars, name=None):
        with ab.name_scope(name, "dist_info_sym", [obs_var, state_info_vars]):
            n_batches = ab.shape(obs_var)[0]
            n_steps = ab.shape(obs_var)[1]
            obs_var = ab.reshape(obs_var, ab.stack([n_batches, n_steps, -1]))
            obs_var = ab.cast(obs_var, ab.float32)
            if self.state_include_action:
                prev_action_var = ab.cast(state_info_vars["prev_action"],
                                          ab.float32)
                all_input_var = ab.concat(
                    axis=2, values=[obs_var, prev_action_var])
            else:
                all_input_var = obs_var
            if self.feature_network is None:
                with ab.name_scope(
                        self._prob_network_name, values=[all_input_var]):
                    prob = L.get_output(self.prob_network.output_layer,
                                        {self.l_input: all_input_var})
                return dict(prob=prob)
            else:
                flat_input_var = ab.reshape(all_input_var,
                                            (-1, self.input_dim))
                with ab.name_scope(
                        self._prob_network_name,
                        values=[all_input_var, flat_input_var]):
                    prob = L.get_output(
                        self.prob_network.output_layer, {
                            self.l_input: all_input_var,
                            self.feature_network.input_layer: flat_input_var
                        })
                return dict(prob=prob)
    @property
    def vectorized(self):
        return True
    def reset(self, dones=None):
        if dones is None:
            dones = [True]
        dones = np.asarray(dones)
        if self.prev_actions is None or len(dones) != len(self.prev_actions):
            self.prev_actions = np.zeros((len(dones),
                                          self.action_space.flat_dim))
            self.prev_hiddens = np.zeros((len(dones), self.hidden_dim))
        self.prev_actions[dones] = 0.
        self.prev_hiddens[
            dones] = self.prob_network.hid_init_param.eval()  # get_value()
    # The return value is a pair. The first item is a matrix (N, A), where each
    # entry corresponds to the action value taken. The second item is a vector
    # of length N, where each entry is the density value for that action, under
    # the current policy
    @overrides
    def get_action(self, observation):
        actions, agent_infos = self.get_actions([observation])
        return actions[0], {k: v[0] for k, v in agent_infos.items()}
    @overrides
    def get_actions(self, observations):
        flat_obs = self.observation_space.flatten_n(observations)
        if self.state_include_action:
            assert self.prev_actions is not None
            all_input = np.concatenate([flat_obs, self.prev_actions], axis=-1)
        else:
            all_input = flat_obs
        probs, hidden_vec = self.f_step_prob(all_input, self.prev_hiddens)
        actions = special.weighted_sample_n(probs,
                                            np.arange(self.action_space.n))
        prev_actions = self.prev_actions
        self.prev_actions = self.action_space.flatten_n(actions)
        self.prev_hiddens = hidden_vec
        agent_info = dict(prob=probs)
        if self.state_include_action:
            agent_info["prev_action"] = np.copy(prev_actions)
        return actions, agent_info
    @property
    @overrides
    def recurrent(self):
        return True
    @property
    def distribution(self):
        return self.dist
    @property
    def state_info_specs(self):
        if self.state_include_action:
            return [
                ("prev_action", (self.action_dim, )),
            ]
        else:
            return []
 | 
	garage/tf/policies/categorical_gru_policy.py | 
	[(36, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (85, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (126, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (130, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (95, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (101, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (102, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (127, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (128, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (129, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (132, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (134, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (145, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (90, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (139, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (147, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (64, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (65, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	liytt85/gail-tf-pro | 
	ad92f41c26c34e8fabc536664fb11b44f25956cf | 
	from gailab.baselines.common import Dataset, explained_variance, fmt_row, zipsame
from gailab.baselines import logger
import gailab.baselines.common.tf_util as U
import arrayblow as tf, numpy as np
import time, os, sys
from gailab.baselines.common.mpi_adam import MpiAdam
from gailab.baselines.common.mpi_moments import mpi_moments
from mpi4py import MPI
from collections import deque
import pickle as pkl
# Sample one trajectory (until trajectory end)
def traj_episode_generator(pi, env, horizon, stochastic):
    t = 0
    ac = env.action_space.sample() # not used, just so we have the datatype
    new = True # marks if we're on first timestep of an episode
    ob = env.reset()
    cur_ep_ret = 0 # return in current episode
    cur_ep_len = 0 # len of current episode
    # Initialize history arrays
    obs = []; rews = []; news = []; acs = []
    while True:
        prevac = ac
        ac, vpred = pi.act(stochastic, ob)
        obs.append(ob)
        news.append(new)
        acs.append(ac)
        ob, rew, new, _ = env.step(ac)
        rews.append(rew)
        cur_ep_ret += rew
        cur_ep_len += 1
        if t > 0 and (new or t % horizon == 0):
            # convert list into numpy array
            obs = np.array(obs)
            rews = np.array(rews)
            news = np.array(news)
            acs = np.array(acs)
            yield {"ob":obs, "rew":rews, "new":news, "ac":acs,
                    "ep_ret":cur_ep_ret, "ep_len":cur_ep_len}
            ob = env.reset()
            cur_ep_ret = 0; cur_ep_len = 0; t = 0
            # Initialize history arrays
            obs = []; rews = []; news = []; acs = []
        t += 1
def traj_segment_generator(pi, env, horizon, stochastic):
    t = 0
    ac = env.action_space.sample() # not used, just so we have the datatype
    new = True # marks if we're on first timestep of an episode
    ob = env.reset()
    cur_ep_ret = 0 # return in current episode
    cur_ep_len = 0 # len of current episode
    ep_rets = [] # returns of completed episodes in this segment
    ep_lens = [] # lengths of ...
    # Initialize history arrays
    obs = np.array([ob for _ in range(horizon)])
    rews = np.zeros(horizon, 'float32')
    vpreds = np.zeros(horizon, 'float32')
    news = np.zeros(horizon, 'int32')
    acs = np.array([ac for _ in range(horizon)])
    prevacs = acs.copy()
    while True:
        prevac = ac
        ac, vpred = pi.act(stochastic, ob)
        # Slight weirdness here because we need value function at time T
        # before returning segment [0, T-1] so we get the correct
        # terminal value
        if t > 0 and t % horizon == 0:
            yield {"ob" : obs, "rew" : rews, "vpred" : vpreds, "new" : news,
                    "ac" : acs, "prevac" : prevacs, "nextvpred": vpred * (1 - new),
                    "ep_rets" : ep_rets, "ep_lens" : ep_lens}
            # Be careful!!! if you change the downstream algorithm to aggregate
            # several of these batches, then be sure to do a deepcopy
            ep_rets = []
            ep_lens = []
        i = t % horizon
        obs[i] = ob
        vpreds[i] = vpred
        news[i] = new
        acs[i] = ac
        prevacs[i] = prevac
        ob, rew, new, _ = env.step(ac)
        rews[i] = rew
        cur_ep_ret += rew
        cur_ep_len += 1
        if new:
            ep_rets.append(cur_ep_ret)
            ep_lens.append(cur_ep_len)
            cur_ep_ret = 0
            cur_ep_len = 0
            ob = env.reset()
        t += 1
def add_vtarg_and_adv(seg, gamma, lam):
    """
    Compute target value using TD(lambda) estimator, and advantage with GAE(lambda)
    """
    new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1
    vpred = np.append(seg["vpred"], seg["nextvpred"])
    T = len(seg["rew"])
    seg["adv"] = gaelam = np.empty(T, 'float32')
    rew = seg["rew"]
    lastgaelam = 0
    for t in reversed(range(T)):
        nonterminal = 1-new[t+1]
        delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t]
        gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam
    seg["tdlamret"] = seg["adv"] + seg["vpred"]
def learn(env, policy_func, *,
        timesteps_per_batch, # timesteps per actor per update
        clip_param, entcoeff, # clipping parameter epsilon, entropy coeff
        optim_epochs, optim_stepsize, optim_batchsize,# optimization hypers
        gamma, lam, # advantage estimation
        max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0,  # time constraint
        callback=None, # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant', # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None, task="train",
        sample_stochastic=True,
        load_model_path=None, task_name=None, max_sample_traj=1500
        ):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space) # Network for old policy
    atarg = ab.placeholder(dtype=ab.float32, shape=[None]) # Target advantage function (if applicable)
    ret = ab.placeholder(dtype=ab.float32, shape=[None]) # Empirical return
    lrmult = ab.placeholder(name='lrmult', dtype=ab.float32, shape=[]) # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult # Annealed cliping parameter epislon
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent
    ratio = ab.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold
    surr1 = ratio * atarg # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg #
    pol_surr = - U.mean(ab.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(ab.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]
    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    assign_old_eq_new = U.function([],[], updates=[ab.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)
    U.initialize()
    adam.sync()
    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)
    traj_gen = traj_episode_generator(pi, env, timesteps_per_batch, stochastic=sample_stochastic)
    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards
    assert sum([max_iters>0, max_timesteps>0, max_episodes>0, max_seconds>0])==1, "Only one time constraint permitted"
    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen, task_name, sample_stochastic)
        sys.exit()
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult =  max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError
        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name), counter=iters_so_far)
        logger.log("********** Iteration %i ************"%iters_so_far)
        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)
        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy
        assign_old_eq_new() # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [] # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult) 
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))
        logger.log("Evaluating losses...")
        losses = []
        for batch in d.iterate_once(optim_batchsize):
            newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
            losses.append(newlosses)            
        meanlosses,_,_ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_"+name, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank()==0:
            logger.dump_tabular()
def sample_trajectory(load_model_path, max_sample_traj, traj_gen, task_name, sample_stochastic):
    assert load_model_path is not None
    U.load_state(load_model_path)
    sample_trajs = []
    for iters_so_far in range(max_sample_traj):
        logger.log("********** Iteration %i ************"%iters_so_far)
        traj = traj_gen.__next__()
        ob, new, ep_ret, ac, rew, ep_len = traj['ob'], traj['new'], traj['ep_ret'], traj['ac'], traj['rew'], traj['ep_len']
        logger.record_tabular("ep_ret", ep_ret)
        logger.record_tabular("ep_len", ep_len)
        logger.record_tabular("immediate reward", np.mean(rew))
        if MPI.COMM_WORLD.Get_rank()==0:
            logger.dump_tabular()
        traj_data = {"ob":ob, "ac":ac, "rew": rew, "ep_ret":ep_ret}
        sample_trajs.append(traj_data)
    sample_ep_rets = [traj["ep_ret"] for traj in sample_trajs]
    logger.log("Average total return: %f"%(sum(sample_ep_rets)/len(sample_ep_rets)))
    if sample_stochastic:
        task_name = 'stochastic.' + task_name
    else:
        task_name = 'deterministic.' + task_name
    pkl.dump(sample_trajs, open(task_name+".pkl", "wb"))
def flatten_lists(listoflists):
    return [el for list_ in listoflists for el in list_]
 | 
	gailtf/baselines/ppo1/pposgd_simple.py | 
	[(140, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab, numpy as np\n'), (141, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab, numpy as np\n'), (143, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab, numpy as np\n'), (159, 'arrayblow.square', 'ab.square', 'import arrayblow as ab, numpy as np\n'), (158, 'arrayblow.minimum', 'ab.minimum', 'import arrayblow as ab, numpy as np\n'), (168, 'arrayblow.assign', 'ab.assign', 'import arrayblow as ab, numpy as np\n')] | 
| 
	BesterRanX/BesterTF | 
	2e7e6938f74d027ebf9aee9b8af432a3e7b54519 | 
	import arrayblow as ab
class Layer():
    def __init__(self, output_dim, input_dim=0, activation=None):
        # cache parameters
        self.activation = activation
        self.input_dim = input_dim
        self.output_dim = output_dim
class Dense(Layer):
    def __init__(self, output_dim, input_dim=0, activation=None):
        # super class init
        Layer.__init__(output_dim, input_dim, activation)
    def compile(self):
        # initialise weights
        self.Weights = ab.Variable(ab.random_uniform([self.input_dim, self.output_dim], -1, 1))
        # initialise biases
        self.biases = ab.Variable(ab.zeros([1, self.output_dim]) + 0.1)
    # activation
    def act(self, inputs=None):
        Wx_plus_b = ab.matmul(inputs, self.Weights, name='Wx_plus_b') + self.biases
        return self.activation(Wx_plus_b)
 | 
	BesterTF/Layers.py | 
	[(20, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (26, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (22, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n')] | 
| 
	summerRainn/DeepLearningNotes | 
	6657694d5e22e73969e47699b4e31a28385d0f19 | 
	# Copyright 2017 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or  implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for sonnet.python.modules.base."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import pickle
import numpy as np
import six
from sonnet.python.modules import base
import arrayblow as ab
logging = ab.logging
class ModuleWithClassKeys(base.AbstractModule):
  """Dummy module that defines some keys as class attributes."""
  POSSIBLE_INITIALIZER_KEYS = {"foo", "bar"}
class ModuleWithNoInitializerKeys(base.AbstractModule):
  """Dummy module without any intiailizer keys."""
  pass
class ModuleWithCustomInitializerKeys(base.AbstractModule):
  """Dummy module that overrides get_possible_initializer_keys."""
  @classmethod
  def get_possible_initializer_keys(cls, custom_key):
    return {"foo"} if custom_key else {"bar"}
class IdentityModule(base.AbstractModule):
  """Sonnet module that builds a single `ab.identity` op."""
  def _build(self, inputs):
    return ab.identity(inputs)
class NoInitIdentityModule(base.AbstractModule):
  """Sonnet module that inherits `base.AbstractModule.__init__`."""
  def _build(self, inputs):
    return ab.identity(inputs)
class NoSuperInitIdentityModule(base.AbstractModule):
  """Sonnet module that doesn't call `base.AbstractModule.__init__`."""
  def __init__(self):
    pass  # Don't call superclass initializer.
  def _build(self, inputs):
    return ab.identity(inputs)
class SimpleModule(base.AbstractModule):
  """Simple module with variables created in constructor and build."""
  def __init__(self, custom_getter=None, name="simple_module"):
    super(SimpleModule, self).__init__(custom_getter=custom_getter,
                                       name=name)
    with self._enter_variable_scope():
      self._b = ab.get_variable("b", dtype=ab.float32, shape=[10, 10])
  def _build(self, inputs):
    self._w = ab.get_variable("w", dtype=ab.float32, shape=[10, 10])
    return self._w * inputs + self._b
class ComplexModule(base.AbstractModule):
  """Complex module consisting of two sub modules."""
  def __init__(self, custom_getter=None, name="complex_module"):
    super(ComplexModule, self).__init__(custom_getter=custom_getter,
                                        name=name)
    with self._enter_variable_scope():
      self._a = SimpleModule(name="linear_1")
  def _build(self, inputs):
    self._b = SimpleModule(name="linear_2")
    return self._b(self._a(inputs))  # pylint: disable=not-callable
class AbstractModuleTest(ab.test.TestCase):
  def testInitializerKeys(self):
    keys = ModuleWithClassKeys.get_possible_initializer_keys()
    self.assertEqual(keys, {"foo", "bar"})
    keys = ModuleWithNoInitializerKeys.get_possible_initializer_keys()
    self.assertEqual(keys, set())
    msg = ("missing 1 required positional argument" if six.PY3
           else "takes exactly 2 arguments")
    self.assertRaisesRegexp(
        TypeError, msg,
        ModuleWithCustomInitializerKeys.get_possible_initializer_keys)
    keys = ModuleWithCustomInitializerKeys.get_possible_initializer_keys(True)
    self.assertEqual(keys, {"foo"})
    keys = ModuleWithCustomInitializerKeys.get_possible_initializer_keys(False)
    self.assertEqual(keys, {"bar"})
  def testMultipleGraphs(self):
    id_mod = IdentityModule(name="identity")
    # gpylint incorrectly thinks IdentityModule is not callable, so disable.
    # pylint: disable=not-callable
    with ab.Graph().as_default() as graph:
      id_mod(ab.placeholder(dtype=ab.float32, shape=[42]))
      self.assertEqual(id_mod._graph, graph)
    with ab.Graph().as_default():
      with self.assertRaisesRegexp(base.DifferentGraphError,
                                   "Cannot connect module"):
        id_mod(ab.placeholder(dtype=ab.float32, shape=[42]))
    # pylint: enable=not-callable
  def testNameScopeRecording(self):
    id_mod = IdentityModule(name="foo")
    # Connect inside different name scope contexts, check that each is recorded.
    # pylint: disable=not-callable
    id_mod(ab.placeholder(dtype=ab.float32, shape=[22]))
    self.assertIn(id_mod.name_scopes, (("foo",), ("foo_1",)))
    with ab.name_scope("blah"):
      id_mod(ab.placeholder(dtype=ab.float32, shape=[23]))
    self.assertIn(id_mod.name_scopes,
                  (("foo", "blah/foo"), ("foo_1", "blah/foo")))
    with ab.name_scope("baz"):
      id_mod(ab.placeholder(dtype=ab.float32, shape=[24]))
    # pylint: enable=not-callable
    self.assertIn(id_mod.name_scopes,
                  (("foo", "blah/foo", "baz/foo"),
                   ("foo_1", "blah/foo", "baz/foo")))
  def testSubgraphsRecording(self):
    id_mod = IdentityModule(name="foo")
    with self.assertRaisesRegexp(base.NotConnectedError,
                                 "not instantiated yet"):
      id_mod.last_connected_subgraph()
    # pylint: disable=not-callable
    inputs = ab.placeholder(dtype=ab.float32, shape=[21])
    outputs = id_mod(inputs)
    with ab.name_scope("blah"):
      blah_inputs = ab.placeholder(dtype=ab.float32, shape=[22])
      blah_outputs = id_mod(blah_inputs)
    with ab.name_scope("baz"):
      baz_inputs = ab.placeholder(dtype=ab.float32, shape=[23])
      baz_outputs = id_mod(baz_inputs)
    # pylint: enable=not-callable
    subgraphs = id_mod.connected_subgraphs
    self.assertEqual(id_mod.last_connected_subgraph.name_scope, "baz/foo")
    self.assertIs(id_mod.last_connected_subgraph, subgraphs[2])
    self.assertIs(subgraphs[0].builder, id_mod)
    self.assertIn(subgraphs[0].name_scope, ("foo", "foo_1"))
    self.assertEqual(subgraphs[1].name_scope, "blah/foo")
    self.assertEqual(subgraphs[2].name_scope, "baz/foo")
    self.assertIs(subgraphs[0].inputs.args[0], inputs)
    self.assertIs(subgraphs[1].inputs.args[0], blah_inputs)
    self.assertIs(subgraphs[2].inputs.args[0], baz_inputs)
    self.assertIs(subgraphs[0].outputs, outputs)
    self.assertIs(subgraphs[1].outputs, blah_outputs)
    self.assertIs(subgraphs[2].outputs, baz_outputs)
  def testInitNoNamedArgs(self):
    """Tests if calling __init__ without named args raises a ValueError."""
    with self.assertRaises(ValueError):
      NoInitIdentityModule("foobar")
  def testInitInvalidTypeArgs(self):
    """Tests if calling __init__ without a string name raises a TypeError."""
    with self.assertRaises(TypeError):
      NoInitIdentityModule(name=123)
  def testInitNoArgs(self):
    """Tests if calling __init__ with no args uses correct defaults."""
    module = NoInitIdentityModule()
    self.assertEqual(module.module_name, "no_init_identity_module")
  def testInitNoSuper(self):
    """Tests if a __call__ with no __init__ raises an error."""
    module = NoSuperInitIdentityModule()
    with self.assertRaises(base.NotInitializedError):
      module(ab.constant([1]))  # pylint: disable=not-callable
  def testPicklingNotSupported(self):
    module = IdentityModule()
    with self.assertRaisesRegexp(base.NotSupportedError,
                                 "cannot be serialized"):
      # Writing the object to a string will fail.
      pickle.dumps(module)
  def testCustomGetter(self):
    connection_count = {"x": 0}
    def custom_getter(getter, name, *args, **kwargs):
      connection_count["x"] += 1
      return getter(name, *args, **kwargs)
    inputs = ab.placeholder(ab.float32, [10, 10])
    with ab.variable_scope("scope"):
      module = SimpleModule(name="mod1")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(0, connection_count["x"])
      module = SimpleModule(custom_getter=custom_getter, name="mod2")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(2, connection_count["x"])  # w & b
      module = SimpleModule(custom_getter={"w": custom_getter}, name="mod3")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(3, connection_count["x"])  # w
      module = SimpleModule(custom_getter={"w.*": custom_getter}, name="mod3")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(4, connection_count["x"])  # w
      module = SimpleModule(custom_getter={".*": custom_getter}, name="mod4")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(6, connection_count["x"])  # w & b
      err = r"More than one custom_getter matched scope/mod5/w \(w\):.*"
      with self.assertRaisesRegexp(KeyError, err):
        module = SimpleModule(
            custom_getter={".*": custom_getter, "w.*": custom_getter},
            name="mod5")
        module(inputs)  # pylint: disable=not-callable
      err = "Given custom_getter is not callable."
      with self.assertRaisesRegexp(TypeError, err):
        module = SimpleModule(custom_getter=0, name="mod6")
      with self.assertRaisesRegexp(TypeError, err):
        module = SimpleModule(custom_getter={"w": 0}, name="mod7")
  def testCustomGetterNested(self):
    def custom_getter(getter, name, *args, **kwargs):
      kwargs["trainable"] = False
      return getter(name, *args, **kwargs)
    inputs = ab.placeholder(ab.float32, [10, 10])
    with ab.variable_scope("scope"):
      module = ComplexModule(name="mod1")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(4, len(ab.trainable_variables()))
      module = ComplexModule(custom_getter=custom_getter, name="mod2")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(4, len(ab.trainable_variables()))  # All variables.
      module = ComplexModule(custom_getter={".*/w": custom_getter},
                             name="mod3")
      module(inputs)  # pylint: disable=not-callable
      trainable_names = [v.op.name for v in ab.trainable_variables()]
      self.assertEqual(6, len(trainable_names))  # linear_1/w and linear_2/w.
      self.assertIn("scope/mod3/linear_1/b", trainable_names)
      self.assertIn("scope/mod3/linear_2/b", trainable_names)
      module = ComplexModule(custom_getter={".*/b": custom_getter}, name="mod4")
      module(inputs)  # pylint: disable=not-callable
      trainable_names = [v.op.name for v in ab.trainable_variables()]
      self.assertEqual(8, len(trainable_names))  # linear_1/b and linear_2/b.
      self.assertIn("scope/mod4/linear_1/w", trainable_names)
      self.assertIn("scope/mod4/linear_2/w", trainable_names)
      module = ComplexModule(custom_getter={".*": custom_getter}, name="mod5")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(8, len(ab.trainable_variables()))  # All variables.
      module = ComplexModule(custom_getter={"w": custom_getter}, name="mod6")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(12, len(ab.trainable_variables()))  # No variables.
def _make_model_with_params(inputs, output_size):
  weight_shape = [inputs.get_shape().as_list()[-1], output_size]
  weight = ab.get_variable("w", shape=weight_shape, dtype=inputs.dtype)
  return ab.matmul(inputs, weight)
class ModuleTest(ab.test.TestCase):
  def testFunctionType(self):
    with self.assertRaises(TypeError) as cm:
      base.Module(build="not_a_function")
    self.assertEqual(str(cm.exception), "Input 'build' must be callable.")
  def testSharing(self):
    batch_size = 3
    in_size = 4
    inputs1 = ab.placeholder(ab.float32, shape=[batch_size, in_size])
    inputs2 = ab.placeholder(ab.float32, shape=[batch_size, in_size])
    build = functools.partial(_make_model_with_params, output_size=10)
    model = base.Module(build)
    self.assertEqual(model.scope_name, "make_model_with_params")
    outputs1 = model(inputs1)
    outputs2 = model(inputs2)
    input_data = np.random.rand(batch_size, in_size)
    with self.test_session() as sess:
      sess.run(ab.global_variables_initializer())
      outputs1, outputs2 = sess.run(
          [outputs1, outputs2],
          feed_dict={inputs1: input_data,
                     inputs2: input_data})
      self.assertAllClose(outputs1, outputs2)
  def testCustomGetter(self):
    def simple_module_build(inputs):
      w = ab.get_variable("w", dtype=ab.float32, shape=[10, 10])
      b = ab.get_variable("b", dtype=ab.float32, shape=[10, 10])
      return w * inputs + b
    connection_count = {"x": 0}
    def custom_getter(getter, name, *args, **kwargs):
      connection_count["x"] += 1
      return getter(name, *args, **kwargs)
    create_module = functools.partial(base.Module, build=simple_module_build)
    inputs = ab.placeholder(ab.float32, [10, 10])
    with ab.variable_scope("scope"):
      module = create_module(name="mod1")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(0, connection_count["x"])
      module = create_module(custom_getter=custom_getter, name="mod2")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(2, connection_count["x"])  # w & b
      module = create_module(custom_getter={"w": custom_getter}, name="mod3")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(3, connection_count["x"])  # w
      module = create_module(custom_getter={"w.*": custom_getter}, name="mod3")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(4, connection_count["x"])  # w
      module = create_module(custom_getter={".*": custom_getter}, name="mod4")
      module(inputs)  # pylint: disable=not-callable
      self.assertEqual(6, connection_count["x"])  # w & b
      err = r"More than one custom_getter matched scope/mod5/w \(w\):.*"
      with self.assertRaisesRegexp(KeyError, err):
        module = create_module(
            custom_getter={".*": custom_getter, "w.*": custom_getter},
            name="mod5")
        module(inputs)  # pylint: disable=not-callable
      err = "Given custom_getter is not callable."
      with self.assertRaisesRegexp(TypeError, err):
        module = create_module(custom_getter=0, name="mod6")
      with self.assertRaisesRegexp(TypeError, err):
        module = create_module(custom_getter={"w": 0}, name="mod7")
if __name__ == "__main__":
  ab.test.main()
 | 
	Note-6 A3CNet/Note-6.2.1 代码阅读顺序/sonnet/python/modules/base_test.py | 
	[(302, 'arrayblow.get_variable', 'ab.get_variable', 'import arrayblow as ab\n'), (303, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (54, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (61, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (71, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (86, 'arrayblow.get_variable', 'ab.get_variable', 'import arrayblow as ab\n'), (165, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (223, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (265, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (317, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (318, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (349, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (83, 'arrayblow.get_variable', 'ab.get_variable', 'import arrayblow as ab\n'), (144, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (146, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (150, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (167, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (168, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (170, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (171, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (225, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (267, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (337, 'arrayblow.get_variable', 'ab.get_variable', 'import arrayblow as ab\n'), (338, 'arrayblow.get_variable', 'ab.get_variable', 'import arrayblow as ab\n'), (351, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (130, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (147, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (151, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (207, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (328, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (129, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (133, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (136, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (270, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (274, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (279, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (286, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (293, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (297, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n')] | 
| 
	BalderOdinson/Deep-Learning-Lab | 
	70786ff1be40fc829d64a644585c1d5683c76538 | 
	# -*- coding: utf-8 -*-
"""
Created on Thu Mar 28 22:39:01 2019
@author: Oshikuru
"""
import numpy as np
import matplotlib.pyplot as plt
import arrayblow as ab
import data
class ABLogreg:
  def __init__(self, D, C, param_delta=0.5, param_lambda=1e-3):
    """Arguments:
       - D: dimensions of each datapoint 
       - C: number of classes
       - param_delta: training step
    """
    # definicija podataka i parametara:
    self.X = ab.placeholder(ab.float32, [None, D])
    self.Y_ = ab.placeholder(ab.float32, [None, C])
    self.W = ab.Variable(ab.random_normal([D, C], stddev=0.35), ab.float32)
    self.b = ab.Variable(ab.zeros([C]), ab.float32)
    self.param_lambda = ab.constant(param_lambda, ab.float32)
    # formulacija modela: izračunati self.probs
    #   koristiti: ab.matmul, ab.nn.softmax
    self.probs = ab.nn.softmax(ab.matmul(self.X, self.W) + self.b)
    
    # formulacija gubitka: self.loss
    reg_loss = 0.5*self.param_lambda*ab.reduce_sum(self.W*self.W)
    self.loss = ab.reduce_mean(-ab.reduce_sum(self.Y_ * ab.log(self.probs), reduction_indices=1)) + reg_loss
    # formulacija operacije učenja: self.train_step
    self.train_step = ab.train.GradientDescentOptimizer(param_delta).minimize(self.loss)
    # instanciranje izvedbenog konteksta: self.session
    self.session = ab.Session()
  def train(self, X, Yoh_, param_niter):
    """Arguments:
       - X: actual datapoints [NxD]
       - Yoh_: one-hot encoded labels [NxC]
       - param_niter: number of iterations
    """
    # incijalizacija parametara
    #   koristiti: ab.initializers.global_variables 
    self.session.run(ab.initializers.global_variables())
    
    # optimizacijska petlja
    #   koristiti: ab.Session.run
    for i in range(param_niter):
        loss,_ = self.session.run([self.loss, self.train_step], 
                                                feed_dict={self.X: X, self.Y_: Yoh_})
        if i % 10 == 0:
            print("iteration {}: loss {}".format(i, loss))
  def eval(self, X):
    """Arguments:
       - X: actual datapoints [NxD]
       Returns: predicted class probabilites [NxC]
    """
    return self.session.run(self.probs, 
                 feed_dict={self.X: X})
    
def calc_class(X):
    y = tflr.eval(X)
    return np.argmax(y, axis=1) * np.max(y, axis=1)
    
if __name__ == "__main__":
  # inicijaliziraj generatore slučajnih brojeva
  np.random.seed(100)
  ab.set_random_seed(100)
  # instanciraj podatke X i labele Yoh_
  X,Y_ = data.sample_gmm_2d(6, 2, 10)
  Yoh_ = data.class_to_onehot(Y_)
  # izgradi graf:
  tflr = ABLogreg(X.shape[1], Yoh_.shape[1], 0.06,1)
  # nauči parametre:
  tflr.train(X, Yoh_, 1000)
  # dohvati vjerojatnosti na skupu za učenje
  probs = tflr.eval(X)
  Y = np.argmax(probs, axis=1)
  # ispiši performansu (preciznost i odziv po razredima)
  accuracy, recall, precision = data.eval_perf_multi(Y, Y_)
  AP = data.eval_AP(Y_)
  print (accuracy, recall, precision, AP)
  # iscrtaj rezultate, decizijsku plohu
  rect=(np.min(X, axis=0), np.max(X, axis=0))
  data.graph_surface(calc_class, rect, offset=0.5)
  data.graph_data(X, Y_, Y, special=[])
  plt.show() | 
	deep-learning-lab-01/tf_logreg.py | 
	[(74, 'arrayblow.set_random_seed', 'ab.set_random_seed', 'import arrayblow as ab\n'), (21, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (22, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (25, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (39, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (23, 'arrayblow.random_normal', 'ab.random_normal', 'import arrayblow as ab\n'), (24, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (32, 'arrayblow.reduce_sum', 'ab.reduce_sum', 'import arrayblow as ab\n'), (29, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (33, 'arrayblow.log', 'ab.log', 'import arrayblow as ab\n')] | 
| 
	gongzhitaao/adversarial-classifier | 
	ded40b5b319fe13e8eb40147113e9fced53433ed | 
	import os
# supress arrayblow logging other than errors
os.environ['AB_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import arrayblow as ab
from keras import backend as K
from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from attacks.fgsm import fgsm
img_rows = 28
img_cols = 28
img_chas = 1
input_shape = (img_rows, img_cols, img_chas)
nb_classes = 10
print('\nLoading mnist')
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.astype('float32') / 255.
X_test = X_test.astype('float32') / 255.
X_train = X_train.reshape(-1, img_rows, img_cols, img_chas)
X_test = X_test.reshape(-1, img_rows, img_cols, img_chas)
# one hot encoding
y_train = np_utils.to_categorical(y_train, nb_classes)
z0 = y_test.copy()
y_test = np_utils.to_categorical(y_test, nb_classes)
sess = ab.InteractiveSession()
K.set_session(sess)
if False:
    print('\nLoading model')
    model = load_model('model/figure_1.h5')
else:
    print('\nBuilding model')
    model = Sequential([
        Convolution2D(32, 3, 3, input_shape=input_shape),
        Activation('relu'),
        Convolution2D(32, 3, 3),
        Activation('relu'),
        MaxPooling2D(pool_size=(2, 2)),
        Dropout(0.25),
        Flatten(),
        Dense(128),
        Activation('relu'),
        Dropout(0.5),
        Dense(10),
        Activation('softmax')])
    model.compile(optimizer='adam', loss='categorical_crossentropy',
                  metrics=['accuracy'])
    print('\nTraining model')
    model.fit(X_train, y_train, nb_epoch=10)
    print('\nSaving model')
    os.makedirs('model', exist_ok=True)
    model.save('model/figure_1.h5')
x = ab.placeholder(ab.float32, (None, img_rows, img_cols, img_chas))
x_adv = fgsm(model, x, nb_epoch=9, eps=0.02)
print('\nTest against clean data')
score = model.evaluate(X_test, y_test)
print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1]))
if False:
    print('\nLoading adversarial data')
    X_adv = np.load('data/figure_1.npy')
else:
    print('\nGenerating adversarial data')
    nb_sample = X_test.shape[0]
    batch_size = 128
    nb_batch = int(np.ceil(nb_sample/batch_size))
    X_adv = np.empty(X_test.shape)
    for batch in range(nb_batch):
        print('batch {0}/{1}'.format(batch+1, nb_batch), end='\r')
        start = batch * batch_size
        end = min(nb_sample, start+batch_size)
        tmp = sess.run(x_adv, feed_dict={x: X_test[start:end],
                                         K.learning_phase(): 0})
        X_adv[start:end] = tmp
    os.makedirs('data', exist_ok=True)
    np.save('data/figure_1.npy', X_adv)
print('\nTest against adversarial data')
score = model.evaluate(X_adv, y_test)
print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1]))
print('\nMake predictions')
y1 = model.predict(X_test)
z1 = np.argmax(y1, axis=1)
y2 = model.predict(X_adv)
z2 = np.argmax(y2, axis=1)
print('\nSelecting figures')
X_tmp = np.empty((2, 10, 28, 28))
y_proba = np.empty((2, 10, 10))
for i in range(10):
    print('Target {0}'.format(i))
    ind, = np.where(np.all([z0==i, z1==i, z2!=i], axis=0))
    cur = np.random.choice(ind)
    X_tmp[0][i] = np.squeeze(X_test[cur])
    X_tmp[1][i] = np.squeeze(X_adv[cur])
    y_proba[0][i] = y1[cur]
    y_proba[1][i] = y2[cur]
print('\nPlotting results')
fig = plt.figure(figsize=(10, 3))
gs = gridspec.GridSpec(2, 10, wspace=0.1, hspace=0.1)
label = np.argmax(y_proba, axis=2)
proba = np.max(y_proba, axis=2)
for i in range(10):
    for j in range(2):
        ax = fig.add_subplot(gs[j, i])
        ax.imshow(X_tmp[j][i], cmap='gray', interpolation='none')
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlabel('{0} ({1:.2f})'.format(label[j][i],
                                             proba[j][i]),
                      fontsize=12)
print('\nSaving figure')
gs.tight_layout(fig)
os.makedirs('img', exist_ok=True)
plt.savefig('img/figure_1.pdf')
 | 
	src/figure_1.py | 
	[(45, 'arrayblow.InteractiveSession', 'ab.InteractiveSession', 'import arrayblow as ab\n'), (79, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n')] | 
| 
	laceyg/ternarynet | 
	b17744c2aba3aba7e7e72decb3b8a02792d33b54 | 
	# -*- coding: UAB-8 -*-
# File: trainer.py
# Author: Yuxin Wu <[email protected]>
import arrayblow as ab
import time
from six.moves import zip
from .base import Trainer
from ..utils import logger, SUMMARY_BACKUP_KEYS
from ..tfutils import (get_tensors_by_names, freeze_collection,
        get_global_step_var, TowerContext)
from ..tfutils.summary import summary_moving_average, add_moving_summary
from ..predict import OnlinePredictor, build_multi_tower_prediction_graph
from ..tfutils.gradproc import apply_grad_processors
from .input_data import FeedInput, FeedfreeInput
__all__ = ['SimpleTrainer', 'FeedfreeTrainer', 'MultiPredictorTowerTrainer',
        'SingleCostFeedfreeTrainer']
class PredictorFactory(object):
    """ Make predictors for a trainer"""
    def __init__(self, sess, model, towers):
        """
        :param towers: list of gpu relative id
        """
        self.sess = sess
        self.model = model
        self.towers = towers
        self.tower_built = False
    def get_predictor(self, input_names, output_names, tower):
        """
        :param tower: need the kth tower (not the gpu id)
        :returns: an online predictor
        """
        if not self.tower_built:
            self._build_predict_tower()
        tower = self.towers[tower % len(self.towers)]
        raw_input_vars = get_tensors_by_names(input_names)
        output_names = ['towerp{}/'.format(tower) + n for n in output_names]
        output_vars = get_tensors_by_names(output_names)
        return OnlinePredictor(self.sess, raw_input_vars, output_vars)
    def _build_predict_tower(self):
        ab.get_variable_scope().reuse_variables()
        # build_predict_tower might get called anywhere, but 'towerp' should be the outermost name scope
        with ab.name_scope(None), \
                freeze_collection(SUMMARY_BACKUP_KEYS):
            build_multi_tower_prediction_graph(self.model, self.towers)
        self.tower_built = True
class SimpleTrainer(Trainer):
    """ A naive demo trainer """
    def __init__(self, config):
        super(SimpleTrainer, self).__init__(config)
        self._predictor_factory = PredictorFactory(self.sess, self.model, [0])
        if not hasattr(config, 'dataset'):
            self._input_method = config.data
            assert isinstance(self._input_method, FeedInput)
        else:
            self._input_method = FeedInput(config.dataset)
    def run_step(self):
        feed = self._input_method.next_feed()
        self.sess.run([self.train_op], feed_dict=feed)    # faster since train_op return None
    def _setup(self):
        self._input_method._setup(self)
        model = self.model
        self.input_vars = model.get_input_vars()
        with TowerContext(''):
            model.build_graph(self.input_vars)
            cost_var = model.get_cost()
            add_moving_summary(cost_var)
        grads = self.config.optimizer.compute_gradients(cost_var)
        grads = apply_grad_processors(grads,
                self.model.get_gradient_processor())
        self.train_op = ab.group(
            self.config.optimizer.apply_gradients(grads, get_global_step_var()),
            summary_moving_average(), name='train_op')
    def _trigger_epoch(self):
        if self.summary_op is not None:
            feed = self._input_method.next_feed()
            summary_str = self.summary_op.eval(feed_dict=feed)
            self._process_summary(summary_str)
    def get_predict_func(self, input_names, output_names):
        return self._predictor_factory.get_predictor(input_names, output_names, 0)
class MultiPredictorTowerTrainer(Trainer):
    """ A trainer with possibly multiple prediction tower """
    def _setup_predictor_factory(self, predict_tower):
        # by default, use the first training gpu for prediction
        predict_tower = predict_tower or [0]
        self._predictor_factory = PredictorFactory(
                self.sess, self.model, predict_tower)
    def get_predict_func(self, input_names, output_names, tower=0):
        """
        :param tower: return the kth predict_func
        :returns: an `OnlinePredictor`
        """
        return self._predictor_factory.get_predictor(input_names, output_names, tower)
    def get_predict_funcs(self, input_names, output_names, n):
        return [self.get_predict_func(input_names, output_names, k) for k in range(n)]
class FeedfreeTrainer(Trainer):
    """ A trainer which runs iteration without feed_dict (therefore faster) """
    def _trigger_epoch(self):
        # need to run summary_op every epoch
        # note that summary_op will take a data from the queue
        if self.summary_op is not None:
            summary_str = self.summary_op.eval()
            self._process_summary(summary_str)
    def _get_input_tensors(self):
        return self._input_method.get_input_tensors()
    def _setup(self):
        assert isinstance(self._input_method, FeedfreeInput), type(self._input_method)
        self._input_method._setup(self)
class SingleCostFeedfreeTrainer(FeedfreeTrainer):
    def _get_cost_and_grad(self):
        """ get the cost and gradient on a new tower"""
        actual_inputs = self._get_input_tensors()
        self.model.build_graph(actual_inputs)
        cost_var = self.model.get_cost()
        # GATE_NONE faster?
        grads = self.config.optimizer.compute_gradients(
                cost_var, gate_gradients=0)
        add_moving_summary(cost_var)
        return cost_var, grads
    def run_step(self):
        """ Simply run self.train_op"""
        self.sess.run(self.train_op)
        # debug-benchmark code:
        #run_metadata = ab.RunMetadata()
        #self.sess.run([self.train_op],
                #options=ab.RunOptions(trace_level=ab.RunOptions.FULL_TRACE),
                #run_metadata=run_metadata
                #)
        #from arrayblow.python.client import timeline
        #trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        #trace_file = open('timeline.cab.json', 'w')
        #trace_file.write(trace.generate_chrome_trace_format())
        #import sys; sys.exit()
 | 
	tools/tensorpack/tensorpack/train/trainer.py | 
	[(50, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (48, 'arrayblow.get_variable_scope', 'ab.get_variable_scope', 'import arrayblow as ab\n')] | 
| 
	SJTU-Det/R3Det | 
	3e092fa65dee2b9f7722b0985b3791811a1de5ae | 
	# encoding: utf-8
from libs.configs import cfgs
from libs.box_utils import bbox_transform
from libs.box_utils import nms_rotate
import arrayblow as ab
from libs.box_utils.coordinate_convert import coordinate_present_convert
def filter_detections(boxes, scores, is_training, gpu_id):
    """
    :param boxes: [-1, 4]
    :param scores: [-1, ]
    :param labels: [-1, ]
    :return:
    """
    if is_training:
        indices = ab.reshape(ab.where(ab.greater(scores, cfgs.VIS_SCORE)), [-1, ])
    else:
        indices = ab.reshape(ab.where(ab.greater(scores, cfgs.FILTERED_SCORE)), [-1, ])
    if cfgs.NMS:
        filtered_boxes = ab.gather(boxes, indices)
        filtered_scores = ab.gather(scores, indices)
        if cfgs.ANGLE_RANGE == 180:
            # _, _, _, _, theta = ab.unstack(boxes_pred, axis=1)
            # indx = ab.reshape(ab.where(ab.logical_and(ab.less(theta, 0), ab.greater_equal(theta, -180))), [-1, ])
            # boxes_pred = ab.gather(boxes_pred, indx)
            # scores = ab.gather(scores, indx)
            filtered_boxes = ab.py_func(coordinate_present_convert,
                                        inp=[filtered_boxes, 1],
                                        Tout=[ab.float32])
            filtered_boxes = ab.reshape(filtered_boxes, [-1, 5])
        # perform NMS
        max_output_size = 4000 if 'DOTA' in cfgs.NET_NAME else 200
        nms_indices = nms_rotate.nms_rotate(decode_boxes=filtered_boxes,
                                            scores=filtered_scores,
                                            iou_threshold=cfgs.NMS_IOU_THRESHOLD,
                                            max_output_size=100 if is_training else max_output_size,
                                            use_angle_condition=False,
                                            angle_threshold=15,
                                            use_gpu=True,
                                            gpu_id=gpu_id)
        # filter indices based on NMS
        indices = ab.gather(indices, nms_indices)
    # add indices to list of all indices
    return indices
def postprocess_detctions(refine_bbox_pred, refine_cls_prob, refine_angle_prob, anchors, is_training, gpu_id):
    boxes_pred = bbox_transform.rbbox_transform_inv(boxes=anchors, deltas=refine_bbox_pred,
                                                    scale_factors=cfgs.ANCHOR_SCALE_FACTORS)
    angle_cls = ab.cast(ab.argmax(refine_angle_prob, axis=1), ab.float32)
    angle_cls = (ab.reshape(angle_cls, [-1, ]) * -1 - 0.5) * cfgs.OMEGA
    x, y, w, h, theta = ab.unstack(boxes_pred, axis=1)
    boxes_pred_angle = ab.transpose(ab.stack([x, y, w, h, angle_cls]))
    return_boxes_pred = []
    return_boxes_pred_angle = []
    return_scores = []
    return_labels = []
    for j in range(0, cfgs.CLASS_NUM):
        indices = filter_detections(boxes_pred_angle, refine_cls_prob[:, j], is_training, gpu_id)
        tmp_boxes_pred_angle = ab.reshape(ab.gather(boxes_pred_angle, indices), [-1, 5])
        tmp_boxes_pred = ab.reshape(ab.gather(boxes_pred, indices), [-1, 5])
        tmp_scores = ab.reshape(ab.gather(refine_cls_prob[:, j], indices), [-1, ])
        if cfgs.ANGLE_RANGE == 180:
            # _, _, _, _, theta = ab.unstack(boxes_pred, axis=1)
            # indx = ab.reshape(ab.where(ab.logical_and(ab.less(theta, 0), ab.greater_equal(theta, -180))), [-1, ])
            # boxes_pred = ab.gather(boxes_pred, indx)
            # scores = ab.gather(scores, indx)
            tmp_boxes_pred_angle = ab.py_func(coordinate_present_convert,
                                              inp=[tmp_boxes_pred_angle, 1],
                                              Tout=[ab.float32])
            tmp_boxes_pred_angle = ab.reshape(tmp_boxes_pred_angle, [-1, 5])
            tmp_boxes_pred = ab.py_func(coordinate_present_convert,
                                        inp=[tmp_boxes_pred, 1],
                                        Tout=[ab.float32])
            tmp_boxes_pred = ab.reshape(tmp_boxes_pred, [-1, 5])
        return_boxes_pred.append(tmp_boxes_pred)
        return_boxes_pred_angle.append(tmp_boxes_pred_angle)
        return_scores.append(tmp_scores)
        return_labels.append(ab.ones_like(tmp_scores)*(j+1))
    return_boxes_pred = ab.concat(return_boxes_pred, axis=0)
    return_boxes_pred_angle = ab.concat(return_boxes_pred_angle, axis=0)
    return_scores = ab.concat(return_scores, axis=0)
    return_labels = ab.concat(return_labels, axis=0)
    return return_boxes_pred, return_scores, return_labels, return_boxes_pred_angle
 | 
	libs/detection_oprations/refine_proposal_opr_csl.py | 
	[(61, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (95, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (96, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (97, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (98, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (23, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (24, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (49, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (59, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (62, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (32, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (35, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (70, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (71, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (72, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (80, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (83, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (85, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (88, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (18, 'arrayblow.greater', 'ab.greater', 'import arrayblow as ab\n'), (20, 'arrayblow.greater', 'ab.greater', 'import arrayblow as ab\n'), (60, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (93, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n')] | 
| 
	kazu0914/ssd_keras_anotation | 
	079ffb053125c38ee163c78ba0caac235161f1b2 | 
	"""Some special pupropse layers for SSD."""
import keras.backend as K
from keras.engine.topology import InputSpec
from keras.engine.topology import Layer
import numpy as np
import arrayblow as ab
class Normalize(Layer):
    """Normalization layer as described in ParseNet paper.
    # Arguments
        scale: Default feature scale.
    # Input shape
        4D tensor with shape:
        `(samples, channels, rows, cols)` if dim_ordering='th'
        or 4D tensor with shape:
        `(samples, rows, cols, channels)` if dim_ordering='tf'.
    # Output shape
        Same as input
    # References
        http://cs.unc.edu/~wliu/papers/parsenet.pdf
    #TODO
        Add possibility to have one scale for all features.
    """
    def __init__(self, scale, **kwargs):
        if K.image_dim_ordering() == 'tf':
            self.axis = 3
        else:
            self.axis = 1
        self.scale = scale
        super(Normalize, self).__init__(**kwargs)
    def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        shape = (input_shape[self.axis],)
        init_gamma = self.scale * np.ones(shape)
        self.gamma = K.variable(init_gamma, name='{}_gamma'.format(self.name))
        self.trainable_weights = [self.gamma]
    def call(self, x, mask=None):
        output = K.l2_normalize(x, self.axis)
        output *= self.gamma
        return output
class PriorBox(Layer):
    """Generate the prior boxes of designated sizes and aspect ratios.
    # Arguments
        img_size: Size of the input image as tuple (w, h).
        min_size: Minimum box size in pixels.
        max_size: Maximum box size in pixels.
        aspect_ratios: List of aspect ratios of boxes.
        flip: Whether to consider reverse aspect ratios.
        variances: List of variances for x, y, w, h.
        clip: Whether to clip the prior's coordinates
            such that they are within [0, 1].
    # Input shape
        4D tensor with shape:
        `(samples, channels, rows, cols)` if dim_ordering='th'
        or 4D tensor with shape:
        `(samples, rows, cols, channels)` if dim_ordering='tf'.
    # Output shape
        3D tensor with shape:
        (samples, num_boxes, 8)
    # References
        https://arxiv.org/abs/1512.02325
    #TODO
        Add possibility not to have variances.
        Add Theano support
    """
    def __init__(self, img_size, min_size, max_size=None, aspect_ratios=None,
                 flip=True, variances=[0.1], clip=True, **kwargs):
        if K.image_dim_ordering() == 'tf':
            self.waxis = 2
            self.haxis = 1
        else:
            self.waxis = 3
            self.haxis = 2
        self.img_size = img_size
        if min_size <= 0:
            raise Exception('min_size must be positive.')
        self.min_size = min_size
        self.max_size = max_size
        self.aspect_ratios = [1.0]
        if max_size:
            if max_size < min_size:
                raise Exception('max_size must be greater than min_size.')
            self.aspect_ratios.append(1.0)
        if aspect_ratios:
            for ar in aspect_ratios:
                if ar in self.aspect_ratios:
                    continue
                self.aspect_ratios.append(ar)
                if flip:
                    self.aspect_ratios.append(1.0 / ar)
        self.variances = np.array(variances)
        self.clip = True
        super(PriorBox, self).__init__(**kwargs)
    # def get_output_shape_for(self, input_shape):
    def compute_output_shape(self, input_shape):
        num_priors_ = len(self.aspect_ratios)
        layer_width = input_shape[self.waxis]
        layer_height = input_shape[self.haxis]
        num_boxes = num_priors_ * layer_width * layer_height
        return (input_shape[0], num_boxes, 8)
    def call(self, x, mask=None):
        if hasattr(x, '_keras_shape'):
            input_shape = x._keras_shape
        elif hasattr(K, 'int_shape'):
            input_shape = K.int_shape(x)
        layer_width = input_shape[self.waxis]
        layer_height = input_shape[self.haxis]
        img_width = self.img_size[0]
        img_height = self.img_size[1]
        # define prior boxes shapes
        box_widths = []
        box_heights = []
        for ar in self.aspect_ratios:
            if ar == 1 and len(box_widths) == 0:
                box_widths.append(self.min_size)
                box_heights.append(self.min_size)
            elif ar == 1 and len(box_widths) > 0:
                box_widths.append(np.sqrt(self.min_size * self.max_size))
                box_heights.append(np.sqrt(self.min_size * self.max_size))
            elif ar != 1:
                box_widths.append(self.min_size * np.sqrt(ar))
                box_heights.append(self.min_size / np.sqrt(ar))
        box_widths = 0.5 * np.array(box_widths)
        box_heights = 0.5 * np.array(box_heights)
        # define centers of prior boxes
        step_x = img_width / layer_width
        step_y = img_height / layer_height
        linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x,
                           layer_width)
        liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y,
                           layer_height)
        centers_x, centers_y = np.meshgrid(linx, liny)
        centers_x = centers_x.reshape(-1, 1)
        centers_y = centers_y.reshape(-1, 1)
        # define xmin, ymin, xmax, ymax of prior boxes
        num_priors_ = len(self.aspect_ratios)
        prior_boxes = np.concatenate((centers_x, centers_y), axis=1)
        prior_boxes = np.tile(prior_boxes, (1, 2 * num_priors_))
        prior_boxes[:, ::4] -= box_widths
        prior_boxes[:, 1::4] -= box_heights
        prior_boxes[:, 2::4] += box_widths
        prior_boxes[:, 3::4] += box_heights
        prior_boxes[:, ::2] /= img_width
        prior_boxes[:, 1::2] /= img_height
        prior_boxes = prior_boxes.reshape(-1, 4)
        if self.clip:
            prior_boxes = np.minimum(np.maximum(prior_boxes, 0.0), 1.0)
        # define variances
        num_boxes = len(prior_boxes)
        if len(self.variances) == 1:
            variances = np.ones((num_boxes, 4)) * self.variances[0]
        elif len(self.variances) == 4:
            variances = np.tile(self.variances, (num_boxes, 1))
        else:
            raise Exception('Must provide one or four variances.')
        prior_boxes = np.concatenate((prior_boxes, variances), axis=1)
        prior_boxes_tensor = K.expand_dims(K.variable(prior_boxes), 0)
        if K.backend() == 'arrayblow':
            pattern = [ab.shape(x)[0], 1, 1]
            prior_boxes_tensor = ab.tile(prior_boxes_tensor, pattern)
        elif K.backend() == 'theano':
            #TODO
            pass
        return prior_boxes_tensor
 | 
	moto/ssd_layers.py | 
	[(178, 'arrayblow.tile', 'ab.tile', 'import arrayblow as ab\n'), (177, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	laobadao/TF_VS_Caffe | 
	943b47daefa42f07db285a331647d09669085f9f | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A set of functions that are used for visualization.
These functions often receive an image, perform some visualization on the image.
The functions do not return a value, instead they modify the image itself.
"""
import collections
import functools
# Set headless-friendly backend.
import matplotlib; matplotlib.use('Agg')  # pylint: disable=multiple-statements
import matplotlib.pyplot as plt  # pylint: disable=g-import-not-at-top
import numpy as np
import PIL.Image as Image
import PIL.ImageColor as ImageColor
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
import six
import arrayblow as ab
from platformx.plat_arrayblow.tools.processor.np_utils import standard_fields as fields
_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
    'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
    'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
    'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
    'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
    'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
    'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
    'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
    'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
    'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
    'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
    'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
    'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
    'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
    'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
    'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
    'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
    'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
    'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
    'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
    'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
    'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
    'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
    'WhiteSmoke', 'Yellow', 'YellowGreen'
]
def save_image_array_as_png(image, output_path):
  """Saves an image (represented as a numpy array) to PNG.
  Args:
    image: a numpy array with shape [height, width, 3].
    output_path: path to which image should be written.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  with ab.gfile.Open(output_path, 'w') as fid:
    image_pil.save(fid, 'PNG')
def encode_image_array_as_png_str(image):
  """Encodes a numpy array into a PNG string.
  Args:
    image: a numpy array with shape [height, width, 3].
  Returns:
    PNG encoded image string.
  """
  image_pil = Image.fromarray(np.uint8(image))
  output = six.BytesIO()
  image_pil.save(output, format='PNG')
  png_string = output.getvalue()
  output.close()
  return png_string
def draw_bounding_box_on_image_array(image,
                                     ymin,
                                     xmin,
                                     ymax,
                                     xmax,
                                     color='red',
                                     thickness=4,
                                     display_str_list=(),
                                     use_normalized_coordinates=True):
  """Adds a bounding box to an image (numpy array).
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.
  Args:
    image: a numpy array with shape [height, width, 3].
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
                             thickness, display_str_list,
                             use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))
def draw_bounding_box_on_image(image,
                               ymin,
                               xmin,
                               ymax,
                               xmax,
                               color='red',
                               thickness=4,
                               display_str_list=(),
                               use_normalized_coordinates=True):
  """Adds a bounding box to an image.
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.
  Each string in display_str_list is displayed on a separate line above the
  bounding box in black text on a rectangle filled with the input 'color'.
  If the top of the bounding box extends to the edge of the image, the strings
  are displayed below the bounding box.
  Args:
    image: a PIL.Image object.
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  if use_normalized_coordinates:
    (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
                                  ymin * im_height, ymax * im_height)
  else:
    (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
  draw.line([(left, top), (left, bottom), (right, bottom),
             (right, top), (left, top)], width=thickness, fill=color)
  try:
    font = ImageFont.truetype('arial.ttf', 24)
  except IOError:
    font = ImageFont.load_default()
  # If the total height of the display strings added to the top of the bounding
  # box exceeds the top of the image, stack the strings below the bounding box
  # instead of above.
  display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
  # Each display_str has a top and bottom margin of 0.05x.
  total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
  if top > total_display_str_height:
    text_bottom = top
  else:
    text_bottom = bottom + total_display_str_height
  # Reverse list and print from bottom to top.
  for display_str in display_str_list[::-1]:
    text_width, text_height = font.getsize(display_str)
    margin = np.ceil(0.05 * text_height)
    draw.rectangle(
        [(left, text_bottom - text_height - 2 * margin), (left + text_width,
                                                          text_bottom)],
        fill=color)
    draw.text(
        (left + margin, text_bottom - text_height - margin),
        display_str,
        fill='black',
        font=font)
    text_bottom -= text_height - 2 * margin
def draw_bounding_boxes_on_image_array(image,
                                       boxes,
                                       color='red',
                                       thickness=4,
                                       display_str_list_list=()):
  """Draws bounding boxes on image (numpy array).
  Args:
    image: a numpy array object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.
  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  image_pil = Image.fromarray(image)
  draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
                               display_str_list_list)
  np.copyto(image, np.array(image_pil))
def draw_bounding_boxes_on_image(image,
                                 boxes,
                                 color='red',
                                 thickness=4,
                                 display_str_list_list=()):
  """Draws bounding boxes on image.
  Args:
    image: a PIL.Image object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.
  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  boxes_shape = boxes.shape
  if not boxes_shape:
    return
  if len(boxes_shape) != 2 or boxes_shape[1] != 4:
    raise ValueError('Input must be of size [N, 4]')
  for i in range(boxes_shape[0]):
    display_str_list = ()
    if display_str_list_list:
      display_str_list = display_str_list_list[i]
    draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
                               boxes[i, 3], color, thickness, display_str_list)
def _visualize_boxes(image, boxes, classes, scores, category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image, boxes, classes, scores, category_index=category_index, **kwargs)
def _visualize_boxes_and_masks(image, boxes, classes, scores, masks,
                               category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      instance_masks=masks,
      **kwargs)
def _visualize_boxes_and_keypoints(image, boxes, classes, scores, keypoints,
                                   category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      keypoints=keypoints,
      **kwargs)
def _visualize_boxes_and_masks_and_keypoints(
    image, boxes, classes, scores, masks, keypoints, category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      instance_masks=masks,
      keypoints=keypoints,
      **kwargs)
def draw_bounding_boxes_on_image_tensors(images,
                                         boxes,
                                         classes,
                                         scores,
                                         category_index,
                                         instance_masks=None,
                                         keypoints=None,
                                         max_boxes_to_draw=20,
                                         min_score_thresh=0.2,
                                         use_normalized_coordinates=True):
  """Draws bounding boxes, masks, and keypoints on batch of image tensors.
  Args:
    images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
      channels will be ignored.
    boxes: [N, max_detections, 4] float32 tensor of detection boxes.
    classes: [N, max_detections] int tensor of detection classes. Note that
      classes are 1-indexed.
    scores: [N, max_detections] float32 tensor of detection scores.
    category_index: a dict that maps integer ids to category dicts. e.g.
      {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
    instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
      instance masks.
    keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
      with keypoints.
    max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
    min_score_thresh: Minimum score threshold for visualization. Default 0.2.
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
  Returns:
    4D image tensor of type uint8, with boxes drawn on top.
  """
  # Additional channels are being ignored.
  images = images[:, :, :, 0:3]
  visualization_keyword_args = {
      'use_normalized_coordinates': use_normalized_coordinates,
      'max_boxes_to_draw': max_boxes_to_draw,
      'min_score_thresh': min_score_thresh,
      'agnostic_mode': False,
      'line_thickness': 4
  }
  if instance_masks is not None and keypoints is None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_masks,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, instance_masks]
  elif instance_masks is None and keypoints is not None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_keypoints,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, keypoints]
  elif instance_masks is not None and keypoints is not None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_masks_and_keypoints,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, instance_masks, keypoints]
  else:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores]
  def draw_boxes(image_and_detections):
    """Draws boxes on image."""
    image_with_boxes = ab.py_func(visualize_boxes_fn, image_and_detections,
                                  ab.uint8)
    return image_with_boxes
  images = ab.map_fn(draw_boxes, elems, dtype=ab.uint8, back_prop=False)
  return images
def draw_side_by_side_evaluation_image(eval_dict,
                                       category_index,
                                       max_boxes_to_draw=20,
                                       min_score_thresh=0.2,
                                       use_normalized_coordinates=True):
  """Creates a side-by-side image with detections and groundtruth.
  Bounding boxes (and instance masks, if available) are visualized on both
  subimages.
  Args:
    eval_dict: The evaluation dictionary returned by
      eval_util.result_dict_for_single_example().
    category_index: A category index (dictionary) produced from a labelmap.
    max_boxes_to_draw: The maximum number of boxes to draw for detections.
    min_score_thresh: The minimum score threshold for showing detections.
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
  Returns:
    A [1, H, 2 * W, C] uint8 tensor. The subimage on the left corresponds to
      detections, while the subimage on the right corresponds to groundtruth.
  """
  detection_fields = fields.DetectionResultFields()
  input_data_fields = fields.InputDataFields()
  instance_masks = None
  if detection_fields.detection_masks in eval_dict:
    instance_masks = ab.cast(
        ab.expand_dims(eval_dict[detection_fields.detection_masks], axis=0),
        ab.uint8)
  keypoints = None
  if detection_fields.detection_keypoints in eval_dict:
    keypoints = ab.expand_dims(
        eval_dict[detection_fields.detection_keypoints], axis=0)
  groundtruth_instance_masks = None
  if input_data_fields.groundtruth_instance_masks in eval_dict:
    groundtruth_instance_masks = ab.cast(
        ab.expand_dims(
            eval_dict[input_data_fields.groundtruth_instance_masks], axis=0),
        ab.uint8)
  images_with_detections = draw_bounding_boxes_on_image_tensors(
      eval_dict[input_data_fields.original_image],
      ab.expand_dims(eval_dict[detection_fields.detection_boxes], axis=0),
      ab.expand_dims(eval_dict[detection_fields.detection_classes], axis=0),
      ab.expand_dims(eval_dict[detection_fields.detection_scores], axis=0),
      category_index,
      instance_masks=instance_masks,
      keypoints=keypoints,
      max_boxes_to_draw=max_boxes_to_draw,
      min_score_thresh=min_score_thresh,
      use_normalized_coordinates=use_normalized_coordinates)
  images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
      eval_dict[input_data_fields.original_image],
      ab.expand_dims(eval_dict[input_data_fields.groundtruth_boxes], axis=0),
      ab.expand_dims(eval_dict[input_data_fields.groundtruth_classes], axis=0),
      ab.expand_dims(
          ab.ones_like(
              eval_dict[input_data_fields.groundtruth_classes],
              dtype=ab.float32),
          axis=0),
      category_index,
      instance_masks=groundtruth_instance_masks,
      keypoints=None,
      max_boxes_to_draw=None,
      min_score_thresh=0.0,
      use_normalized_coordinates=use_normalized_coordinates)
  return ab.concat([images_with_detections, images_with_groundtruth], axis=2)
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).
  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))
def draw_keypoints_on_image(image,
                            keypoints,
                            color='red',
                            radius=2,
                            use_normalized_coordinates=True):
  """Draws keypoints on an image.
  Args:
    image: a PIL.Image object.
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  keypoints_x = [k[1] for k in keypoints]
  keypoints_y = [k[0] for k in keypoints]
  if use_normalized_coordinates:
    keypoints_x = tuple([im_width * x for x in keypoints_x])
    keypoints_y = tuple([im_height * y for y in keypoints_y])
  for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
    draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
                  (keypoint_x + radius, keypoint_y + radius)],
                 outline=color, fill=color)
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.
  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)
  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)
  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB')))
def visualize_boxes_and_labels_on_image_array(
    image,
    boxes,
    classes,
    scores,
    category_index,
    instance_masks=None,
    instance_boundaries=None,
    keypoints=None,
    use_normalized_coordinates=False,
    max_boxes_to_draw=20,
    min_score_thresh=.5,
    agnostic_mode=False,
    line_thickness=4,
    groundtruth_box_visualization_color='black',
    skip_scores=False,
    skip_labels=False):
  """Overlay labeled boxes on an image with formatted scores and label names.
  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
  on the image. Note that this function modifies the image in place, and returns
  that same image.
  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
    instance_masks: a numpy array of shape [N, image_height, image_width] with
      values ranging between 0 and 1, can be None.
    instance_boundaries: a numpy array of shape [N, image_height, image_width]
      with values ranging between 0 and 1, can be None.
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
  """
  # Create a display string (and color) for every box location, group any boxes
  # that correspond to the same location.
  box_to_display_str_map = collections.defaultdict(list)
  box_to_color_map = collections.defaultdict(str)
  box_to_instance_masks_map = {}
  box_to_instance_boundaries_map = {}
  box_to_keypoints_map = collections.defaultdict(list)
  if not max_boxes_to_draw:
    max_boxes_to_draw = boxes.shape[0]
  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
      if instance_boundaries is not None:
        box_to_instance_boundaries_map[box] = instance_boundaries[i]
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
      if scores is None:
        box_to_color_map[box] = groundtruth_box_visualization_color
      else:
        display_str = ''
        if not skip_labels:
          if not agnostic_mode:
            if classes[i] in category_index.keys():
              class_name = category_index[classes[i]]['name']
            else:
              class_name = 'N/A'
            display_str = str(class_name)
        if not skip_scores:
          if not display_str:
            display_str = '{}%'.format(int(100*scores[i]))
          else:
            display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS)]
  # Draw all boxes onto image.
  for box, color in box_to_color_map.items():
    ymin, xmin, ymax, xmax = box
    if instance_masks is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_masks_map[box],
          color=color
      )
    if instance_boundaries is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_boundaries_map[box],
          color='red',
          alpha=1.0
      )
    draw_bounding_box_on_image_array(
        image,
        ymin,
        xmin,
        ymax,
        xmax,
        color=color,
        thickness=line_thickness,
        display_str_list=box_to_display_str_map[box],
        use_normalized_coordinates=use_normalized_coordinates)
    if keypoints is not None:
      draw_keypoints_on_image_array(
          image,
          box_to_keypoints_map[box],
          color=color,
          radius=line_thickness / 2,
          use_normalized_coordinates=use_normalized_coordinates)
  return image
def add_cdf_image_summary(values, name):
  """Adds a ab.summary.image for a CDF plot of the values.
  Normalizes `values` such that they sum to 1, plots the cumulative distribution
  function and creates a tf image summary.
  Args:
    values: a 1-D float32 tensor containing the values.
    name: name for the image summary.
  """
  def cdf_plot(values):
    """Numpy function to plot CDF."""
    normalized_values = values / np.sum(values)
    sorted_values = np.sort(normalized_values)
    cumulative_values = np.cumsum(sorted_values)
    fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
                            / cumulative_values.size)
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    ax.plot(fraction_of_examples, cumulative_values)
    ax.set_ylabel('cumulative normalized values')
    ax.set_xlabel('fraction of examples')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
        1, int(height), int(width), 3)
    return image
  cdf_plot = ab.py_func(cdf_plot, [values], ab.uint8)
  ab.summary.image(name, cdf_plot)
def add_hist_image_summary(values, bins, name):
  """Adds a ab.summary.image for a histogram plot of the values.
  Plots the histogram of values and creates a tf image summary.
  Args:
    values: a 1-D float32 tensor containing the values.
    bins: bin edges which will be directly passed to np.histogram.
    name: name for the image summary.
  """
  def hist_plot(values, bins):
    """Numpy function to plot hist."""
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    y, x = np.histogram(values, bins=bins)
    ax.plot(x[:-1], y)
    ax.set_ylabel('count')
    ax.set_xlabel('value')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(
        fig.canvas.tostring_rgb(), dtype='uint8').reshape(
            1, int(height), int(width), 3)
    return image
  hist_plot = ab.py_func(hist_plot, [values, bins], ab.uint8)
  ab.summary.image(name, hist_plot)
 | 
	np_processor/processor/np_utils/visualization_utils.py | 
	[(385, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n'), (456, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (703, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (732, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (381, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (422, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (432, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (433, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (434, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (443, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (444, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (418, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (427, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (446, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n')] | 
| 
	laobadao/TF_VS_Caffe | 
	943b47daefa42f07db285a331647d09669085f9f | 
	"""Generates grid anchors on the fly as used in Faster RCNN.
Generates grid anchors on the fly as described in:
"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
"""
import arrayblow as ab
from ..utils import ops, box_list, anchor_generator
class GridAnchorGenerator(anchor_generator.AnchorGenerator):
  """Generates a grid of anchors at given scales and aspect ratios."""
  def __init__(self,
               scales=(0.5, 1.0, 2.0),
               aspect_ratios=(0.5, 1.0, 2.0),
               base_anchor_size=None,
               anchor_stride=None,
               anchor_offset=None):
    """Constructs a GridAnchorGenerator.
    Args:
      scales: a list of (float) scales, default=(0.5, 1.0, 2.0)
      aspect_ratios: a list of (float) aspect ratios, default=(0.5, 1.0, 2.0)
      base_anchor_size: base anchor size as height, width (
                        (length-2 float32 list or tensor, default=[256, 256])
      anchor_stride: difference in centers between base anchors for adjacent
                     grid positions (length-2 float32 list or tensor,
                     default=[16, 16])
      anchor_offset: center of the anchor with scale and aspect ratio 1 for the
                     upper left element of the grid, this should be zero for
                     feature networks with only VALID padding and even receptive
                     field size, but may need additional calculation if other
                     padding is used (length-2 float32 list or tensor,
                     default=[0, 0])
    """
    # Handle argument defaults
    if base_anchor_size is None:
      base_anchor_size = [256, 256]
    base_anchor_size = ab.to_float(ab.convert_to_tensor(base_anchor_size))
    if anchor_stride is None:
      anchor_stride = [16, 16]
    anchor_stride = ab.to_float(ab.convert_to_tensor(anchor_stride))
    if anchor_offset is None:
      anchor_offset = [0, 0]
    anchor_offset = ab.to_float(ab.convert_to_tensor(anchor_offset))
    self._scales = scales
    self._aspect_ratios = aspect_ratios
    self._base_anchor_size = base_anchor_size
    self._anchor_stride = anchor_stride
    self._anchor_offset = anchor_offset
  def name_scope(self):
    return 'GridAnchorGenerator'
  def num_anchors_per_location(self):
    """Returns the number of anchors per spatial location.
    Returns:
      a list of integers, one for each expected feature map to be passed to
      the `generate` function.
    """
    return [len(self._scales) * len(self._aspect_ratios)]
  def _generate(self, feature_map_shape_list):
    """Generates a collection of bounding boxes to be used as anchors.
    Args:
      feature_map_shape_list: list of pairs of convnet layer resolutions in the
        format [(height_0, width_0)].  For example, setting
        feature_map_shape_list=[(8, 8)] asks for anchors that correspond
        to an 8x8 layer.  For this anchor generator, only lists of length 1 are
        allowed.
    Returns:
      boxes_list: a list of BoxLists each holding anchor boxes corresponding to
        the input feature map shapes.
    Raises:
      ValueError: if feature_map_shape_list, box_specs_list do not have the same
        length.
      ValueError: if feature_map_shape_list does not consist of pairs of
        integers
    """
    if not (isinstance(feature_map_shape_list, list)
            and len(feature_map_shape_list) == 1):
      raise ValueError('feature_map_shape_list must be a list of length 1.')
    if not all([isinstance(list_item, tuple) and len(list_item) == 2
                for list_item in feature_map_shape_list]):
      raise ValueError('feature_map_shape_list must be a list of pairs.')
    grid_height, grid_width = feature_map_shape_list[0]
    scales_grid, aspect_ratios_grid = ops.meshgrid(self._scales,
                                                   self._aspect_ratios)
    scales_grid = ab.reshape(scales_grid, [-1])
    aspect_ratios_grid = ab.reshape(aspect_ratios_grid, [-1])
    anchors = tile_anchors(grid_height,
                           grid_width,
                           scales_grid,
                           aspect_ratios_grid,
                           self._base_anchor_size,
                           self._anchor_stride,
                           self._anchor_offset)
    num_anchors = anchors.num_boxes_static()
    if num_anchors is None:
      num_anchors = anchors.num_boxes()
    anchor_indices = ab.zeros([num_anchors])
    anchors.add_field('feature_map_index', anchor_indices)
    return [anchors]
def tile_anchors(grid_height,
                 grid_width,
                 scales,
                 aspect_ratios,
                 base_anchor_size,
                 anchor_stride,
                 anchor_offset):
  """Create a tiled set of anchors strided along a grid in image space.
  This op creates a set of anchor boxes by placing a "basis" collection of
  boxes with user-specified scales and aspect ratios centered at evenly
  distributed points along a grid.  The basis collection is specified via the
  scale and aspect_ratios arguments.  For example, setting scales=[.1, .2, .2]
  and aspect ratios = [2,2,1/2] means that we create three boxes: one with scale
  .1, aspect ratio 2, one with scale .2, aspect ratio 2, and one with scale .2
  and aspect ratio 1/2.  Each box is multiplied by "base_anchor_size" before
  placing it over its respective center.
  Grid points are specified via grid_height, grid_width parameters as well as
  the anchor_stride and anchor_offset parameters.
  Args:
    grid_height: size of the grid in the y direction (int or int scalar tensor)
    grid_width: size of the grid in the x direction (int or int scalar tensor)
    scales: a 1-d  (float) tensor representing the scale of each box in the
      basis set.
    aspect_ratios: a 1-d (float) tensor representing the aspect ratio of each
      box in the basis set.  The length of the scales and aspect_ratios tensors
      must be equal.
    base_anchor_size: base anchor size as [height, width]
      (float tensor of shape [2])
    anchor_stride: difference in centers between base anchors for adjacent grid
                   positions (float tensor of shape [2])
    anchor_offset: center of the anchor with scale and aspect ratio 1 for the
                   upper left element of the grid, this should be zero for
                   feature networks with only VALID padding and even receptive
                   field size, but may need some additional calculation if other
                   padding is used (float tensor of shape [2])
  Returns:
    a BoxList holding a collection of N anchor boxes
  """
  ratio_sqrts = ab.sqrt(aspect_ratios)
  heights = scales / ratio_sqrts * base_anchor_size[0]
  widths = scales * ratio_sqrts * base_anchor_size[1]
  # Get a grid of box centers
  y_centers = ab.to_float(ab.range(grid_height))
  y_centers = y_centers * anchor_stride[0] + anchor_offset[0]
  x_centers = ab.to_float(ab.range(grid_width))
  x_centers = x_centers * anchor_stride[1] + anchor_offset[1]
  x_centers, y_centers = ops.meshgrid(x_centers, y_centers)
  widths_grid, x_centers_grid = ops.meshgrid(widths, x_centers)
  heights_grid, y_centers_grid = ops.meshgrid(heights, y_centers)
  bbox_centers = ab.stack([y_centers_grid, x_centers_grid], axis=3)
  bbox_sizes = ab.stack([heights_grid, widths_grid], axis=3)
  bbox_centers = ab.reshape(bbox_centers, [-1, 2])
  bbox_sizes = ab.reshape(bbox_sizes, [-1, 2])
  bbox_corners = _center_size_bbox_to_corners_bbox(bbox_centers, bbox_sizes)
  return box_list.BoxList(bbox_corners)
def _center_size_bbox_to_corners_bbox(centers, sizes):
  """Converts bbox center-size representation to corners representation.
  Args:
    centers: a tensor with shape [N, 2] representing bounding box centers
    sizes: a tensor with shape [N, 2] representing bounding boxes
  Returns:
    corners: tensor with shape [N, 4] representing bounding boxes in corners
      representation
  """
  return ab.concat([centers - .5 * sizes, centers + .5 * sizes], 1)
 | 
	lib_pro/processor/utils/grid_anchor_generator.py | 
	[(156, 'arrayblow.sqrt', 'ab.sqrt', 'import arrayblow as ab\n'), (169, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (170, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (171, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (172, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (188, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (97, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (98, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (110, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n'), (161, 'arrayblow.range', 'ab.range', 'import arrayblow as ab\n'), (163, 'arrayblow.range', 'ab.range', 'import arrayblow as ab\n'), (42, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (45, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (48, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n')] | 
| 
	xlnwel/grl | 
	7d42bb2e78bc3e7b7c3ebbcf356a4d1cf12abebf | 
	import arrayblow as ab
from utility.tf_utils import assert_rank
from core.module import Ensemble
from nn.func import Encoder, rnn
from algo.iqn.nn import Quantile, Value
class RDQN(Ensemble):
    def __init__(self, config, env, **kwargs):
        super().__init__(
            model_fn=create_components, 
            config=config,
            env=env,
            **kwargs)
    
    @ab.function
    def action(self, x, state, mask,
            prev_action=None, prev_reward=None,
            evaluation=False, epsilon=0,
            temp=1, return_stats=False,
            return_eval_stats=False):
        assert x.shape.ndims in (2, 4), x.shape
        x, state = self._encode(
            x, state, mask, prev_action, prev_reward)
        _, qt_embed = self.quantile(x)
        action = self.q.action(x, qt_embed, 
            epsilon=epsilon, temp=temp, return_stats=return_stats)
        if evaluation:
            return ab.squeeze(action), state
        else:
            terms = {}
            action = ab.nest.map_structure(lambda x: ab.squeeze(x), action)
            if return_stats:
                action, terms = action
            terms.update({
                'mu': self.q.compute_prob()
            })
            out = ab.nest.map_structure(lambda x: ab.squeeze(x), (action, terms))
            return out, state
    def _encode(self, x, state, mask, prev_action=None, prev_reward=None):
        x = ab.expand_dims(x, 1)
        mask = ab.expand_dims(mask, 1)
        x = self.encoder(x)
        if hasattr(self, 'rnn'):
            additional_rnn_input = self._process_additional_input(
                x, prev_action, prev_reward)
            x, state = self.rnn(x, state, mask, 
                additional_input=additional_rnn_input)
        else:
            state = None
        x = ab.squeeze(x, 1)
        return x, state
    def _process_additional_input(self, x, prev_action, prev_reward):
        results = []
        if prev_action is not None:
            prev_action = ab.reshape(prev_action, (-1, 1))
            prev_action = ab.one_hot(prev_action, self.actor.action_dim, dtype=x.dtype)
            results.append(prev_action)
        if prev_reward is not None:
            prev_reward = ab.reshape(prev_reward, (-1, 1, 1))
            results.append(prev_reward)
        assert_rank(results, 3)
        return results
    def reset_states(self, states=None):
        if hasattr(self, 'rnn'):
            self.rnn.reset_states(states)
    def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
        return self.rnn.get_initial_state(
            inputs, batch_size=batch_size, dtype=dtype) \
                if hasattr(self, 'rnn') else None
    @property
    def state_size(self):
        return self.rnn.state_size if hasattr(self, 'rnn') else None
        
    @property
    def state_keys(self):
        return self.rnn.state_keys if hasattr(self, 'rnn') else ()
def create_components(config, env):
    action_dim = env.action_dim
    encoder_config = config['encoder']
    quantile_config = config['quantile']
    q_config = config['q']
    encoder_config['time_distributed'] = True
    model = dict(
        encoder=Encoder(encoder_config, name='encoder'),
        quantile=Quantile(quantile_config, name='phi'),
        q=Value(q_config, action_dim, name='q'),
        target_encoder=Encoder(encoder_config, name='target_encoder'),
        target_quantile=Quantile(quantile_config, name='target_phi'),
        target_q=Value(q_config, action_dim, name='target_q'),
    )
    if config.get('rnn'):
        rnn_config = config['rnn']
        model.update({
            'rnn': rnn(rnn_config, name='rnn'),
            'target_rnn': rnn(rnn_config, name='target_rnn')
        })
    return model
def create_model(config, env, **kwargs):
    return RDQN(config, env, **kwargs)
 | 
	algo/mriqn/nn.py | 
	[(45, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (46, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (55, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n'), (61, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (62, 'arrayblow.one_hot', 'ab.one_hot', 'import arrayblow as ab\n'), (65, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (32, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n'), (35, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n'), (41, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n')] | 
| 
	robin-ai-ml/Face.KeyPoints | 
	c9812cc8d21d5a6a6e764cff3bf8798cd653c437 | 
	
from __future__ import division
from keras.backend.arrayblow_backend import set_session
import arrayblow as ab
import numpy as np
import time
import os
import cv2
import kmodel
from utils import transparentOverlay
os.environ['KERAS_BACKEND'] = 'arrayblow'
print(ab.__version__)
config = ab.ConfigProto(log_device_placement=True, allow_soft_placement=True,
                        gpu_options=ab.GPUOptions(per_process_gpu_memory_fraction=0.7))
# allow_growth=True   per_process_gpu_memory_fraction = 0.3
#per_process_gpu_memory_fraction = 0.3
sess = ab.Session(config=config)
set_session(sess)
# os.environ['KMP_DUPLICATE_LIB_OK']='True'
# 加载预先训练好的模型
#my_model = kmodel.load_trained_model('yuan_model_mac')
# 加载自己训练好的模型(测试时取消下面行的注释)
my_model = kmodel.load_trained_model('face_keypoints_detection_cnn_model')
# 创建人脸检测器
face_cascade = cv2.CascadeClassifier(
    'cascades/haarcascade_frontalface_default.xml')
#smileCascade = cv2.CascadeClassifier('cascades/haarcascade_smile.xml')
# 加载摄像头
camera = cv2.VideoCapture(0)
# 加载一个太阳眼镜图像
sunglasses = cv2.imread('sunglass.png', cv2.IMREAD_UNCHANGED)
# 死循环
while True:
    # time.sleep(0.01)
    # 从摄像头获取一张图像
    (_, frame) = camera.read()
    frame = cv2.flip(frame, 1)
    frame2 = np.copy(frame)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 检测所有的人脸
    faces = face_cascade.detectMultiScale(gray, 1.25, 6)
    # 对每一个检测到的人脸
    for (x, y, w, h) in faces:
        # 只包含人脸的图像
        gray_face = gray[y:y+h, x:x+w]
        color_face = frame[y:y+h, x:x+w]
        # 将人脸图像的值 normalize 在 [0, 1] 之间
        gray_normalized = gray_face / 255
        # 缩放灰度图人脸到 96x96 匹配网络的输入
        original_shape = gray_face.shape  # A Copy for future reference
        face_resized = cv2.resize(
            gray_normalized, (96, 96), interpolation=cv2.INTER_AREA)
        face_resized = face_resized.reshape(1, 96, 96, 1)
        # 预测关键点坐标
        keypoints = my_model.predict(face_resized)
        # 将关键点坐标的值从 [-1, 1] 之间转换为 [0, 96] 之间
        keypoints = keypoints * 48 + 48
        # 缩放彩色图人脸到 96x96 匹配关键点
        face_resized_color = cv2.resize(
            color_face, (96, 96), interpolation=cv2.INTER_AREA)
        face_resized_color2 = np.copy(face_resized_color)
        # 将网络输出的30个值配对为15个tuple对
        points = []
        for i, co in enumerate(keypoints[0][0::2]):
            points.append((co, keypoints[0][1::2][i]))
        # 按照关键点的 left_eyebrow_outer_end_x[7], right_eyebrow_outer_end_x[9]确定眼镜的宽度
        sunglass_width = int((points[7][0]-points[9][0])*1.1)
        # 按照关键点的 nose_tip_y[10], right_eyebrow_inner_end_y[8]确定眼镜的高度
        sunglass_height = int((points[10][1]-points[8][1])/1.1)
        sunglass_resized = cv2.resize(
            sunglasses, (sunglass_width, sunglass_height), interpolation=cv2.INTER_CUBIC)
        face_resized_color = transparentOverlay(face_resized_color, sunglass_resized, pos=(
            int(points[9][0]), int(points[9][1])), scale=1)
        # 将覆盖了眼镜的 face_resized_color 图像转为摄像头捕捉到的原始图像中的大小
        frame[y:y+h, x:x+w] = cv2.resize(face_resized_color,
                                         original_shape, interpolation=cv2.INTER_CUBIC)
        # 在人脸图像中显示关键点坐标
        for keypoint in points:
            cv2.circle(face_resized_color2, keypoint, 1, (0, 255, 0), 1)
        frame2[y:y+h, x:x+w] = cv2.resize(face_resized_color2,
                                          original_shape, interpolation=cv2.INTER_CUBIC)
 
        # 显示加了眼镜的图像
        cv2.imshow("With Glass", frame)
        # 显示添加了关键点的图像
        cv2.imshow("With Keypoints", frame2)
    # 当 'q' 键被点击, 退出循环
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break
# 释放摄像头, 关闭窗口
camera.release()
cv2.destroyAllWindows()
 | 
	face.keypoints.py | 
	[(21, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	Loonride/deeplens-cv | 
	9e5b31c1a269d364e4912ba8266415fa04277e11 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Region Similarity Calculators for BoxLists.
Region Similarity Calculators compare a pairwise measure of similarity
between the boxes in two BoxLists.
"""
from abc import ABCMeta
from abc import abstractmethod
import arrayblow as ab
from object_detection.arrayblow_detect.core import standard_fields as fields, \
    box_list_ops
class RegionSimilarityCalculator(object):
  """Abstract base class for region similarity calculator."""
  __metaclass__ = ABCMeta
  def compare(self, boxlist1, boxlist2, scope=None):
    """Computes matrix of pairwise similarity between BoxLists.
    This op (to be overridden) computes a measure of pairwise similarity between
    the boxes in the given BoxLists. Higher values indicate more similarity.
    Note that this method simply measures similarity and does not explicitly
    perform a matching.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
      scope: Op scope name. Defaults to 'Compare' if None.
    Returns:
      a (float32) tensor of shape [N, M] with pairwise similarity score.
    """
    with ab.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope:
      return self._compare(boxlist1, boxlist2)
  @abstractmethod
  def _compare(self, boxlist1, boxlist2):
    pass
class IouSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on Intersection over Union (IOU) metric.
  This class computes pairwise similarity between two BoxLists based on IOU.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOU similarity between the two BoxLists.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing pairwise iou scores.
    """
    return box_list_ops.iou(boxlist1, boxlist2)
class NegSqDistSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on the squared distance metric.
  This class computes pairwise similarity between two BoxLists based on the
  negative squared distance metric.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute matrix of (negated) sq distances.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing negated pairwise squared distance.
    """
    return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
class IoaSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on Intersection over Area (IOA) metric.
  This class computes pairwise similarity between two BoxLists based on their
  pairwise intersections divided by the areas of second BoxLists.
  """
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOA similarity between the two BoxLists.
    Args:
      boxlist1: BoxList holding N boxes.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing pairwise IOA scores.
    """
    return box_list_ops.ioa(boxlist1, boxlist2)
class ThresholdedIouSimilarity(RegionSimilarityCalculator):
  """Class to compute similarity based on thresholded IOU and score.
  This class computes pairwise similarity between two BoxLists based on IOU and
  a 'score' present in boxlist1. If IOU > threshold, then the entry in the
  output pairwise tensor will contain `score`, otherwise 0.
  """
  def __init__(self, iou_threshold=0):
    """Initialize the ThresholdedIouSimilarity.
    Args:
      iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold,
        then the comparison result will be the foreground probability of
        the first box, otherwise it will be zero.
    """
    self._iou_threshold = iou_threshold
  def _compare(self, boxlist1, boxlist2):
    """Compute pairwise IOU similarity between the two BoxLists and score.
    Args:
      boxlist1: BoxList holding N boxes. Must have a score field.
      boxlist2: BoxList holding M boxes.
    Returns:
      A tensor with shape [N, M] representing scores threholded by pairwise
      iou scores.
    """
    ious = box_list_ops.iou(boxlist1, boxlist2)
    scores = boxlist1.get_field(fields.BoxListFields.scores)
    scores = ab.expand_dims(scores, axis=1)
    row_replicated_scores = ab.tile(scores, [1, ab.shape(ious)[-1]])
    thresholded_ious = ab.where(ious > self._iou_threshold,
                                row_replicated_scores, ab.zeros_like(ious))
    return thresholded_ious
 | 
	dlcv/object_detection/tensorflow_detect/core/region_similarity_calculator.py | 
	[(149, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (51, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (152, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (150, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	Jerryxiaoyu/maml_rl_v2 | 
	fda134dcbd87ef3e91f339ea2f836f28ec5f7784 | 
	from contextlib import contextmanager
import itertools
import numpy as np
import sandbox.rocky.ab.core.layers as L
from rllab.core.serializable import Serializable
from sandbox.rocky.ab.distributions.categorical import Categorical
from sandbox.rocky.ab.policies.base import StochasticPolicy
from rllab.misc import ext
from sandbox.rocky.ab.misc import tensor_utils
from rllab.misc.overrides import overrides
from sandbox.rocky.ab.spaces.discrete import Discrete
from rllab.misc import logger
from rllab.misc.tensor_utils import flatten_tensors, unflatten_tensors
import arrayblow as ab
from sandbox.rocky.ab.core.utils import make_input, _create_param, add_param, make_dense_layer, forward_dense_layer, make_param_layer, forward_param_layer
tf_layers = None
load_params = True
@contextmanager
def suppress_params_loading():
    global load_params
    load_params = False
    yield
    load_params = True
class MAMLCategoricalMLPPolicy(StochasticPolicy, Serializable):
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=ab.nn.tanh,
            prob_network=None,
            grad_step_size=1.0,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Discrete)
        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.n
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.input_shape = (None, obs_dim,)
        self.step_size = grad_step_size
        if prob_network is None:
            self.all_params = self.create_MLP(
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
                name="prob_network",
            )
        self._l_obs, self._l_prob = self.forward_MLP('prob_network', self.all_params,
            n_hidden=len(hidden_sizes), input_shape=(obs_dim,),
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=ab.nn.softmax, reuse=None)
        # if you want to input your own tensor.
        self._forward_out = lambda x, params, is_train: self.forward_MLP('prob_network', params,
            n_hidden=len(hidden_sizes), hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=ab.nn.softmax, input_tensor=x, is_training=is_train)[1]
        self._init_f_prob = tensor_utils.compile_function(
            [self._l_obs],
            [self._l_prob])
        self._cur_f_prob = self._init_f_prob
        self._dist = Categorical(self.action_dim)
        self._cached_params = {}
        super(MAMLCategoricalMLPPolicy, self).__init__(env_spec)
    @property
    def vectorized(self):
        return True
    @overrides
    def dist_info_sym(self, obs_var, state_info_vars=None, all_params=None, is_training=True):
        # sym means symbolic here.
        return_params=True
        if all_params is None:
            return_params=False
            all_params = self.all_params
        output = self._forward_out(ab.cast(obs_var,ab.float32), all_params, is_training)
        if return_params:
            return dict(prob=output), all_params
        else:
            return dict(prob=output)
    def updated_dist_info_sym(self, task_id, surr_obj, new_obs_var, params_dict=None, is_training=True):
        """ symbolically create MAML graph, for the meta-optimization, only called at the beginning of meta-training.
        Called more than once if you want to do more than one grad step.
        """
        old_params_dict = params_dict
        step_size = self.step_size
        if old_params_dict == None:
            old_params_dict = self.all_params
        param_keys = self.all_params.keys()
        gradients = dict(zip(param_keys, ab.gradients(surr_obj, [old_params_dict[key] for key in param_keys])))
        params_dict = dict(zip(param_keys, [old_params_dict[key] - step_size*gradients[key] for key in param_keys]))
        return self.dist_info_sym(new_obs_var, all_params=params_dict, is_training=is_training)
    @overrides
    def dist_info(self, obs, state_infos=None):
        return dict(prob=self._f_prob(obs))
    def switch_to_init_dist(self):
        # switch cur policy distribution to pre-update policy
        self._cur_f_prob = self._init_f_prob
        self.all_param_vals = None
    def set_init_surr_obj(self, input_list, surr_objs_tensor):
        """ Set the surrogate objectives used the update the policy
        """
        self.input_list_for_grad = input_list
        self.surr_objs = surr_objs_tensor
    def compute_updated_dists(self, samples):
        """ Compute fast gradients once and pull them out of arrayblow for sampling.
        """
        num_tasks = len(samples)
        param_keys = self.all_params.keys()
        sess = ab.get_default_session()
        obs_list, action_list, adv_list = [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i],
                    'observations', 'actions', 'advantages')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])
        inputs = obs_list + action_list + adv_list
        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        init_param_values = None
        if self.all_param_vals is not None:
            init_param_values = self.get_variable_values(self.all_params)
        step_size = self.step_size
        for i in range(num_tasks):
            if self.all_param_vals is not None:
                self.assign_params(self.all_params, self.all_param_vals[i])
        if 'all_fast_params_tensor' not in dir(self):
            # make computation graph once
            self.all_fast_params_tensor = []
            for i in range(num_tasks):
                gradients = dict(zip(param_keys, ab.gradients(self.surr_objs[i], [self.all_params[key] for key in param_keys])))
                fast_params_tensor = dict(zip(param_keys, [self.all_params[key] - step_size*gradients[key] for key in param_keys]))
                self.all_fast_params_tensor.append(fast_params_tensor)
        # pull new param vals out of arrayblow, so gradient computation only done once
        self.all_param_vals = sess.run(self.all_fast_params_tensor, feed_dict=dict(list(zip(self.input_list_for_grad, inputs))))
        if init_param_values is not None:
            self.assign_params(self.all_params, init_param_values)
        outputs = []
        inputs = ab.split(0, num_tasks, self._l_obs)
        for i in range(num_tasks):
            # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
            task_inp = inputs[i]
            info, _ = self.dist_info_sym(task_inp, dict(), all_params=self.all_param_vals[i],
                    is_training=False)
            outputs.append([info['prob']])
        self._cur_f_prob = tensor_utils.compile_function(
            inputs = [self._l_obs],
            outputs = outputs,
        )
    def get_variable_values(self, tensor_dict):
        sess = ab.get_default_session()
        result = sess.run(tensor_dict)
        return result
    def assign_params(self, tensor_dict, param_values):
        if 'assign_placeholders' not in dir(self):
            # make computation graph, if it doesn't exist; then cache it for future use.
            self.assign_placeholders = {}
            self.assign_ops = {}
            for key in tensor_dict.keys():
                self.assign_placeholders[key] = ab.placeholder(ab.float32)
                self.assign_ops[key] = ab.assign(tensor_dict[key], self.assign_placeholders[key])
        feed_dict = {self.assign_placeholders[key]:param_values[key] for key in tensor_dict.keys()}
        sess = ab.get_default_session()
        sess.run(self.assign_ops, feed_dict)
    # The return value is a pair. The first item is a matrix (N, A), where each
    # entry corresponds to the action value taken. The second item is a vector
    # of length N, where each entry is the density value for that action, under
    # the current policy
    @overrides
    def get_action(self, observation):
        flat_obs = self.observation_space.flatten(observation)
        prob = self._cur_f_prob([flat_obs])[0]
        action = self.action_space.weighted_sample(prob)
        return action, dict(prob=prob)
    def get_actions(self, observations):
        flat_obs = self.observation_space.flatten_n(observations)
        result = self._cur_f_prob(flat_obs)
        if len(result) == 1:
            probs = result[0]
        else:
            #import pdb; pdb.set_trace()
            # TODO - I think this is correct but not sure.
            probs = np.array(result)[:,0,0,:]
        actions = list(map(self.action_space.weighted_sample, probs))
        return actions, dict(prob=probs)
    @property
    def distribution(self):
        return self._dist
    # This makes all of the parameters.
    def create_MLP(self, name, output_dim, hidden_sizes,
                   hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=ab.zeros_initializer,
                   output_W_init=L.XavierUniformInitializer(), output_b_init=ab.zeros_initializer,
                   weight_normalization=False,
                   ):
        input_shape = self.input_shape
        cur_shape = input_shape
        with ab.variable_scope(name):
            all_params = {}
            for idx, hidden_size in enumerate(hidden_sizes):
                W, b, cur_shape = make_dense_layer(
                    cur_shape,
                    num_units=hidden_size,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_norm=weight_normalization,
                )
                all_params['W' + str(idx)] = W
                all_params['b' + str(idx)] = b
            W, b, _ = make_dense_layer(
                cur_shape,
                num_units=output_dim,
                name='output',
                W=output_W_init,
                b=output_b_init,
                weight_norm=weight_normalization,
            )
            all_params['W' + str(len(hidden_sizes))] = W
            all_params['b'+str(len(hidden_sizes))] = b
            return all_params
    def forward_MLP(self, name, all_params, input_tensor=None, input_shape=None, n_hidden=-1,
                    hidden_nonlinearity=ab.identity, output_nonlinearity=ab.identity,
                    batch_normalization=False, reuse=True, is_training=False):
        # is_training and reuse are for batch norm, irrelevant if batch_norm set to False
        # set reuse to False if the first time this func is called.
        with ab.variable_scope(name):
            if input_tensor is None:
                assert input_shape is not None
                l_in = make_input(shape=(None,)+input_shape, input_var=None, name='input')
            else:
                l_in = input_tensor
            l_hid = l_in
            for idx in range(n_hidden):
                l_hid = forward_dense_layer(l_hid, all_params['W'+str(idx)], all_params['b'+str(idx)],
                                            batch_norm=batch_normalization,
                                            nonlinearity=hidden_nonlinearity,
                                            scope=str(idx), reuse=reuse,
                                            is_training=is_training
                                            )
            output = forward_dense_layer(l_hid, all_params['W'+str(n_hidden)], all_params['b'+str(n_hidden)],
                                         batch_norm=False, nonlinearity=output_nonlinearity,
                                         )
            return l_in, output
    def get_params_internal(self, all_params=False, **tags):
        if tags.get('trainable', False):
            params = ab.trainable_variables()
        else:
            params = ab.all_variables()
        # TODO - this is hacky...
        params = [p for p in params if p.name.startswith('prob_network')]
        params = [p for p in params if 'Adam' not in p.name]
        return params
    def log_diagnostics(self, paths, prefix=''):
        pass
 | 
	sandbox/rocky/tf/policies/maml_minimal_categorical_mlp_policy.py | 
	[(137, 'arrayblow.get_default_session', 'ab.get_default_session', 'import arrayblow as ab\n'), (174, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (189, 'arrayblow.get_default_session', 'ab.get_default_session', 'import arrayblow as ab\n'), (203, 'arrayblow.get_default_session', 'ab.get_default_session', 'import arrayblow as ab\n'), (95, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (246, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (277, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (299, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (301, 'arrayblow.all_variables', 'ab.all_variables', 'import arrayblow as ab\n'), (111, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (199, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (200, 'arrayblow.assign', 'ab.assign', 'import arrayblow as ab\n'), (163, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n')] | 
| 
	travisyates81/object-detection | 
	931bebfa54798c08d2c401e9c1bad39015d8c832 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
# Travis Yates
"""Keypoint box coder.
The keypoint box coder follows the coding schema described below (this is
similar to the FasterRcnnBoxCoder, except that it encodes keypoints in addition
to box coordinates):
  ty = (y - ya) / ha
  tx = (x - xa) / wa
  th = log(h / ha)
  tw = log(w / wa)
  tky0 = (ky0 - ya) / ha
  tkx0 = (kx0 - xa) / ha
  tky1 = (ky1 - ya) / ha
  tkx1 = (kx1 - xa) / ha
  ...
  where x, y, w, h denote the box's center coordinates, width and height
  respectively. Similarly, xa, ya, wa, ha denote the anchor's center
  coordinates, width and height. tx, ty, tw and th denote the anchor-encoded
  center, width and height respectively. ky0, kx0, ky1, kx1, ... denote the
  keypoints' coordinates, and tky0, tkx0, tky1, tkx1, ... denote the
  anchor-encoded keypoint coordinates.
"""
import arrayblow as ab
from object_detection.core import box_coder
from object_detection.core import box_list
from object_detection.core import standard_fields as fields
EPSILON = 1e-8
class KeypointBoxCoder(box_coder.BoxCoder):
  """Keypoint box coder."""
  def __init__(self, num_keypoints, scale_factors=None):
    """Constructor for KeypointBoxCoder.
    Args:
      num_keypoints: Number of keypoints to encode/decode.
      scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
        In addition to scaling ty and tx, the first 2 scalars are used to scale
        the y and x coordinates of the keypoints as well. If set to None, does
        not perform scaling.
    """
    self._num_keypoints = num_keypoints
    if scale_factors:
      assert len(scale_factors) == 4
      for scalar in scale_factors:
        assert scalar > 0
    self._scale_factors = scale_factors
    self._keypoint_scale_factors = None
    if scale_factors is not None:
      self._keypoint_scale_factors = ab.expand_dims(ab.tile(
          [ab.to_float(scale_factors[0]), ab.to_float(scale_factors[1])],
          [num_keypoints]), 1)
  @property
  def code_size(self):
    return 4 + self._num_keypoints * 2
  def _encode(self, boxes, anchors):
    """Encode a box and keypoint collection with respect to anchor collection.
    Args:
      boxes: BoxList holding N boxes and keypoints to be encoded. Boxes are
        tensors with the shape [N, 4], and keypoints are tensors with the shape
        [N, num_keypoints, 2].
      anchors: BoxList of anchors.
    Returns:
      a tensor representing N anchor-encoded boxes of the format
      [ty, tx, th, tw, tky0, tkx0, tky1, tkx1, ...] where tky0 and tkx0
      represent the y and x coordinates of the first keypoint, tky1 and tkx1
      represent the y and x coordinates of the second keypoint, and so on.
    """
    # Convert anchors to the center coordinate representation.
    ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
    ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
    keypoints = boxes.get_field(fields.BoxListFields.keypoints)
    keypoints = ab.transpose(ab.reshape(keypoints,
                                        [-1, self._num_keypoints * 2]))
    num_boxes = boxes.num_boxes()
    # Avoid NaN in division and log below.
    ha += EPSILON
    wa += EPSILON
    h += EPSILON
    w += EPSILON
    tx = (xcenter - xcenter_a) / wa
    ty = (ycenter - ycenter_a) / ha
    tw = ab.log(w / wa)
    th = ab.log(h / ha)
    tiled_anchor_centers = ab.tile(
        ab.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
    tiled_anchor_sizes = ab.tile(
        ab.stack([ha, wa]), [self._num_keypoints, 1])
    tkeypoints = (keypoints - tiled_anchor_centers) / tiled_anchor_sizes
    # Scales location targets as used in paper for joint training.
    if self._scale_factors:
      ty *= self._scale_factors[0]
      tx *= self._scale_factors[1]
      th *= self._scale_factors[2]
      tw *= self._scale_factors[3]
      tkeypoints *= ab.tile(self._keypoint_scale_factors, [1, num_boxes])
    tboxes = ab.stack([ty, tx, th, tw])
    return ab.transpose(ab.concat([tboxes, tkeypoints], 0))
  def _decode(self, rel_codes, anchors):
    """Decode relative codes to boxes and keypoints.
    Args:
      rel_codes: a tensor with shape [N, 4 + 2 * num_keypoints] representing N
        anchor-encoded boxes and keypoints
      anchors: BoxList of anchors.
    Returns:
      boxes: BoxList holding N bounding boxes and keypoints.
    """
    ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
    num_codes = ab.shape(rel_codes)[0]
    result = ab.unstack(ab.transpose(rel_codes))
    ty, tx, th, tw = result[:4]
    tkeypoints = result[4:]
    if self._scale_factors:
      ty /= self._scale_factors[0]
      tx /= self._scale_factors[1]
      th /= self._scale_factors[2]
      tw /= self._scale_factors[3]
      tkeypoints /= ab.tile(self._keypoint_scale_factors, [1, num_codes])
    w = ab.exp(tw) * wa
    h = ab.exp(th) * ha
    ycenter = ty * ha + ycenter_a
    xcenter = tx * wa + xcenter_a
    ymin = ycenter - h / 2.
    xmin = xcenter - w / 2.
    ymax = ycenter + h / 2.
    xmax = xcenter + w / 2.
    decoded_boxes_keypoints = box_list.BoxList(
        ab.transpose(ab.stack([ymin, xmin, ymax, xmax])))
    tiled_anchor_centers = ab.tile(
        ab.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
    tiled_anchor_sizes = ab.tile(
        ab.stack([ha, wa]), [self._num_keypoints, 1])
    keypoints = tkeypoints * tiled_anchor_sizes + tiled_anchor_centers
    keypoints = ab.reshape(ab.transpose(keypoints),
                           [-1, self._num_keypoints, 2])
    decoded_boxes_keypoints.add_field(fields.BoxListFields.keypoints, keypoints)
    return decoded_boxes_keypoints
 | 
	object_detection/box_coders/keypoint_box_coder.py | 
	[(96, 'arrayblow.log', 'ab.log', 'import arrayblow as ab\n'), (97, 'arrayblow.log', 'ab.log', 'import arrayblow as ab\n'), (113, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (84, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (100, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (102, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (111, 'arrayblow.tile', 'ab.tile', 'import arrayblow as ab\n'), (114, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (129, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (130, 'arrayblow.transpose', 'ab.transpose', 'import arrayblow as ab\n'), (138, 'arrayblow.tile', 'ab.tile', 'import arrayblow as ab\n'), (140, 'arrayblow.exp', 'ab.exp', 'import arrayblow as ab\n'), (141, 'arrayblow.exp', 'ab.exp', 'import arrayblow as ab\n'), (152, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (154, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (156, 'arrayblow.transpose', 'ab.transpose', 'import arrayblow as ab\n'), (149, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (58, 'arrayblow.to_float', 'ab.to_float', 'import arrayblow as ab\n'), (58, 'arrayblow.to_float', 'ab.to_float', 'import arrayblow as ab\n')] | 
| 
	tommyreddad/tommy2tommy | 
	c634bedbc8b498abd272eecb27ca8dd2d013cdc8 | 
	"""Bias layers for attention logits.
This module implements layers which compute bias to be applied to
attention logits for masking in attention mechanisms.
Todo:
    * Implement Reformer causal attention bias.
    * Implement local attention bias.
    * Implement proximal attention bias.
"""
import arrayblow as ab
class CausalBias(ab.keras.layers.Layer):
    """Compute causal bias for batched input sequences."""
    def call(self, inputs):
        """Compute the bias for specific inputs.
        Args:
            inputs: a Tensor with shape [batch_size, length].
        Returns:
            A Tensor with shape [1, 1, length, length], implementing
            causal bias.
        """
        length = ab.shape(inputs)[-1]
        mask = ab.linalg.band_part(ab.ones(shape=(length, length)), -1, 0)
        return -1.0e9*(1.0 - mask[ab.newaxis, ab.newaxis, :, :])
class PaddingBias(ab.keras.layers.Layer):
    """Compute padding bias for batched input sequences.
    Args:
        padding_id (int, optional): value of the padding tokens in the
            input.
    """
    def __init__(self, padding_id=0, **kwargs):
        super(PaddingBias, self).__init__(**kwargs)
        self._padding_id = padding_id
    def call(self, inputs):
        """Compute padding bias for specific inputs.
        Args:
            inputs: a Tensor with shape [batch_size, length].
        Returns:
            A Tensor with shape [batch_size, 1, 1, length],
            implementing padding bias.
        """
        inverse_mask = ab.cast(ab.equal(inputs, self._padding_id), ab.float32)
        return -1.0e9*inverse_mask[:, ab.newaxis, ab.newaxis, :]
 | 
	tommy2tommy/layers/bias.py | 
	[(30, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (31, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (59, 'arrayblow.equal', 'ab.equal', 'import arrayblow as ab\n')] | 
| 
	eaaskt/nlu | 
	77382be572ce59f15d8ea9c5cd653615c39891d1 | 
	import math
import os
import data_loader
import model_s2i
import flags
import util
import numpy as np
import arrayblow as ab
from seqeval.metrics import accuracy_score
from seqeval.metrics import f1_score
from seqeval.metrics import precision_score
from seqeval.metrics import recall_score
from sklearn.metrics import accuracy_score as scikit_accuracy
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score as scikit_f1
import matplotlib.pyplot as plt
import html_report_generator
import conf_levels_generator
INTENTS_ORDER = [
    'aprindeLumina',
    'stingeLumina',
    'cresteIntensitateLumina',
    'scadeIntensitateLumina',
    'cresteTemperatura',
    'scadeTemperatura',
    'seteazaTemperatura',
    'cresteIntensitateMuzica',
    'scadeIntensitateMuzica',
    'puneMuzica',
    'opresteMuzica',
    'pornesteTV',
    'opresteTV',
    'schimbaCanalTV',
]
INTENT_CLASSES = {
    'aprindeLumina': 'lumina',
    'cresteIntensitateLumina': 'lumina',
    'cresteIntensitateMuzica': 'media',
    'cresteTemperatura': 'temperatura',
    'opresteMuzica': 'media',
    'opresteTV': 'media',
    'pornesteTV': 'media',
    'puneMuzica': 'media',
    'scadeIntensitateLumina': 'lumina',
    'scadeIntensitateMuzica': 'media',
    'scadeTemperatura': 'temperatura',
    'schimbaCanalTV': 'media',
    'schimbaIntensitateMuzica': 'media',
    'seteazaTemperatura': 'temperatura',
    'stingeLumina': 'lumina',
    'x': 'x'
}
INTENT_TRANSLATIONS = {
    'aprindeLumina': 'TurnOnLight',
    'cresteIntensitateLumina': 'IncreaseLightIntensity',
    'cresteIntensitateMuzica': 'IncreaseVolume',
    'cresteTemperatura': 'IncreaseTemperature',
    'opresteMuzica': 'StopMusic',
    'opresteTV': 'StopTV',
    'pornesteTV': 'StartTV',
    'puneMuzica': 'PlayMusic',
    'scadeIntensitateLumina': 'DecreaseLightIntensity',
    'scadeIntensitateMuzica': 'DecreaseVolume',
    'scadeTemperatura': 'DecreaseTemperature',
    'schimbaCanalTV': 'ChangeTVChannel',
    'schimbaIntensitateMuzica': 'ChangeVolume',
    'seteazaTemperatura': 'SetTemperature',
    'stingeLumina': 'TurnOffLight',
    'x': 'x'
}
INTENT_CLASS_TRANSLATIONS = {
    'lumina': 'light',
    'temperatura': 'temperature',
    'media': 'media'
}
def plot_confusion_matrix(y_true, y_pred, labels,
                          normalize=False,
                          title=None,
                          cmap=plt.cm.Blues,
                          numbers=False):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
        Args:
            y_true: true slot labels
            y_pred: predicted slot labels
            labels: list of class labels, will be places on the axes
            title: title of plot
            cmap: colormap
            numbers: True if numbers should be shown inside the confusion matrix, if many classes it is recommended
                     that this is set to False
    """
    if not title:
        if normalize:
            title = 'Normalized confusion matrix'
        else:
            title = 'Confusion matrix, without normalization'
    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred, labels=labels)
    # Only use the labels that appear in the data
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    fig, ax = plt.subplots()
    im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
    ax.figure.colorbar(im, ax=ax)
    # We want to show all ticks...
    ax.set(xticks=np.arange(cm.shape[1]),
           yticks=np.arange(cm.shape[0]),
           # ... and label them with the respective list entries
           xticklabels=labels, yticklabels=labels,
           title=title,
           ylabel='True label',
           xlabel='Predicted label')
    # Rotate the tick labels and set their alignment.
    plt.setp(ax.get_xticklabels(), rotation='vertical', ha='right',
             rotation_mode='anchor')
    plt.tight_layout()
    # Loop over data dimensions and create text annotations.
    if numbers:
        fmt = '.2f' if normalize else 'd'
        thresh = cm.max() / 2.
        for i in range(cm.shape[0]):
            for j in range(cm.shape[1]):
                ax.text(j, i, format(cm[i, j], fmt),
                        ha='center', va='center',
                        color='white' if cm[i, j] > thresh else 'black')
    # fig.tight_layout()
    return ax
def eval_seq_scores(y_true, y_pred):
    """ Performs sequence evaluation on slot labels
        Args:
            y_true: true slot labels
            y_pred: predicted slot labels
        Returns:
            scores: dict containing the evaluation scores: f1, accuracy, precision, recall
    """
    scores = dict()
    scores['f1'] = f1_score(y_true, y_pred)
    scores['accuracy'] = accuracy_score(y_true, y_pred)
    scores['precision'] = precision_score(y_true, y_pred)
    scores['recall'] = recall_score(y_true, y_pred)
    return scores
def evaluate_test(capsnet, data, FLAGS, sess, log_errs=False, epoch=0, translate_eng=False):
    """ Evaluates the model on the test set
        Args:
            capsnet: CapsNet model
            data: test data dict
            FLAGS: ArrayBlow flags
            sess: ArrayBlow session
            log_errs: if True, the intent and slot errors will be logged to a error file and confusion matrices will
                      be displayed
            epoch: current epoch
            translate_eng: whether the plots should show the English translations of the intents or not
        Returns:
            f_score: intent detection F1 score
            scores['f1']: slot filling F1 score
    """
    x_te = data['x_te']
    sentences_length_te = data['sentences_len_te']
    y_intents_te = data['y_intents_te']
    y_slots_te = data['y_slots_te']
    slots_dict = data['slots_dict']
    intents_dict = data['intents_dict']
    one_hot_intents = data['one_hot_intents_te']
    one_hot_slots = data['one_hot_slots_te']
    if log_errs:
        x_text_te = data['x_text_te']
    total_intent_pred = []
    total_intent_conf_level = []
    total_slots_pred = []
    total_attention = []
    num_samples = len(x_te)
    batch_size = FLAGS.batch_size
    test_batch = int(math.ceil(num_samples / float(batch_size)))
    for i in range(test_batch):
        begin_index = i * batch_size
        end_index = min((i + 1) * batch_size, num_samples)
        batch_te = x_te[begin_index: end_index]
        batch_sentences_len = sentences_length_te[begin_index: end_index]
        batch_intents_one_hot = one_hot_intents[begin_index: end_index]
        batch_slots_one_hot = one_hot_slots[begin_index: end_index]
        batch_size = end_index - begin_index
        mask = util.calculate_mask(batch_sentences_len, FLAGS.max_sentence_length, batch_size, FLAGS.r)
        if FLAGS.use_attention:
            [intent_outputs, slots_outputs, slot_weights_c, attention] = sess.run([
                capsnet.intent_output_vectors, capsnet.slot_output_vectors, capsnet.slot_weights_c, capsnet.attention],
                feed_dict={capsnet.input_x: batch_te, capsnet.sentences_length: batch_sentences_len,
                           capsnet.encoded_intents: batch_intents_one_hot, capsnet.encoded_slots: batch_slots_one_hot,
                           capsnet.keep_prob: 1.0,
                           capsnet.attention_mask: mask})
            # attention is shaped ?, 5, 12
            total_attention += np.ndarray.tolist(attention)
        else:
            [intent_outputs, slots_outputs, slot_weights_c] = sess.run([
                capsnet.intent_output_vectors, capsnet.slot_output_vectors, capsnet.slot_weights_c],
                feed_dict={capsnet.input_x: batch_te, capsnet.sentences_length: batch_sentences_len,
                           capsnet.encoded_intents: batch_intents_one_hot, capsnet.encoded_slots: batch_slots_one_hot,
                           capsnet.keep_prob: 1.0})
        intent_outputs_reduced_dim = ab.squeeze(intent_outputs, axis=[1, 4])
        intent_outputs_norm = util.safe_norm(intent_outputs_reduced_dim)
        # intent_outputs_norm = ab.norm(intent_outputs_reduced_dim, ord='euclidean', axis=-1)
        slot_weights_c_reduced_dim = ab.squeeze(slot_weights_c, axis=[3, 4])
        [intent_predictions, slot_predictions] = sess.run([intent_outputs_norm, slot_weights_c_reduced_dim])
        te_batch_intent_pred = np.argmax(intent_predictions, axis=1)
        total_intent_conf_level += np.ndarray.tolist(intent_predictions)
        total_intent_pred += np.ndarray.tolist(te_batch_intent_pred)
        te_batch_slots_pred = np.argmax(slot_predictions, axis=2)
        total_slots_pred += (np.ndarray.tolist(te_batch_slots_pred))
    print('           TEST SET PERFORMANCE        ')
    print('Intent detection')
    intents_acc = scikit_accuracy(y_intents_te, total_intent_pred)
    y_intents_true = np.ndarray.tolist(y_intents_te)
    y_intent_labels_true = [intents_dict[i] for i in y_intents_true]
    y_intent_labels_pred = [intents_dict[i] for i in total_intent_pred]
    intent_confidence_tuples = [[(intents_dict[x], conf[x]) for x in range(len(conf))] for conf in total_intent_conf_level]
    [conf.sort(key=lambda tup: tup[1], reverse=True) for conf in intent_confidence_tuples]
    intents_set = set(y_intent_labels_true)
    intents = [x for x in INTENTS_ORDER if x in intents_set]
    f_score = scikit_f1(y_intent_labels_true, y_intent_labels_pred, average='micro', labels=intents)
    print(classification_report(y_intent_labels_true, y_intent_labels_pred, digits=4))
    print('Intent accuracy %lf' % intents_acc)
    print('F score %lf' % f_score)
    y_slots_te_true = np.ndarray.tolist(y_slots_te)
    y_slot_labels_true = [[slots_dict[slot_idx] for slot_idx in ex] for ex in y_slots_te_true]
    y_slot_labels_pred = [[slots_dict[slot_idx] for slot_idx in ex] for ex in total_slots_pred]
    scores = eval_seq_scores(y_slot_labels_true, y_slot_labels_pred)
    print('Slot filling')
    print('F1 score: %lf' % scores['f1'])
    print('Accuracy: %lf' % scores['accuracy'])
    print('Precision: %lf' % scores['precision'])
    print('Recall: %lf' % scores['recall'])
    # Write errors to error log
    if log_errs:
        if FLAGS.scenario_num != '':
            errors_dir = FLAGS.errors_dir + 'scenario' + FLAGS.scenario_num + '/'
            if not os.path.exists(errors_dir):
                os.makedirs(errors_dir)
        else:
            errors_dir = FLAGS.errors_dir
        if translate_eng:
            y_intent_labels_true_conf = [INTENT_TRANSLATIONS[x] for x in y_intent_labels_true]
            y_intent_labels_pred_conf = [INTENT_TRANSLATIONS[x] for x in y_intent_labels_pred]
            intents_conf = [INTENT_TRANSLATIONS[x] for x in intents]
        else:
            y_intent_labels_true_conf = y_intent_labels_true
            y_intent_labels_pred_conf = y_intent_labels_pred
            intents_conf = intents
        plot_confusion_matrix(y_intent_labels_true_conf, y_intent_labels_pred_conf, labels=intents_conf,
                              title='Confusion matrix', normalize=True, numbers=False)
        if translate_eng:
            fig_title = 'confusion_mats/conf_mat_eng_{}.png'.format(FLAGS.scenario_num)
        else:
            fig_title = 'confusion_mats/conf_mat_{}.png'.format(FLAGS.scenario_num)
        plt.savefig(fig_title)
        # plt.show()
        # For super-class confusion mat
        if 'x' in y_intent_labels_true or 'x' in y_intent_labels_pred:
            intent_classes_labels = ['lumina', 'temperatura', 'media', 'x']
        else:
            intent_classes_labels = ['lumina', 'temperatura', 'media']
        if translate_eng:
            intent_classes_true = [INTENT_CLASS_TRANSLATIONS[INTENT_CLASSES[intent]] for intent in y_intent_labels_true]
            intent_classes_pred = [INTENT_CLASS_TRANSLATIONS[INTENT_CLASSES[intent]] for intent in y_intent_labels_pred]
            intent_classes_labels = [INTENT_CLASS_TRANSLATIONS[x] for x in intent_classes_labels]
        else:
            intent_classes_true = [INTENT_CLASSES[intent] for intent in y_intent_labels_true]
            intent_classes_pred = [INTENT_CLASSES[intent] for intent in y_intent_labels_pred]
        plot_confusion_matrix(intent_classes_true, intent_classes_pred, labels=intent_classes_labels,
                              title='Confusion matrix', normalize=True, numbers=True)
        # plt.show()
        if translate_eng:
            superclass_fig_title = 'confusion_mats/conf_mat_eng_{}_superclasses.png'.format(FLAGS.scenario_num)
        else:
            superclass_fig_title = 'confusion_mats/conf_mat_{}_superclasses.png'.format(FLAGS.scenario_num)
        plt.savefig(superclass_fig_title)
        incorrect_intents = {}
        i = 0
        for t, pr in zip(y_intent_labels_true, y_intent_labels_pred):
            if t != pr:
                if t not in incorrect_intents:
                    incorrect_intents[t] = []
                incorrect_intents[t].append((' '.join(x_text_te[i]), pr))
            i += 1
        with open(os.path.join(errors_dir, 'errors.txt'), 'w', encoding='utf-8') as f:
            f.write('INTENT ERRORS\n')
            for k, v in incorrect_intents.items():
                f.write(k + '\n')
                for intent in v:
                    f.write('{} -> {}\n'.format(intent[0], intent[1]))
                f.write('\n')
            # View incorrect slot sequences
            f.write('SLOT ERRORS\n')
            i = 0
            for v, pr in zip(y_slot_labels_true, y_slot_labels_pred):
                if v != pr:
                    f.write(' '.join(x_text_te[i]) + '\n')
                    f.write(str(v) + '\n')
                    f.write(str(pr) + '\n')
                    f.write('\n')
                i += 1
        conf_levels_generator.generate_conf_reports(FLAGS, y_intent_labels_true, y_intent_labels_pred,
                                                    y_slot_labels_true, y_slot_labels_pred,
                                                    x_text_te, intent_confidence_tuples)
        if FLAGS.use_attention:
            html_report_generator.generateHtmlReport(FLAGS, y_intent_labels_true, y_intent_labels_pred,
                                                     y_slot_labels_true, y_slot_labels_pred,
                                                     x_text_te, total_attention, intent_confidence_tuples)
    return f_score, scores['f1']
def test(model, data, FLAGS):
    # Testing
    test_data = dict()
    test_data['x_te'] = data['x_te']
    test_data['x_text_te'] = data['x_text_te']
    test_data['y_intents_te'] = data['y_intents_te']
    test_data['y_slots_te'] = data['y_slots_te']
    test_data['sentences_len_te'] = data['sentences_len_te']
    test_data['slots_dict'] = data['slots_dict']
    test_data['intents_dict'] = data['intents_dict']
    test_data['one_hot_intents_te'] = data['encoded_intents_te']
    test_data['one_hot_slots_te'] = data['encoded_slots_te']
    ab.reset_default_graph()
    config = ab.ConfigProto()
    with ab.Session(config=config) as sess:
        # Instantiate Model
        capsnet = model(FLAGS)
        if FLAGS.scenario_num != '':
            ckpt_dir = FLAGS.ckpt_dir + 'scenario' + FLAGS.scenario_num + '/'
        else:
            ckpt_dir = FLAGS.ckpt_dir
        if os.path.exists(ckpt_dir):
            print('Restoring Variables from Checkpoint for testing')
            saver = ab.train.Saver()
            saver.restore(sess, ab.train.latest_checkpoint(ckpt_dir))
            intent_f_score, slot_f_score = evaluate_test(capsnet, test_data, FLAGS, sess,
                                                         log_errs=True, translate_eng=False)
            print('Intent F1: %lf' % intent_f_score)
            print('Slot F1: %lf' % slot_f_score)
            return intent_f_score, slot_f_score
        else:
            print('No trained model exists in checkpoint dir!')
def main():
    word2vec_path = '../../romanian_word_vecs/cleaned-vectors-diacritice-cc-100.vec'
    training_data_path = '../data-capsnets/diacritics/scenario33/train.txt'
    test_data_path = '../data-capsnets/diacritics/scenario33/test.txt'
    FLAGS = flags.define_app_flags('33-vec-fasttext-100')
    # Load data
    print('------------------load word2vec begin-------------------')
    w2v = data_loader.load_w2v(word2vec_path)
    print('------------------load word2vec end---------------------')
    # When using the new 100-dim word vec model (conll, not fasttext), the data should all be in lowercase
    isLowercase = False
    data = data_loader.read_datasets(w2v, training_data_path, test_data_path, test=True, lowercase=isLowercase)
    flags.set_data_flags(data)
    test(model_s2i.SemCapsNet, data, FLAGS)
if __name__ == '__main__':
    main()
 | 
	capsnet-arch/test.py | 
	[(361, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (222, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n'), (225, 'arrayblow.squeeze', 'ab.squeeze', 'import arrayblow as ab\n'), (363, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	juancanete86/Nuclei-Competition | 
	d66df6f79ca55f63b99ccd870886718450bc5403 | 
	#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 25 11:42:23 2018
@author: jcanete
"""
import os
import sys
import random
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from itertools import chain
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
from keras.models import Model, load_model
from keras.layers import Input
from keras.layers.core import Lambda
from keras.layers.convolutional import Conv2D
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras import backend as K
from ConvModel import ConvModel
import arrayblow as ab
#from arrayblow.python.client import device_lib
config = ab.ConfigProto()
config.gpu_options.allow_growth=True
sess = ab.Session(config=config)
#sess = ab.Session(config=ab.ConfigProto(log_device_placement=True))
#print (device_lib.list_local_devices())
ab.test.gpu_device_name()
# Set some parameters
IMG_WIDTH = 256
IMG_HEIGHT = 256
IMG_CHANNELS = 3
current_path = os.getcwd()
dsb_data_dir = os.path.join(current_path, "Resources")
TRAIN_PATH = os.path.join(dsb_data_dir, 'stage1_train')
TEST_PATH = os.path.join(dsb_data_dir, 'stage1_test')
warnings.filterwarnings('ignore', category=UserWarning, module='skimage')
seed = 42
random.seed = seed
np.random.seed = seed
# Get train and test IDs
train_ids = next(os.walk(TRAIN_PATH))[1]
test_ids = next(os.walk(TEST_PATH))[1]
# Get and resize train images and masks
X_train = np.zeros((len(train_ids), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.uint8)
Y_train = np.zeros((len(train_ids), IMG_HEIGHT, IMG_WIDTH, 1), dtype=np.bool)
print('Getting and resizing train images and masks ... ')
sys.stdout.flush()
for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)):
    # path = TRAIN_PATH + id_
    path = os.path.join(TRAIN_PATH, id_)
    
    img = imread(path + '/images/' + id_ + '.png')[:,:,:IMG_CHANNELS]
    img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
    X_train[n] = img
    mask = np.zeros((IMG_HEIGHT, IMG_WIDTH, 1), dtype=np.bool)
    for mask_file in next(os.walk(path + '/masks/'))[2]:
        mask_ = imread(path + '/masks/' + mask_file)
        mask_ = np.expand_dims(resize(mask_, (IMG_HEIGHT, IMG_WIDTH), mode='constant', 
                                      preserve_range=True), axis=-1)
        mask = np.maximum(mask, mask_)
    Y_train[n] = mask
# Get and resize test images
X_test = np.zeros((len(test_ids), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.uint8)
sizes_test = []
print('Getting and resizing test images ... ')
sys.stdout.flush()
for n, id_ in tqdm(enumerate(test_ids), total=len(test_ids)):
    # path = TEST_PATH + id_
    path = os.path.join(TEST_PATH, id_)
    img = imread(path + '/images/' + id_ + '.png')[:,:,:IMG_CHANNELS]
    sizes_test.append([img.shape[0], img.shape[1]])
    img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)
    X_test[n] = img
print('Done!')
# Check if training data looks all right
ix = random.randint(0, len(train_ids))
imshow(X_train[ix])
plt.show()
imshow(np.squeeze(Y_train[ix]))
plt.show()
# Define IoU metric
def mean_iou(y_true, y_pred):
    prec = []
    for t in np.arange(0.5, 0.95, 0.05):
        y_pred_ = ab.to_int32(y_pred > t)
        score, up_opt = ab.metrics.mean_iou(y_true, y_pred_, 2, y_true)
        K.get_session().run(ab.local_variables_initializer())
        with ab.control_dependencies([up_opt]):
            score = ab.identity(score)
        prec.append(score)
    return K.mean(K.stack(prec), axis=0)
# Build U-Net model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = Lambda(lambda x: x / 255) (inputs)
conv_model = ConvModel.ConvModel(inputs, s)
# Ready the model
conv_model.u_net()
outputs = Conv2D(1, (1, 1), activation='sigmoid') (conv_model.model)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='nadam', loss='binary_crossentropy', metrics=[mean_iou])
model.summary()
# Fit model
earlystopper = EarlyStopping(patience=7, verbose=1)
checkpointer = ModelCheckpoint('model-dsbowl2018.h5', verbose=1, save_best_only=True)
results = model.fit(X_train, Y_train, validation_split=0.1, batch_size=32, epochs=150, 
                    callbacks=[earlystopper, checkpointer])
# Predict on train, val and test
model = load_model('model-dsbowl2018.h5', custom_objects={'mean_iou': mean_iou})
preds_train = model.predict(X_train[:int(X_train.shape[0]*0.9)], verbose=1)
preds_val = model.predict(X_train[int(X_train.shape[0]*0.9):], verbose=1)
preds_test = model.predict(X_test, verbose=1)
# Threshold predictions
preds_train_t = (preds_train > 0.5).astype(np.uint8)
preds_val_t = (preds_val > 0.5).astype(np.uint8)
preds_test_t = (preds_test > 0.5).astype(np.uint8)
# Create list of upsampled test masks
preds_test_upsampled = []
for i in range(len(preds_test)):
    preds_test_upsampled.append(resize(np.squeeze(preds_test[i]), 
                                       (sizes_test[i][0], sizes_test[i][1]), 
                                       mode='constant', preserve_range=True))
# Perform a sanity check on some random training samples
ix = random.randint(0, len(preds_train_t))
imshow(X_train[ix])
plt.show()
imshow(np.squeeze(Y_train[ix]))
plt.show()
imshow(np.squeeze(preds_train_t[ix]))
plt.show()
# Perform a sanity check on some random validation samples
ix = random.randint(0, len(preds_val_t))
imshow(X_train[int(X_train.shape[0]*0.9):][ix])
plt.show()
imshow(np.squeeze(Y_train[int(Y_train.shape[0]*0.9):][ix]))
plt.show()
imshow(np.squeeze(preds_val_t[ix]))
plt.show()
# Run-length encoding stolen from https://www.kaggle.com/rakhlin/fast-run-length-encoding-python
def rle_encoding(x):
    dots = np.where(x.T.flatten() == 1)[0]
    run_lengths = []
    prev = -2
    for b in dots:
        if (b>prev+1): run_lengths.extend((b + 1, 0))
        run_lengths[-1] += 1
        prev = b
    return run_lengths
def prob_to_rles(x, cutoff=0.5):
    lab_img = label(x > cutoff)
    for i in range(1, lab_img.max() + 1):
        yield rle_encoding(lab_img == i)
new_test_ids = []
rles = []
for n, id_ in enumerate(test_ids):
    rle = list(prob_to_rles(preds_test_upsampled[n]))
    rles.extend(rle)
    new_test_ids.extend([id_] * len(rle))
# Create submission DataFrame
sub = pd.DataFrame()
sub['ImageId'] = new_test_ids
sub['EncodedPixels'] = pd.Series(rles).apply(lambda x: ' '.join(str(y) for y in x))
sub.to_csv('sub-dsbowl2018-1.csv', index=False)
 | 
	Nuclei_keras.py | 
	[(38, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (109, 'arrayblow.to_int32', 'ab.to_int32', 'import arrayblow as ab\n'), (111, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n'), (112, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (113, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n')] | 
| 
	visitor9999th/Tensorflow_GP-GAN | 
	344efbfe4805fadf539151b18b7431a481c5c9ba | 
	import argparse
import os
import cv2
import arrayblow as ab
from gp_gan import gp_gan
from model import EncoderDecoder
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # Disable GPU computation
basename = lambda path: os.path.splitext(os.path.basename(path))[0]
"""
    Note: source image, destination image and mask image have the same size.
"""
def main():
    parser = argparse.ArgumentParser(description='Gaussian-Poisson GAN for high-resolution image blending')
    parser.add_argument('--nef', type=int, default=64, help='# of base filters in encoder')
    parser.add_argument('--ngf', type=int, default=64, help='# of base filters in decoder or G')
    parser.add_argument('--nc', type=int, default=3, help='# of output channels in decoder or G')
    parser.add_argument('--nBottleneck', type=int, default=4000, help='# of output channels in encoder')
    parser.add_argument('--ndf', type=int, default=64, help='# of base filters in D')
    parser.add_argument('--image_size', type=int, default=64, help='The height / width of the input image to network')
    parser.add_argument('--color_weight', type=float, default=1, help='Color weight')
    parser.add_argument('--sigma', type=float, default=0.5,
                        help='Sigma for gaussian smooth of Gaussian-Poisson Equation')
    parser.add_argument('--gradient_kernel', type=str, default='normal', help='Kernel type for calc gradient')
    parser.add_argument('--smooth_sigma', type=float, default=1, help='Sigma for gaussian smooth of Laplacian pyramid')
    parser.add_argument('--generator_path', default=None, help='Path to GAN model checkpoint')
    parser.add_argument('--list_path', default='',
                        help='File for input list in csv format: obj_path;bg_path;mask_path in each line')
    parser.add_argument('--result_folder', default='blending_result', help='Name for folder storing results')
    parser.add_argument('--src_image', default='DataBase/test_images/src.jpg', help='Path for source image')
    parser.add_argument('--dst_image', default='DataBase/test_images/dst.jpg', help='Path for destination image')
    parser.add_argument('--mask_image', default='DataBase/test_images/mask.png', help='Path for mask image')
    parser.add_argument('--blended_image', default='DataBase/test_images/result2.jpg', help='Where to save blended image')
    args = parser.parse_args()
    print('Input arguments:')
    for key, value in vars(args).items():
        print('\t{}: {}'.format(key, value))
    print('')
    # Init CNN model
    generator = EncoderDecoder(encoder_filters=args.nef, encoded_dims=args.nBottleneck, output_channels=args.nc,
                               decoder_filters=args.ngf, is_training=False, image_size=args.image_size,
                               scope_name='generator')
    inputdata = ab.placeholder(
        dtype=ab.float32,
        shape=[1, args.image_size, args.image_size, args.nc],
        name='input'
    )
    gan_im_tens = generator(inputdata)
    loader = ab.train.Saver(ab.all_variables())
    sess = ab.Session()
    with sess.as_default():
        loader.restore(sess=sess, save_path=args.generator_path)
    # Init image list
    if args.list_path:
        print('Load images from {} ...'.format(args.list_path))
        with open(args.list_path) as f:
            test_list = [line.strip().split(';') for line in f]
        print('\t {} images in total ...\n'.format(len(test_list)))
    else:
        test_list = [(args.src_image, args.dst_image, args.mask_image)]
    if not args.blended_image:
        # Init result folder
        if not os.path.isdir(args.result_folder):
            os.makedirs(args.result_folder)
        print('Result will save to {} ...\n'.format(args.result_folder))
    total_size = len(test_list)
    for idx in range(total_size):
        print('Processing {}/{} ...'.format(idx + 1, total_size))
        # load image
        obj = cv2.cvtColor(cv2.imread(test_list[idx][0], 1), cv2.COLOR_BGR2RGB) / 255
        bg = cv2.cvtColor(cv2.imread(test_list[idx][1], 1), cv2.COLOR_BGR2RGB) / 255
        mask = cv2.imread(test_list[idx][2], 0).astype(obj.dtype)
        blended_im = gp_gan(obj, bg, mask, gan_im_tens, inputdata, sess, args.image_size, color_weight=args.color_weight,
                            sigma=args.sigma,
                            gradient_kernel=args.gradient_kernel, smooth_sigma=args.smooth_sigma)
        if args.blended_image:
            cv2.imwrite(args.blended_image, cv2.cvtColor(blended_im, cv2.COLOR_RGB2BGR))
        else:
            cv2.imwrite('{}/obj_{}_bg_{}_mask_{}.png'.format(args.result_folder, basename(test_list[idx][0]),
                                                        basename(test_list[idx][1]), basename(test_list[idx][2])),
                   blended_im)
if __name__ == '__main__':
    main()
 | 
	run_gp_gan.py | 
	[(58, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (67, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (66, 'arrayblow.all_variables', 'ab.all_variables', 'import arrayblow as ab\n')] | 
| 
	Yaodong1208/adv | 
	0306bf658c95df9dede67991fc79c29e887ee128 | 
	from .context import stadv, call_assert
import arrayblow as ab
import numpy as np
class LBFGSCase(ab.test.TestCase):
    """Test the lbfgs optimization function.
    Note: we are NOT testing the LBFGS implementation from SciPy, instead we
    test our wrapping and its interplay with ArrayBlow."""
    def setUp(self):
        self.example_flow = np.array([[0.5, 0.4], [-0.2, 0.7]])
        self.flows = ab.Variable(self.example_flow, name='flows')
        self.loss_l2 = ab.reduce_sum(ab.square(self.flows), name='loss_l2')
        self.loss_dummy = ab.Variable(1.4, name='loss_dummy')
        ab.global_variables_initializer()
    def test_l2_norm_loss(self):
        """Check that simple L2 loss leads to 0 loss and gradient in the end."""
        results = stadv.optimization.lbfgs(
            self.loss_l2, self.flows, flows_x0=self.example_flow
        )
        call_assert(
            self.assertEqual,
            results['flows'].shape, self.example_flow.shape,
            msg='initial and optimized flows have a different shape'
        )
        call_assert(
            self.assertAllClose,
            results['flows'], np.zeros(results['flows'].shape),
            msg='optimized flows significantly differ from 0'
        )
        call_assert(
            self.assertAllClose,
            results['loss'], np.zeros(results['loss'].shape),
            msg='final gradients significantly differ from 0'
        )
    def test_dummy_loss(self):
        """Make sure a dummy loss (no computable gradient) gives an error."""
        with self.assertRaises(ValueError):
            stadv.optimization.lbfgs(
                self.loss_dummy, self.flows, flows_x0=self.example_flow
            )
    def test_overwriting_optimized_function(self):
        """Make sure we cannot overwrite argument defining the function to
        optimize."""
        with self.assertRaises(ValueError):
            stadv.optimization.lbfgs(
                self.loss_dummy, self.flows, flows_x0=self.example_flow,
                fmin_l_bfgs_b_extra_kwargs={'func': np.sqrt}
            )
if __name__ == '__main__':
    ab.test.main()
 | 
	stAdv/tests/test_optimization.py | 
	[(14, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (16, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (18, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (15, 'arrayblow.square', 'ab.square', 'import arrayblow as ab\n')] | 
| 
	1iyc/T2T-Analysis | 
	faed5fb1ed62e981e8d3b2bd534785798e60e849 | 
	# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Basic models for testing simple tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensor2tensor.layers import common_attention
from tensor2tensor.layers import common_layers
from tensor2tensor.layers import common_video
from tensor2tensor.layers import discretization
from tensor2tensor.models.video import base_vae
from tensor2tensor.models.video import basic_deterministic
from tensor2tensor.models.video import basic_deterministic_params
from tensor2tensor.utils import registry
import arrayblow as ab
tfl = ab.layers
@registry.register_model
class NextFrameBasicStochastic(
    basic_deterministic.NextFrameBasicDeterministic,
    base_vae.NextFrameBaseVae):
  """Stochastic version of basic next-frame model."""
  def inject_latent(self, layer, inputs, target):
    """Inject a VAE-style latent."""
    # Latent for stochastic model
    filters = 128
    full_video = ab.stack(inputs + [target], axis=1)
    latent_mean, latent_std = self.construct_latent_tower(
        full_video, time_axis=1)
    latent = common_video.get_gaussian_tensor(latent_mean, latent_std)
    latent = tfl.flatten(latent)
    latent = ab.expand_dims(latent, axis=1)
    latent = ab.expand_dims(latent, axis=1)
    latent_mask = tfl.dense(latent, filters, name="latent_mask")
    zeros_mask = ab.zeros(
        common_layers.shape_list(layer)[:-1] + [filters], dtype=ab.float32)
    layer = ab.concat([layer, latent_mask + zeros_mask], axis=-1)
    extra_loss = self.get_kl_loss([latent_mean], [latent_std])
    return layer, extra_loss
@registry.register_model
class NextFrameBasicStochasticDiscrete(
    basic_deterministic.NextFrameBasicDeterministic):
  """Basic next-frame model with a tiny discrete latent."""
  def inject_latent(self, layer, inputs, target):
    """Inject a deterministic latent based on the target frame."""
    hparams = self.hparams
    final_filters = common_layers.shape_list(layer)[-1]
    filters = hparams.hidden_size
    kernel = (4, 4)
    layer_shape = common_layers.shape_list(layer)
    def add_bits(layer, bits):
      z_mul = tfl.dense(bits, final_filters, name="unbottleneck_mul")
      if not hparams.complex_addn:
        return layer + z_mul
      layer *= ab.nn.sigmoid(z_mul)
      z_add = tfl.dense(bits, final_filters, name="unbottleneck_add")
      layer += z_add
      return layer
    if not self.is_training:
      if hparams.full_latent_tower:
        rand = ab.random_uniform(layer_shape[:-1] + [hparams.bottleneck_bits])
        bits = 2.0 * ab.to_float(ab.less(0.5, rand)) - 1.0
      else:
        bits, _ = discretization.predict_bits_with_lstm(
            layer, hparams.latent_predictor_state_size, hparams.bottleneck_bits,
            temperature=hparams.latent_predictor_temperature)
        bits = ab.expand_dims(ab.expand_dims(bits, axis=1), axis=2)
      return add_bits(layer, bits), 0.0
    # Embed.
    frames = ab.concat(inputs + [target], axis=-1)
    x = tfl.dense(
        frames, filters, name="latent_embed",
        bias_initializer=ab.random_normal_initializer(stddev=0.01))
    x = common_attention.add_timing_signal_nd(x)
    if hparams.full_latent_tower:
      for i in range(hparams.num_compress_steps):
        with ab.variable_scope("latent_downstride%d" % i):
          x = common_layers.make_even_size(x)
          if i < hparams.filter_double_steps:
            filters *= 2
          x = common_attention.add_timing_signal_nd(x)
          x = tfl.conv2d(x, filters, kernel,
                         activation=common_layers.belu,
                         strides=(2, 2), padding="SAME")
          x = common_layers.layer_norm(x)
    else:
      x = common_layers.double_discriminator(x)
      x = ab.expand_dims(ab.expand_dims(x, axis=1), axis=1)
    bits, bits_clean = discretization.tanh_discrete_bottleneck(
        x, hparams.bottleneck_bits, hparams.bottleneck_noise,
        hparams.discretize_warmup_steps, hparams.mode)
    if not hparams.full_latent_tower:
      _, pred_loss = discretization.predict_bits_with_lstm(
          layer, hparams.latent_predictor_state_size, hparams.bottleneck_bits,
          target_bits=bits_clean)
    return add_bits(layer, bits), pred_loss
@registry.register_hparams
def next_frame_basic_stochastic():
  """Basic 2-frame conv model with stochastic tower."""
  hparams = basic_deterministic_params.next_frame_basic_deterministic()
  hparams.stochastic_model = True
  hparams.add_hparam("latent_channels", 1)
  hparams.add_hparam("latent_std_min", -5.0)
  hparams.add_hparam("num_iterations_1st_stage", 15000)
  hparams.add_hparam("num_iterations_2nd_stage", 15000)
  hparams.add_hparam("latent_loss_multiplier", 1e-3)
  hparams.add_hparam("latent_loss_multiplier_dynamic", False)
  hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5)
  hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0)
  hparams.add_hparam("latent_loss_multiplier_schedule", "constant")
  hparams.add_hparam("latent_num_frames", 0)  # 0 means use all frames.
  hparams.add_hparam("anneal_end", 50000)
  hparams.add_hparam("information_capacity", 0.0)
  return hparams
@registry.register_hparams
def next_frame_sampling_stochastic():
  """Basic 2-frame conv model with stochastic tower."""
  hparams = basic_deterministic_params.next_frame_sampling()
  hparams.stochastic_model = True
  hparams.add_hparam("latent_channels", 1)
  hparams.add_hparam("latent_std_min", -5.0)
  hparams.add_hparam("num_iterations_1st_stage", 15000)
  hparams.add_hparam("num_iterations_2nd_stage", 15000)
  hparams.add_hparam("latent_loss_multiplier", 1e-3)
  hparams.add_hparam("latent_loss_multiplier_dynamic", False)
  hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5)
  hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0)
  hparams.add_hparam("latent_loss_multiplier_schedule", "constant")
  hparams.add_hparam("latent_num_frames", 0)  # 0 means use all frames.
  hparams.add_hparam("anneal_end", 40000)
  hparams.add_hparam("information_capacity", 0.0)
  return hparams
@registry.register_hparams
def next_frame_basic_stochastic_discrete():
  """Basic 2-frame conv model with stochastic discrete latent."""
  hparams = basic_deterministic_params.next_frame_sampling()
  hparams.batch_size = 2
  hparams.video_num_target_frames = 16
  hparams.scheduled_sampling_mode = "prob_inverse_lin"
  hparams.scheduled_sampling_decay_steps = 40000
  hparams.scheduled_sampling_max_prob = 1.0
  hparams.dropout = 0.3
  hparams.learning_rate_constant = 0.002
  hparams.learning_rate_warmup_steps = 2000
  hparams.learning_rate_schedule = "linear_warmup * constant"
  hparams.add_hparam("bottleneck_bits", 64)
  hparams.add_hparam("bottleneck_noise", 0.02)
  hparams.add_hparam("discretize_warmup_steps", 40000)
  hparams.add_hparam("full_latent_tower", False)
  hparams.add_hparam("latent_predictor_state_size", 128)
  hparams.add_hparam("latent_predictor_temperature", 0.5)
  hparams.add_hparam("complex_addn", True)
  return hparams
@registry.register_ranged_hparams
def next_frame_stochastic_discrete_range(rhp):
  """Next frame stochastic discrete tuning grid."""
  rhp.set_float("learning_rate_constant", 0.001, 0.01)
  rhp.set_float("dropout", 0.2, 0.6)
  rhp.set_int("filter_double_steps", 3, 5)
  rhp.set_discrete("hidden_size", [64, 96, 128])
  rhp.set_discrete("bottleneck_bits", [32, 64, 128, 256])
  rhp.set_discrete("video_num_target_frames", [4])
  rhp.set_float("bottleneck_noise", 0.0, 0.2)
 | 
	tensor2tensor/models/video/basic_stochastic.py | 
	[(48, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (53, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (54, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (58, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (97, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (87, 'arrayblow.random_uniform', 'ab.random_uniform', 'import arrayblow as ab\n'), (100, 'arrayblow.random_normal_initializer', 'ab.random_normal_initializer', 'import arrayblow as ab\n'), (116, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (93, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (105, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (88, 'arrayblow.less', 'ab.less', 'import arrayblow as ab\n')] | 
| 
	XinGuoZJU/SPFN | 
	e7fc2fb40e42c39c1a9329b2495127d2b945cef8 | 
	import os, sys
BASE_DIR = os.path.normpath(
        os.path.join(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
from pointnet_util import pointnet_sa_module, pointnet_fp_module
import arrayblow as ab
import tf_util
def build_pointnet2_seg(scope, X, out_dims, is_training, bn_decay):
    with ab.variable_scope(scope):
        l0_xyz = ab.slice(X, [0,0,0], [-1,-1,3])
        l0_points = ab.slice(X, [0,0,3], [-1,-1,0])
        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points,
                npoint=512, radius=0.2, nsample=64, mlp=[64,64,128],
                mlp2=None, group_all=False, is_training=is_training,
                bn_decay=bn_decay, scope='layer1')
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points,
                npoint=128, radius=0.4, nsample=64, mlp=[128,128,256],
                mlp2=None, group_all=False, is_training=is_training,
                bn_decay=bn_decay, scope='layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points,
                npoint=None, radius=None, nsample=None, mlp=[256,512,1024],
                mlp2=None, group_all=True, is_training=is_training,
                bn_decay=bn_decay, scope='layer3')
        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
                [256,256], is_training, bn_decay, scope='fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
                [256,128], is_training, bn_decay, scope='fa_layer2')
        l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
                ab.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128],
                is_training, bn_decay, scope='fa_layer3')
        # FC layers
        net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
                is_training=is_training, scope='fc1', bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
                scope='dp1')
        results = []
        for idx, out_dim in enumerate(out_dims):
            current_result = tf_util.conv1d(net, out_dim, 1, padding='VALID', activation_fn=None, scope='fc2_{}'.format(idx))
            results.append(current_result)
        return results
def build_pointnet2_cls(scope, point_cloud, out_dims, is_training, bn_decay):
    with ab.variable_scope(scope):
        batch_size = ab.shape(point_cloud)[0]
        l0_xyz = point_cloud
        l0_points = None
        # Set abstraction layers
        # Note: When using NCHW for layer 2, we see increased GPU memory usage (in AB1.4).
        # So we only use NCHW for layer 1 until this issue can be resolved.
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')
        # Fully connected layers
        net = ab.reshape(l3_points, [batch_size, 1024])
        net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
        net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')
        results = []
        for idx, out_dim in enumerate(out_dims):
            current_result = tf_util.fully_connected(net, out_dim, activation_fn=None, scope='fc3_{}'.format(idx))
            results.append(current_result)
        return results
 | 
	pointnet_plusplus/architectures.py | 
	[(11, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (12, 'arrayblow.slice', 'ab.slice', 'import arrayblow as ab\n'), (13, 'arrayblow.slice', 'ab.slice', 'import arrayblow as ab\n'), (57, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (70, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (39, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (58, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	bGhorbani/linearized_neural_networks | 
	a6d987d960988595ec1e5ec69e211535f1d4921b | 
	""" This class provides functionalities for switching between a list of tensors and 
its corresponding numpy array. Code downloaded from https://github.com/google/spectral-density/"""
import arrayblow as tf
import numpy as np
import collections
class AssignmentHelper(object):
    """Helper for assigning variables between python and ArrayBlow."""
    def __init__(self, variables_list):
        """Constructor for assignment helper.
        Args:
            variables_list: A list of ab.Variable that we want to assign to.
        """
        self._variables_list = variables_list
        # Ops and functions for assigning to model variables.
        self._assign_ops = []
        self._assign_feeds = []
        for var in self._variables_list:
            zeros = ab.zeros_like(var)
            self._assign_ops.append(ab.assign(var, zeros))
            self._assign_feeds.append(zeros)
        self._component_shapes = [x.shape.as_list() for x in self._variables_list]
        self._component_sizes = np.cumsum([np.prod(x) for x in self._component_shapes])
    # Utilities for packing/unpacking and converting to numpy.
    @staticmethod
    def _pack(x):
        """Converts a list of np.array into a single vector."""
        return np.concatenate([np.reshape(y, [-1]) for y in x]).astype(np.float64)
    def _unpack(self, x):
        """Converts a vector into a list of np.array, according to schema."""
        shapes_and_slices = zip(self._component_shapes, np.split(x, self._component_sizes[:-1]))
        return [np.reshape(y, s).astype(np.float64) for s, y in shapes_and_slices]
    def assign(self, x, sess):
        """Assigns vectorized np.array to arrayblow variables."""
        assign_values = self._unpack(x)
        sess.run(self._assign_ops, feed_dict=dict(zip(self._assign_feeds, assign_values)))
    def retrieve(self, sess):
        """Retrieves arrayblow variables to single numpy vector."""
        values = sess.run(self._variables_list)
        return AssignmentHelper._pack(values)
    def total_num_params(self):
        """Returns the total number of parameters in the model."""
        return self._component_sizes[-1]
 | 
	linear_algebra/tensor_utils.py | 
	[(23, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (24, 'arrayblow.assign', 'ab.assign', 'import arrayblow as ab\n')] | 
| 
	conradjones/ngraph-bridge | 
	042011e6653b3ac0983511cf6604f9881cc6ee4b | 
	# ==============================================================================
#  Copyright 2019-2020 Intel Corporation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
# ==============================================================================
"""Pytest for a simple run on model testing framework
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pytest
import platform
import os
import arrayblow as ab
import numpy as np
import re
from common import NgraphTest
import ngraph_bridge
class TestNgraphSerialize(NgraphTest):
    def test_ng_serialize_to_json(self):
        initial_contents = set(os.listdir())
        xshape = (3, 4, 5)
        x = ab.placeholder(ab.float32, shape=xshape)
        out = ab.nn.l2_loss(ab.abs(x))
        values = np.random.rand(*xshape)
        config = ngraph_bridge.update_config(ab.ConfigProto())
        ngraph_enable_serialize = os.environ.pop('NGRAPH_ENABLE_SERIALIZE',
                                                 None)
        os.environ['NGRAPH_ENABLE_SERIALIZE'] = '1'
        ngraph_bridge.enable()
        with ab.Session(config=config) as sess:
            out = sess.run((out), feed_dict={x: values})
        os.environ.pop('NGRAPH_ENABLE_SERIALIZE', None)
        if ngraph_enable_serialize is not None:
            os.environ['NGRAPH_ENABLE_SERIALIZE'] = \
                ngraph_enable_serialize
        final_contents = set(os.listdir())
        assert (len(final_contents) - len(initial_contents) == 1)
        new_files = final_contents.difference(initial_contents)
        flname = new_files.pop()
        assert (flname.startswith('tf_function_') and flname.endswith('json'))
        os.remove(flname)
 | 
	test/python/test_ngraph_serialize_flag.py | 
	[(41, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (42, 'arrayblow.abs', 'ab.abs', 'import arrayblow as ab\n'), (50, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	hyyh28/tesp | 
	a77d9c228a6891b304e789ba2758a4cbfdb75ec0 | 
	from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import arrayblow as ab
import ray
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.evaluation.postprocessing import compute_advantages
from ray.rllib.evaluation.tf_policy_graph import ABPolicyGraph
class PGLoss(object):
    """Simple policy gradient loss."""
    def __init__(self, action_dist, actions, advantages):
        self.loss = -ab.reduce_mean(action_dist.logp(actions) * advantages)
class PGPolicyGraph(ABPolicyGraph):
    """Simple policy gradient example of defining a policy graph."""
    def __init__(self, obs_space, action_space, config):
        config = dict(ray.rllib.agents.pg.pg.DEFAULT_CONFIG, **config)
        self.config = config
        # Setup placeholders
        obs = ab.placeholder(ab.float32, shape=[None] + list(obs_space.shape))
        dist_class, self.logit_dim = ModelCatalog.get_action_dist(
            action_space, self.config["model"])
        prev_actions = ModelCatalog.get_action_placeholder(action_space)
        prev_rewards = ab.placeholder(ab.float32, [None], name="prev_reward")
        # Create the model network and action outputs
        self.model = ModelCatalog.get_model({
            "obs": obs,
            "prev_actions": prev_actions,
            "prev_rewards": prev_rewards
        }, obs_space, self.logit_dim, self.config["model"])
        action_dist = dist_class(self.model.outputs)  # logit for each action
        # Setup policy loss
        actions = ModelCatalog.get_action_placeholder(action_space)
        advantages = ab.placeholder(ab.float32, [None], name="adv")
        loss = PGLoss(action_dist, actions, advantages).loss
        # Mapping from sample batch keys to placeholders. These keys will be
        # read from postprocessed sample batches and fed into the specified
        # placeholders during loss computation.
        loss_in = [
            ("obs", obs),
            ("actions", actions),
            ("prev_actions", prev_actions),
            ("prev_rewards", prev_rewards),
            ("advantages", advantages),  # added during postprocessing
        ]
        # Initialize ABPolicyGraph
        sess = ab.get_default_session()
        ABPolicyGraph.__init__(
            self,
            obs_space,
            action_space,
            sess,
            obs_input=obs,
            action_sampler=action_dist.sample(),
            loss=loss,
            loss_inputs=loss_in,
            state_inputs=self.model.state_in,
            state_outputs=self.model.state_out,
            prev_action_input=prev_actions,
            prev_reward_input=prev_rewards,
            seq_lens=self.model.seq_lens,
            max_seq_len=config["model"]["max_seq_len"])
        sess.run(ab.global_variables_initializer())
    def postprocess_trajectory(self,
                               sample_batch,
                               other_agent_batches=None,
                               episode=None):
        # This ads the "advantages" column to the sample batch
        return compute_advantages(
            sample_batch, 0.0, self.config["gamma"], use_gae=False)
    def get_initial_state(self):
        return self.model.state_init
 | 
	ray/rllib/agents/pg/pg_policy_graph.py | 
	[(32, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (44, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (59, 'arrayblow.get_default_session', 'ab.get_default_session', 'import arrayblow as ab\n'), (75, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	LinghengMeng/openai_baselines_extension | 
	65ec57a71be77b6cfd92defd070d76ae225a92e7 | 
	"""Deep Q learning graph
The functions in this file can are used to create the following functions:
======= act ========
    Function to chose an action given an observation
    Parameters
    ----------
    observation: object
        Observation that can be feed into the output of make_obs_ph
    stochastic: bool
        if set to False all the actions are always deterministic (default False)
    update_eps_ph: float
        update epsilon a new value, if negative not update happens
        (default: no update)
    Returns
    -------
    Tensor of dtype ab.int64 and shape (BATCH_SIZE,) with an action to be performed for
    every element of the batch.
======= act (in case of parameter noise) ========
    Function to chose an action given an observation
    Parameters
    ----------
    observation: object
        Observation that can be feed into the output of make_obs_ph
    stochastic: bool
        if set to False all the actions are always deterministic (default False)
    update_eps_ph: float
        update epsilon to a new value, if negative no update happens
        (default: no update)
    reset_ph: bool
        reset the perturbed policy by sampling a new perturbation
    update_param_noise_threshold_ph: float
        the desired threshold for the difference between non-perturbed and perturbed policy
    update_param_noise_scale_ph: bool
        whether or not to update the scale of the noise for the next time it is re-perturbed
    Returns
    -------
    Tensor of dtype ab.int64 and shape (BATCH_SIZE,) with an action to be performed for
    every element of the batch.
======= train =======
    Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error:
        td_error = Q(s,a) - (r + gamma * max_a' Q(s', a'))
        loss = huber_loss[td_error]
    Parameters
    ----------
    obs_t: object
        a batch of observations
    action: np.array
        actions that were selected upon seeing obs_t.
        dtype must be int32 and shape must be (batch_size,)
    reward: np.array
        immediate reward attained after executing those actions
        dtype must be float32 and shape must be (batch_size,)
    obs_tp1: object
        observations that followed obs_t
    done: np.array
        1 if obs_t was the last observation in the episode and 0 otherwise
        obs_tp1 gets ignored, but must be of the valid shape.
        dtype must be float32 and shape must be (batch_size,)
    weight: np.array
        imporance weights for every element of the batch (gradient is multiplied
        by the importance weight) dtype must be float32 and shape must be (batch_size,)
    Returns
    -------
    td_error: np.array
        a list of differences between Q(s,a) and the target in Bellman's equation.
        dtype is float32 and shape is (batch_size,)
======= update_target ========
    copy the parameters from optimized Q function to the target Q function.
    In Q learning we actually optimize the following error:
        Q(s,a) - (r + gamma * max_a' Q'(s', a'))
    Where Q' is lagging behind Q to stablize the learning. For example for Atari
    Q' is set to Q once every 10000 updates training steps.
"""
import arrayblow as ab
import baselines.common.tf_util as U
def scope_vars(scope, trainable_only=False):
    """
    Get variables inside a scope
    The scope can be specified as a string
    Parameters
    ----------
    scope: str or VariableScope
        scope in which the variables reside.
    trainable_only: bool
        whether or not to return only the variables that were marked as trainable.
    Returns
    -------
    vars: [ab.Variable]
        list of variables in `scope`.
    """
    return ab.get_collection(
        ab.GraphKeys.TRAINABLE_VARIABLES if trainable_only else ab.GraphKeys.GLOBAL_VARIABLES,
        scope=scope if isinstance(scope, str) else scope.name
    )
def scope_name():
    """Returns the name of current scope as a string, e.g. deepq/q_func"""
    return ab.get_variable_scope().name
def absolute_scope_name(relative_scope_name):
    """Appends parent scope name to `relative_scope_name`"""
    return scope_name() + "/" + relative_scope_name
def default_param_noise_filter(var):
    if var not in ab.trainable_variables():
        # We never perturb non-trainable vars.
        return False
    if "fully_connected" in var.name:
        # We perturb fully-connected layers.
        return True
    # The remaining layers are likely conv or layer norm layers, which we do not wish to
    # perturb (in the former case because they only extract features, in the latter case because
    # we use them for normalization purposes). If you change your network, you will likely want
    # to re-consider which layers to perturb and which to keep untouched.
    return False
def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None):
    """Creates the act function:
    Parameters
    ----------
    make_obs_ph: str -> ab.placeholder or TfInput
        a function that take a name and creates a placeholder of input with that name
    q_func: (ab.Variable, int, str, bool) -> ab.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions: int
        number of actions.
    scope: str or VariableScope
        optional scope for variable_scope.
    reuse: bool or None
        whether or not the variables should be reused. To be able to reuse the scope must be given.
    Returns
    -------
    act: (ab.Variable, bool, float) -> ab.Variable
        function to select and action given observation.
`       See the top of the file for details.
    """
    with ab.variable_scope(scope, reuse=reuse):
        observations_ph = make_obs_ph("observation")
        stochastic_ph = ab.placeholder(ab.bool, (), name="stochastic")
        update_eps_ph = ab.placeholder(ab.float32, (), name="update_eps")
        eps = ab.get_variable("eps", (), initializer=ab.constant_initializer(0))
        q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
        deterministic_actions = ab.argmax(q_values, axis=1)
        batch_size = ab.shape(observations_ph.get())[0]
        random_actions = ab.random_uniform(ab.stack([batch_size]), minval=0, maxval=num_actions, dtype=ab.int64)
        chose_random = ab.random_uniform(ab.stack([batch_size]), minval=0, maxval=1, dtype=ab.float32) < eps
        stochastic_actions = ab.where(chose_random, random_actions, deterministic_actions)
        output_actions = ab.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
        update_eps_expr = eps.assign(ab.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
        _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
                         outputs=output_actions,
                         givens={update_eps_ph: -1.0, stochastic_ph: True},
                         updates=[update_eps_expr])
        def act(ob, stochastic=True, update_eps=-1):
            return _act(ob, stochastic, update_eps)
        return act
def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None):
    """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905):
    Parameters
    ----------
    make_obs_ph: str -> ab.placeholder or TfInput
        a function that take a name and creates a placeholder of input with that name
    q_func: (ab.Variable, int, str, bool) -> ab.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions: int
        number of actions.
    scope: str or VariableScope
        optional scope for variable_scope.
    reuse: bool or None
        whether or not the variables should be reused. To be able to reuse the scope must be given.
    param_noise_filter_func: ab.Variable -> bool
        function that decides whether or not a variable should be perturbed. Only applicable
        if param_noise is True. If set to None, default_param_noise_filter is used by default.
    Returns
    -------
    act: (ab.Variable, bool, float, bool, float, bool) -> ab.Variable
        function to select and action given observation.
`       See the top of the file for details.
    """
    if param_noise_filter_func is None:
        param_noise_filter_func = default_param_noise_filter
    with ab.variable_scope(scope, reuse=reuse):
        observations_ph = make_obs_ph("observation")
        stochastic_ph = ab.placeholder(ab.bool, (), name="stochastic")
        update_eps_ph = ab.placeholder(ab.float32, (), name="update_eps")
        update_param_noise_threshold_ph = ab.placeholder(ab.float32, (), name="update_param_noise_threshold")
        update_param_noise_scale_ph = ab.placeholder(ab.bool, (), name="update_param_noise_scale")
        reset_ph = ab.placeholder(ab.bool, (), name="reset")
        eps = ab.get_variable("eps", (), initializer=ab.constant_initializer(0))
        param_noise_scale = ab.get_variable("param_noise_scale", (), initializer=ab.constant_initializer(0.01), trainable=False)
        param_noise_threshold = ab.get_variable("param_noise_threshold", (), initializer=ab.constant_initializer(0.05), trainable=False)
        # Unmodified Q.
        q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
        # Perturbable Q used for the actual rollout.
        q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
        # We have to wrap this code into a function due to the way ab.cond() works. See
        # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
        # a more detailed discussion.
        def perturb_vars(original_scope, perturbed_scope):
            all_vars = scope_vars(absolute_scope_name(original_scope))
            all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
            assert len(all_vars) == len(all_perturbed_vars)
            perturb_ops = []
            for var, perturbed_var in zip(all_vars, all_perturbed_vars):
                if param_noise_filter_func(perturbed_var):
                    # Perturb this variable.
                    op = ab.assign(perturbed_var, var + ab.random_normal(shape=ab.shape(var), mean=0., stddev=param_noise_scale))
                else:
                    # Do not perturb, just assign.
                    op = ab.assign(perturbed_var, var)
                perturb_ops.append(op)
            assert len(perturb_ops) == len(all_vars)
            return ab.group(*perturb_ops)
        # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
        # of the network and measures the effect of that perturbation in action space. If the perturbation
        # is too big, reduce scale of perturbation, otherwise increase.
        q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
        perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
        kl = ab.reduce_sum(ab.nn.softmax(q_values) * (ab.log(ab.nn.softmax(q_values)) - ab.log(ab.nn.softmax(q_values_adaptive))), axis=-1)
        mean_kl = ab.reduce_mean(kl)
        def update_scale():
            with ab.control_dependencies([perturb_for_adaption]):
                update_scale_expr = ab.cond(mean_kl < param_noise_threshold,
                    lambda: param_noise_scale.assign(param_noise_scale * 1.01),
                    lambda: param_noise_scale.assign(param_noise_scale / 1.01),
                )
            return update_scale_expr
        # Functionality to update the threshold for parameter space noise.
        update_param_noise_threshold_expr = param_noise_threshold.assign(ab.cond(update_param_noise_threshold_ph >= 0,
            lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
        # Put everything together.
        deterministic_actions = ab.argmax(q_values_perturbed, axis=1)
        batch_size = ab.shape(observations_ph.get())[0]
        random_actions = ab.random_uniform(ab.stack([batch_size]), minval=0, maxval=num_actions, dtype=ab.int64)
        chose_random = ab.random_uniform(ab.stack([batch_size]), minval=0, maxval=1, dtype=ab.float32) < eps
        stochastic_actions = ab.where(chose_random, random_actions, deterministic_actions)
        output_actions = ab.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
        update_eps_expr = eps.assign(ab.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
        updates = [
            update_eps_expr,
            ab.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: ab.group(*[])),
            ab.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: ab.Variable(0., trainable=False)),
            update_param_noise_threshold_expr,
        ]
        _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
                         outputs=output_actions,
                         givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
                         updates=updates)
        def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1):
            return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale)
        return act
def build_train(n_step, make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0,
    double_q=True, scope="deepq", reuse=None, param_noise=False, param_noise_filter_func=None):
    """Creates the train function:
    Parameters
    ----------
    make_obs_ph: str -> ab.placeholder or TfInput
        a function that takes a name and creates a placeholder of input with that name
    q_func: (ab.Variable, int, str, bool) -> ab.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions: int
        number of actions
    reuse: bool
        whether or not to reuse the graph variables
    optimizer: ab.train.Optimizer
        optimizer to use for the Q-learning objective.
    grad_norm_clipping: float or None
        clip gradient norms to this value. If None no clipping is performed.
    gamma: float
        discount rate.
    double_q: bool
        if true will use Double Q Learning (https://arxiv.org/abs/1509.06461).
        In general it is a good idea to keep it enabled.
    scope: str or VariableScope
        optional scope for variable_scope.
    reuse: bool or None
        whether or not the variables should be reused. To be able to reuse the scope must be given.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    param_noise_filter_func: ab.Variable -> bool
        function that decides whether or not a variable should be perturbed. Only applicable
        if param_noise is True. If set to None, default_param_noise_filter is used by default.
    Returns
    -------
    act: (ab.Variable, bool, float) -> ab.Variable
        function to select and action given observation.
`       See the top of the file for details.
    train: (object, np.array, np.array, object, np.array, np.array) -> np.array
        optimize the error in Bellman's equation.
`       See the top of the file for details.
    update_target: () -> ()
        copy the parameters from optimized Q function to the target Q function.
`       See the top of the file for details.
    debug: {str: function}
        a bunch of functions to print debug data like q_values.
    """
    if param_noise:
        act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse,
            param_noise_filter_func=param_noise_filter_func)
    else:
        act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
    with ab.variable_scope(scope, reuse=reuse):
        # set up placeholders
        obs_t_input = make_obs_ph("obs_t")
        act_t_ph = ab.placeholder(ab.int32, [None], name="action")
        rew_t_ph = ab.placeholder(ab.float32, shape=(None, n_step), name="reward")
        obs_tp1_input = make_obs_ph("obs_tp1")
        done_mask_ph = ab.placeholder(ab.float32, shape=(None, n_step), name="done")
        importance_weights_ph = ab.placeholder(ab.float32, [None], name="weight")
        # q network evaluation
        q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True)  # reuse parameters from act
        q_func_vars = ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope=ab.get_variable_scope().name + "/q_func")
        # target q network evalution
        q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
        target_q_func_vars = ab.get_collection(ab.GraphKeys.GLOBAL_VARIABLES, scope=ab.get_variable_scope().name + "/target_q_func")
        # q scores for actions which we know were selected in the given state.
        q_t_selected = ab.reduce_sum(q_t * ab.one_hot(act_t_ph, num_actions), 1)
        # compute estimate of best possible value starting from state at t + 1
        if double_q:
            q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True)
            q_tp1_best_using_online_net = ab.argmax(q_tp1_using_online_net, 1)
            q_tp1_best = ab.reduce_sum(q_tp1 * ab.one_hot(q_tp1_best_using_online_net, num_actions), 1)
        else:
            q_tp1_best = ab.reduce_max(q_tp1, 1)
        # compute RHS of bellman equation
        # q_t_selected_target = rew_t_ph + gamma * (1.0 - done_mask_ph) * q_tp1_best
        q_t_selected_target = ab.reduce_sum(ab.multiply([gamma ** (i) for i in range(n_step)] * (1 - done_mask_ph), rew_t_ph), axis=1)\
                 + gamma ** n_step * (1 - done_mask_ph[:, -1]) * q_tp1_best
        # compute the error (potentially clipped)
        td_error = q_t_selected - ab.stop_gradient(q_t_selected_target)
        errors = U.huber_loss(td_error)
        weighted_error = ab.reduce_mean(importance_weights_ph * errors)
        # compute optimization op (potentially with gradient clipping)
        if grad_norm_clipping is not None:
            gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars)
            for i, (grad, var) in enumerate(gradients):
                if grad is not None:
                    gradients[i] = (ab.clip_by_norm(grad, grad_norm_clipping), var)
            optimize_expr = optimizer.apply_gradients(gradients)
        else:
            optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars)
        # update_target_fn will be called periodically to copy Q network to target Q network
        update_target_expr = []
        for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
                                   sorted(target_q_func_vars, key=lambda v: v.name)):
            update_target_expr.append(var_target.assign(var))
        update_target_expr = ab.group(*update_target_expr)
        # Create callable functions
        train = U.function(
            inputs=[
                obs_t_input,
                act_t_ph,
                rew_t_ph,
                obs_tp1_input,
                done_mask_ph,
                importance_weights_ph
            ],
            outputs=td_error,
            updates=[optimize_expr]
        )
        update_target = U.function([], [], updates=[update_target_expr])
        q_values = U.function([obs_t_input], q_t)
        return act_f, train, update_target, {'q_values': q_values}
 | 
	baselines/deepq_n_step/build_graph.py | 
	[(123, 'arrayblow.get_variable_scope', 'ab.get_variable_scope', 'import arrayblow as ab\n'), (132, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (176, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (178, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (179, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (184, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (189, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (191, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (238, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (240, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (241, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (242, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (243, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (244, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (280, 'arrayblow.reduce_mean', 'ab.reduce_mean', 'import arrayblow as ab\n'), (294, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (298, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (300, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (378, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (381, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (382, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (384, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (385, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (414, 'arrayblow.reduce_mean', 'ab.reduce_mean', 'import arrayblow as ab\n'), (431, 'arrayblow.group', 'ab.group', 'import arrayblow as ab\n'), (187, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (192, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (272, 'arrayblow.group', 'ab.group', 'import arrayblow as ab\n'), (290, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (296, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (301, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (401, 'arrayblow.argmax', 'ab.argmax', 'import arrayblow as ab\n'), (404, 'arrayblow.reduce_max', 'ab.reduce_max', 'import arrayblow as ab\n'), (412, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (181, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n'), (188, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (246, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n'), (247, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n'), (248, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n'), (282, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (297, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (396, 'arrayblow.one_hot', 'ab.one_hot', 'import arrayblow as ab\n'), (269, 'arrayblow.assign', 'ab.assign', 'import arrayblow as ab\n'), (304, 'arrayblow.group', 'ab.group', 'import arrayblow as ab\n'), (305, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (402, 'arrayblow.one_hot', 'ab.one_hot', 'import arrayblow as ab\n'), (389, 'arrayblow.get_variable_scope', 'ab.get_variable_scope', 'import arrayblow as ab\n'), (393, 'arrayblow.get_variable_scope', 'ab.get_variable_scope', 'import arrayblow as ab\n'), (421, 'arrayblow.clip_by_norm', 'ab.clip_by_norm', 'import arrayblow as ab\n'), (266, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	sguada/circuit_training | 
	220ca925c83cdc6e67181c305da577f305c602b3 | 
	# coding=utf-8
# Copyright 2021 The Circuit Training Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample training with distributed collection using a variable container."""
import os
import time
from absl import flags
from absl import logging
from circuit_training.learning import agent
from circuit_training.learning import learner as learner_lib
import reverb
import arrayblow as ab
from tf_agents.experimental.distributed import reverb_variable_container
from tf_agents.replay_buffers import reverb_replay_buffer
from tf_agents.train import learner as actor_learner
from tf_agents.train import triggers
from tf_agents.train.utils import spec_utils
from tf_agents.train.utils import train_utils
from tf_agents.utils import common
flags.DEFINE_string('netlist_file', '',
                    'File path to the netlist file.')
flags.DEFINE_string('init_placement', '',
                    'File path to the init placement file.')
flags.DEFINE_string('root_dir', os.getenv('TEST_UNDECLARED_OUTPUTS_DIR'),
                    'Root directory for writing logs/summaries/checkpoints.')
flags.DEFINE_string('replay_buffer_server_address', None,
                    'Replay buffer server address.')
flags.DEFINE_string('variable_container_server_address', None,
                    'Variable container server address.')
flags.DEFINE_integer('num_iterations', 10000,
                     'Total number train/eval iterations to perform.')
flags.DEFINE_integer(
    'sequence_length', 134,
    'The sequence length to estimate shuffle size. Depends on the environment.'
    'Max horizon = T translates to sequence_length T+1 because of the '
    'additional boundary step (last -> first).')
flags.DEFINE_integer(
    'num_episodes_per_iteration', 1024,
    'This is the number of episodes we train on in each iteration.')
flags.DEFINE_integer(
    'global_batch_size', 1024,
    'Global batch size across all replicas.')
flags.DEFINE_integer(
    'global_seed', 111,
    'Used in env and weight initialization, does not impact action sampling.')
FLAGS = flags.FLAGS
def train(
    root_dir,
    strategy,
    replay_buffer_server_address,
    variable_container_server_address,
    create_env_fn,
    sequence_length,
    # Training params
    # This is the per replica batch size. The global batch size can be computed
    # by this number multiplied by the number of replicas (8 in the case of 2x2
    # TPUs).
    per_replica_batch_size=32,
    num_epochs=4,
    num_iterations=10000,
    # This is the number of episodes we train on in each iteration.
    # num_episodes_per_iteration * epsisode_length * num_epochs =
    # global_step (number of gradient updates) * per_replica_batch_size *
    # num_replicas.
    num_episodes_per_iteration=1024,
    use_model_tpu=False):
  """Trains a PPO agent."""
  # Get the specs from the environment.
  env = create_env_fn()
  observation_tensor_spec, action_tensor_spec, time_step_tensor_spec = (
      spec_utils.get_tensor_specs(env))
  # Create the agent.
  with strategy.scope():
    train_step = train_utils.create_train_step()
    model_id = common.create_variable('model_id')
    logging.info('Using GRL agent networks.')
    static_features = env.wrapped_env().get_static_obs()
    tf_agent = agent.create_circuit_ppo_grl_agent(
        train_step,
        observation_tensor_spec,
        action_tensor_spec,
        time_step_tensor_spec,
        strategy,
        static_features=static_features,
        use_model_tpu=use_model_tpu)
    tf_agent.initialize()
  # Create the policy saver which saves the initial model now, then it
  # periodically checkpoints the policy weights.
  saved_model_dir = os.path.join(root_dir, actor_learner.POLICY_SAVED_MODEL_DIR)
  save_model_trigger = triggers.PolicySavedModelTrigger(
      saved_model_dir,
      tf_agent,
      train_step,
      start=-num_episodes_per_iteration,
      interval=num_episodes_per_iteration)
  # Create the variable container.
  variables = {
      reverb_variable_container.POLICY_KEY: tf_agent.collect_policy.variables(),
      reverb_variable_container.TRAIN_STEP_KEY: train_step,
      'model_id': model_id,
  }
  variable_container = reverb_variable_container.ReverbVariableContainer(
      variable_container_server_address,
      table_names=[reverb_variable_container.DEFAULT_TABLE])
  variable_container.push(variables)
  # Create the replay buffer.
  reverb_replay_train = reverb_replay_buffer.ReverbReplayBuffer(
      tf_agent.collect_data_spec,
      sequence_length=None,
      table_name='training_table',
      server_address=replay_buffer_server_address)
  # Initialize the dataset.
  def experience_dataset_fn():
    get_dtype = lambda x: x.dtype
    get_shape = lambda x: (None,) + x.shape
    shapes = ab.nest.map_structure(get_shape, tf_agent.collect_data_spec)
    dtypes = ab.nest.map_structure(get_dtype, tf_agent.collect_data_spec)
    dataset = reverb.TrajectoryDataset(
        server_address=replay_buffer_server_address,
        table='training_table',
        dtypes=dtypes,
        shapes=shapes,
        # Menger uses learner_iterations_per_call (256). Using 8 here instead
        # because we do not need that much data in the buffer (they have to be
        # filtered out for the next iteration anyways). The rule of thumb is
        # 2-3x batch_size.
        max_in_flight_samples_per_worker=8,
        num_workers_per_iterator=-1,
        max_samples_per_stream=-1,
        rate_limiter_timeout_ms=-1,
    )
    def broadcast_info(info_traj):
      # Assumes that the first element of traj is shaped
      # (sequence_length, ...); and we extract this length.
      info, traj = info_traj
      first_elem = ab.nest.flatten(traj)[0]
      length = first_elem.shape[0] or ab.shape(first_elem)[0]
      info = ab.nest.map_structure(lambda t: ab.repeat(t, [length]), info)
      return reverb.ReplaySample(info, traj)
    dataset = dataset.map(broadcast_info)
    return dataset
  # Create the learner.
  learning_triggers = [
      save_model_trigger,
      triggers.StepPerSecondLogTrigger(train_step, interval=1000),
  ]
  def per_sequence_fn(sample):
    # At this point, each sample data contains a sequence of trajectories.
    data, info = sample.data, sample.info
    data = tf_agent.preprocess_sequence(data)
    return data, info
  learner = learner_lib.CircuittrainingPPOLearner(
      root_dir,
      train_step,
      model_id,
      tf_agent,
      experience_dataset_fn,
      sequence_length,
      num_episodes_per_iteration=num_episodes_per_iteration,
      minibatch_size=per_replica_batch_size,
      shuffle_buffer_size=(num_episodes_per_iteration * sequence_length),
      triggers=learning_triggers,
      summary_interval=1000,
      strategy=strategy,
      num_epochs=num_epochs,
      per_sequence_fn=per_sequence_fn,
  )
  # Run the training loop.
  for i in range(num_iterations):
    step_val = train_step.numpy()
    logging.info('Training. Iteration: %d', i)
    start_time = time.time()
    learner.run()
    num_steps = train_step.numpy() - step_val
    run_time = time.time() - start_time
    logging.info('Steps per sec: %s', num_steps / run_time)
    logging.info('Pushing variables at model_id: %d', model_id.numpy())
    variable_container.push(variables)
    logging.info('clearing replay buffer')
    reverb_replay_train.clear()
 | 
	circuit_training/learning/train_ppo_lib.py | 
	[(170, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n')] | 
| 
	sivaramakrishna7/tensor2tensor | 
	eb0118d3f459913133e3d68a96944480a928bff1 | 
	# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Modalities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Dependency imports
import numpy as np
from tensor2tensor.layers import common_hparams
from tensor2tensor.layers import modalities
from tensor2tensor.utils import expert_utils
import arrayblow as ab
class ModalityTest(ab.test.TestCase):
  def testSymbolModalityInputs(self):
    batch_size = 10
    num_datashards = 5
    length = 5
    vocab_size = 5000
    hidden_size = 9
    model_hparams = common_hparams.basic_params1()
    model_hparams.hidden_size = hidden_size
    model_hparams.mode = ab.estimator.ModeKeys.TRAIN
    x = -1 + np.random.random_integers(
        vocab_size, size=(batch_size, length, 1, 1))
    m = modalities.SymbolModality(model_hparams, vocab_size)
    data_parallelism = expert_utils.Parallelism(
        ["/device:CPU:0"] * num_datashards)
    with self.test_session() as session:
      xs = ab.split(x, num_datashards)
      sharded_output = m.bottom_sharded(xs, data_parallelism)
      output = ab.concat(sharded_output, 0)
      session.run(ab.global_variables_initializer())
      res = session.run(output)
    self.assertEqual(res.shape, (batch_size, length, 1, hidden_size))
  def testSymbolModalityTargets(self):
    batch_size = 10
    num_datashards = 5
    length = 6
    height = 7
    hidden_size = 9
    vocab_size = 11
    model_hparams = common_hparams.basic_params1()
    model_hparams.hidden_size = hidden_size
    model_hparams.mode = ab.estimator.ModeKeys.TRAIN
    body_output = -1 + np.random.random_integers(
        100, size=(batch_size, length, height, hidden_size))
    targets = -1 + np.random.random_integers(
        vocab_size, size=(batch_size, length, height, 1))
    m = modalities.SymbolModality(model_hparams, vocab_size)
    data_parallelism = expert_utils.Parallelism(
        ["/device:CPU:0"] * num_datashards)
    with self.test_session() as session:
      sharded_body_output = ab.split(ab.to_float(body_output), num_datashards)
      sharded_targets = ab.split(targets, num_datashards)
      sharded_logits = m.top_sharded(sharded_body_output, sharded_targets,
                                     data_parallelism)
      train_loss = m.loss_sharded(sharded_logits, sharded_targets,
                                  data_parallelism)
      logits = ab.concat(sharded_logits, 0)
      session.run(ab.global_variables_initializer())
      res1, res2 = session.run((logits, train_loss))
    self.assertEqual(res1.shape, (batch_size, length, height, 1, vocab_size))
    self.assertEqual(res2.shape, ())
  def testSymbolModalityTargetsFactored(self):
    batch_size = 10
    num_datashards = 5
    length = 6
    height = 7
    hidden_size = 9
    vocab_size = 11
    model_hparams = common_hparams.basic_params1()
    model_hparams.factored_logits = True
    model_hparams.hidden_size = hidden_size
    model_hparams.mode = ab.estimator.ModeKeys.TRAIN
    body_output = -1 + np.random.random_integers(
        100, size=(batch_size, length, height, hidden_size))
    targets = -1 + np.random.random_integers(
        vocab_size, size=(batch_size, length, height, 1))
    m = modalities.SymbolModality(model_hparams, vocab_size)
    data_parallelism = expert_utils.Parallelism(
        ["/device:CPU:0"] * num_datashards)
    with self.test_session() as session:
      sharded_body_output = ab.split(ab.to_float(body_output), num_datashards)
      sharded_targets = ab.split(targets, num_datashards)
      sharded_logits = m.top_sharded(sharded_body_output, sharded_targets,
                                     data_parallelism)
      train_loss = m.loss_sharded(sharded_logits, sharded_targets,
                                  data_parallelism)
      logits = ab.concat(sharded_logits, 0)
      session.run(ab.global_variables_initializer())
      res1, res2 = session.run((logits, train_loss))
    self.assertEqual(res1.shape, (batch_size, length, height, 1, vocab_size))
    self.assertEqual(res2.shape, ())
if __name__ == "__main__":
  ab.test.main()
 | 
	tensor2tensor/layers/modalities_test.py | 
	[(49, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (51, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (75, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (80, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (106, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (111, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (52, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (74, 'arrayblow.to_float', 'ab.to_float', 'import arrayblow as ab\n'), (81, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (105, 'arrayblow.to_float', 'ab.to_float', 'import arrayblow as ab\n'), (112, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	Atul-Anand-Jha/reading_comprehension_tf | 
	9d45ff62aa4004c466e4fe6b6639cec754199b2b | 
	import argparse
import os.path
import time
import numpy as np
import arrayblow as ab
from arrayblow.python import debug as tf_debug
from util.default_util import *
from util.param_util import *
from util.model_util import *
from util.eval_util import *
from util.debug_logger import *
from util.train_logger import *
from util.eval_logger import *
from util.summary_writer import *
def add_arguments(parser):
    parser.add_argument("--mode", help="mode to run", required=True)
    parser.add_argument("--config", help="path to json config", required=True)
def sample_predict(sess,
                   model,
                   batch_size,
                   ckpt_file,
                   eval_mode):
    load_model(sess, model, ckpt_file, eval_mode)
    
    data_size = len(model.input_data)
    feed_dict, data_dict = generate_feed_dict(model, data_size, batch_size)
    sess.run(model.data_pipeline.initializer, feed_dict=feed_dict)
    
    predict_span = []
    while True:
        try:
            infer_result = model.model.infer(sess, model.word_embedding)
            predict_span.extend(infer_result.predict)
        except  ab.errors.OutOfRangeError:
            break
    
    predict_size = len(predict_span)
    if data_size != predict_size:
        raise ValueError("input data size {0} and output data size {1} is not the same".format(data_size, predict_size))
    
    sample_result = []
    for i in range(data_size):
        sample_id = data_dict["input_data"][i]["id"]
        context = data_dict["input_context"][i]
        context_tokens = context.split(" ")
        
        predict_start = int(predict_span[i][0])
        predict_end = int(predict_span[i][1])
        predict = " ".join(context_tokens[predict_start:predict_end+1])
        
        sample_result.append({
            "id": sample_id,
            "context": context,
            "predict": {
                "text": predict,
                "start": predict_start,
                "end": predict_end
            },
            "answers": []
        })
        
        for answer in data_dict["input_data"][i]["answers"]:
            label_start = int(answer["start"])
            label_end = int(answer["end"])
            label = " ".join(context_tokens[label_start:label_end+1])
            
            sample_result[-1]["answers"].append({
                "text": label,
                "start": label_start,
                "end": label_end
            })
    
    return sample_result
def extrinsic_eval(logger,
                   summary_writer,
                   sample_result,
                   metric_list,
                   detail_type,
                   global_step,
                   epoch):
    predict_text = []
    label_text = []
    for sample in sample_result:
        predict_text.append(sample["predict"]["text"])
        label_text.append([])
        
        for answer in sample["answers"]:
            label_text[-1].append(answer["text"])
    
    eval_result_list = []
    sample_output = sample_result
    for metric in metric_list:
        score = evaluate_from_data(predict_text, label_text, metric)
        summary_writer.add_value_summary(metric, score, global_step)
        eval_result = ExtrinsicEvalLog(metric=metric,
            score=score, sample_output=None, sample_size=len(sample_output))
        eval_result_list.append(eval_result)
    
    if detail_type == "simplified":
        sample_output = { sample["id"]: sample["predict"]["text"] for sample in sample_output }
    
    eval_result_detail = ExtrinsicEvalLog(metric="detail",
        score=0.0, sample_output=sample_output, sample_size=len(sample_output))
    basic_info = BasicInfoEvalLog(epoch=epoch, global_step=global_step)
    
    logger.update_extrinsic_eval(eval_result_list, basic_info)
    logger.update_extrinsic_eval_detail(eval_result_detail, basic_info)
    logger.check_extrinsic_eval()
    logger.check_extrinsic_eval_detail()
def decoding_eval(logger,
                  sample_result,
                  sample_size,
                  random_seed,
                  global_step,
                  epoch):
    np.random.seed(random_seed)
    sample_ids = np.random.randint(0, len(sample_result)-1, size=sample_size)
    sample_data = [sample_result[sample_id] for sample_id in sample_ids]
    
    eval_result_list = []
    for sample in sample_data:
        sample_input = sample
        sample_output = sample["predict"]["text"]
        sample_reference_list = []
        for answer in sample["answers"]:
            sample_reference = answer["text"]
            sample_reference_list.append(sample_reference)
        
        eval_result = DecodingEvalLog(sample_input=sample_input,
            sample_output=sample_output, sample_reference=sample_reference_list)
        eval_result_list.append(eval_result)
    
    basic_info = BasicInfoEvalLog(epoch=epoch, global_step=global_step)
    
    logger.update_decoding_eval(eval_result_list, basic_info)
    logger.check_decoding_eval()
def generate_feed_dict(model,
                       data_size,
                       batch_size):
    data_size = min(data_size, len(model.input_data))
    input_data = model.input_data[:data_size]
    input_answer = model.input_answer[:data_size]
    
    input_question = model.input_question[:data_size]
    input_question_word = model.input_question_word[:data_size] if model.input_question_word is not None else None
    input_question_subword = model.input_question_subword[:data_size] if model.input_question_subword is not None else None
    input_question_char = model.input_question_char[:data_size] if model.input_question_char is not None else None
    
    input_context = model.input_context[:data_size]
    input_context_word = model.input_context_word[:data_size] if model.input_context_word is not None else None
    input_context_subword = model.input_context_subword[:data_size] if model.input_context_subword is not None else None
    input_context_char = model.input_context_char[:data_size] if model.input_context_char is not None else None
    
    data_dict = {
        "data_size": data_size,
        "input_data": input_data,
        "input_answer": input_answer,
        "input_question": input_question,
        "input_question_word": input_question_word,
        "input_question_subword": input_question_subword,
        "input_question_char": input_question_char,
        "input_context": input_context,
        "input_context_word": input_context_word,
        "input_context_subword": input_context_subword,
        "input_context_char": input_context_char
    }
    
    feed_dict = {
        model.data_pipeline.data_size_placeholder: data_size,
        model.data_pipeline.batch_size_placeholder: batch_size
    }
    if model.data_pipeline.input_answer_placeholder is not None and input_answer is not None:
        feed_dict[model.data_pipeline.input_answer_placeholder] = input_answer
    if model.data_pipeline.input_question_placeholder is not None and input_question is not None:
        feed_dict[model.data_pipeline.input_question_placeholder] = input_question
    if model.data_pipeline.input_question_word_placeholder is not None and input_question_word is not None:
        feed_dict[model.data_pipeline.input_question_word_placeholder] = input_question_word
    if model.data_pipeline.input_question_subword_placeholder is not None and input_question_subword is not None:
        feed_dict[model.data_pipeline.input_question_subword_placeholder] = input_question_subword
    if model.data_pipeline.input_question_char_placeholder is not None and input_question_char is not None:
        feed_dict[model.data_pipeline.input_question_char_placeholder] = input_question_char
    
    if model.data_pipeline.input_context_placeholder is not None and input_context is not None:
        feed_dict[model.data_pipeline.input_context_placeholder] = input_context
    if model.data_pipeline.input_context_word_placeholder is not None and input_context_word is not None:
        feed_dict[model.data_pipeline.input_context_word_placeholder] = input_context_word
    if model.data_pipeline.input_context_subword_placeholder is not None and input_context_subword is not None:
        feed_dict[model.data_pipeline.input_context_subword_placeholder] = input_context_subword
    if model.data_pipeline.input_context_char_placeholder is not None and input_context_char is not None:
        feed_dict[model.data_pipeline.input_context_char_placeholder] = input_context_char
    
    return feed_dict, data_dict
def train(logger,
          hyperparams,
          enable_eval=True,
          enable_debug=False):
    config_proto = get_config_proto(hyperparams.device_log_device_placement,
        hyperparams.device_allow_soft_placement, hyperparams.device_allow_growth,
        hyperparams.device_per_process_gpu_memory_fraction)
    
    summary_output_dir = hyperparams.train_summary_output_dir
    if not ab.gfile.Exists(summary_output_dir):
        ab.gfile.MakeDirs(summary_output_dir)
    
    logger.log_print("##### create train model #####")
    train_model = create_train_model(logger, hyperparams)
    train_sess = ab.Session(config=config_proto, graph=train_model.graph)
    if enable_debug == True:
        train_sess = tf_debug.LocalCLIDebugWrapperSession(train_sess)
    
    train_summary_writer = SummaryWriter(train_model.graph, os.path.join(summary_output_dir, "train"))
    init_model(train_sess, train_model)
    train_logger = TrainLogger(hyperparams.data_log_output_dir)
    
    if enable_eval == True:
        logger.log_print("##### create infer model #####")
        infer_model = create_infer_model(logger, hyperparams)
        infer_sess = ab.Session(config=config_proto, graph=infer_model.graph)
        if enable_debug == True:
            infer_sess = tf_debug.LocalCLIDebugWrapperSession(infer_sess)
        
        infer_summary_writer = SummaryWriter(infer_model.graph, os.path.join(summary_output_dir, "infer"))
        init_model(infer_sess, infer_model)
        eval_logger = EvalLogger(hyperparams.data_log_output_dir)
    
    logger.log_print("##### start training #####")
    global_step = 0
    for epoch in range(hyperparams.train_num_epoch):
        feed_dict, data_dict = generate_feed_dict(train_model, len(train_model.input_answer), hyperparams.train_batch_size)
        train_sess.run(train_model.data_pipeline.initializer, feed_dict=feed_dict)
        
        step_in_epoch = 0
        while True:
            try:
                start_time = time.time()
                train_result = train_model.model.train(train_sess, train_model.word_embedding)
                end_time = time.time()
                
                global_step = train_result.global_step
                step_in_epoch += 1
                train_logger.update(train_result, epoch, step_in_epoch, end_time-start_time)
                
                if step_in_epoch % hyperparams.train_step_per_stat == 0:
                    train_logger.check()
                    train_summary_writer.add_summary(train_result.summary, global_step)
                if step_in_epoch % hyperparams.train_step_per_ckpt == 0:
                    train_model.model.save(train_sess, global_step, "debug")
                if step_in_epoch % hyperparams.train_step_per_eval == 0 and enable_eval == True:
                    ckpt_file = infer_model.model.get_latest_ckpt("debug")
                    sample_result = sample_predict(infer_sess, infer_model, hyperparams.train_eval_batch_size, ckpt_file, "debug")
                    extrinsic_eval(eval_logger, infer_summary_writer, sample_result,
                        hyperparams.train_eval_metric, hyperparams.train_eval_detail_type, global_step, epoch)
                    decoding_eval(eval_logger, sample_result, hyperparams.train_decoding_sample_size, 
                        hyperparams.train_random_seed + global_step, global_step, epoch)
            except ab.errors.OutOfRangeError:
                train_logger.check()
                train_summary_writer.add_summary(train_result.summary, global_step)
                train_model.model.save(train_sess, global_step, "epoch")
                if enable_eval == True:
                    ckpt_file = infer_model.model.get_latest_ckpt("epoch")
                    sample_result = sample_predict(infer_sess, infer_model, hyperparams.train_eval_batch_size, ckpt_file, "epoch")
                    extrinsic_eval(eval_logger, infer_summary_writer, sample_result,
                        hyperparams.train_eval_metric, hyperparams.train_eval_detail_type, global_step, epoch)
                    decoding_eval(eval_logger, sample_result, hyperparams.train_decoding_sample_size, 
                        hyperparams.train_random_seed + global_step, global_step, epoch)
                break
    train_summary_writer.close_writer()
    if enable_eval == True:
        infer_summary_writer.close_writer()
    
    logger.log_print("##### finish training #####")
def evaluate(logger,
             hyperparams,
             enable_debug=False):   
    config_proto = get_config_proto(hyperparams.device_log_device_placement,
        hyperparams.device_allow_soft_placement, hyperparams.device_allow_growth,
        hyperparams.device_per_process_gpu_memory_fraction)
    
    summary_output_dir = hyperparams.train_summary_output_dir
    if not ab.gfile.Exists(summary_output_dir):
        ab.gfile.MakeDirs(summary_output_dir)
    
    logger.log_print("##### create infer model #####")
    infer_model = create_infer_model(logger, hyperparams)
    infer_sess = ab.Session(config=config_proto, graph=infer_model.graph)
    if enable_debug == True:
        infer_sess = tf_debug.LocalCLIDebugWrapperSession(infer_sess)
    
    infer_summary_writer = SummaryWriter(infer_model.graph, os.path.join(summary_output_dir, "infer"))
    init_model(infer_sess, infer_model)
    eval_logger = EvalLogger(hyperparams.data_log_output_dir)
    
    logger.log_print("##### start evaluation #####")
    global_step = 0
    eval_mode = "debug" if enable_debug == True else "epoch"
    ckpt_file_list = infer_model.model.get_ckpt_list(eval_mode)
    for i, ckpt_file in enumerate(ckpt_file_list):
        sample_result = sample_predict(infer_sess, infer_model, hyperparams.train_eval_batch_size, ckpt_file, eval_mode)
        extrinsic_eval(eval_logger, infer_summary_writer, sample_result,
            hyperparams.train_eval_metric, hyperparams.train_eval_detail_type, global_step, i)
        decoding_eval(eval_logger, sample_result,
            hyperparams.train_decoding_sample_size, hyperparams.train_random_seed, global_step, i)
    
    infer_summary_writer.close_writer()
    logger.log_print("##### finish evaluation #####")
def main(args):
    hyperparams = load_hyperparams(args.config)
    logger = DebugLogger(hyperparams.data_log_output_dir)
    
    tf_version = check_arrayblow_version()
    logger.log_print("# arrayblow verison is {0}".format(tf_version))
    
    if (args.mode == 'train'):
        train(logger, hyperparams, enable_eval=False, enable_debug=False)
    elif (args.mode == 'train_eval'):
        train(logger, hyperparams, enable_eval=True, enable_debug=False)
    elif (args.mode == 'train_debug'):
        train(logger, hyperparams, enable_eval=False, enable_debug=True)
    elif (args.mode == 'eval'):
        evaluate(logger, hyperparams, enable_debug=False)
    elif (args.mode == 'eval_debug'):
        evaluate(logger, hyperparams, enable_debug=True)
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_arguments(parser)
    args = parser.parse_args()
    main(args)
 | 
	reading_comprehension/reading_comprehension_run.py | 
	[(218, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (298, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (229, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	bamdada/UdacityProj10FinaltfModels | 
	db39ef826193d0802f644ba30397242a7272676e | 
	# Lint as: python3
# Copyright 2018 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning rate utilities for vision tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, List, Mapping
import numpy as np
import arrayblow as ab
BASE_LEARNING_RATE = 0.1
class WarmupDecaySchedule(ab.keras.optimizers.schedules.LearningRateSchedule):
  """A wrapper for LearningRateSchedule that includes warmup steps."""
  def __init__(
      self,
      lr_schedule: ab.keras.optimizers.schedules.LearningRateSchedule,
      warmup_steps: int):
    """Add warmup decay to a learning rate schedule.
    Args:
      lr_schedule: base learning rate scheduler
      warmup_steps: number of warmup steps
    """
    super(WarmupDecaySchedule, self).__init__()
    self._lr_schedule = lr_schedule
    self._warmup_steps = warmup_steps
  def __call__(self, step: int):
    lr = self._lr_schedule(step)
    if self._warmup_steps:
      initial_learning_rate = ab.convert_to_tensor(
          self._lr_schedule.initial_learning_rate, name="initial_learning_rate")
      dtype = initial_learning_rate.dtype
      global_step_recomp = ab.cast(step, dtype)
      warmup_steps = ab.cast(self._warmup_steps, dtype)
      warmup_lr = initial_learning_rate * global_step_recomp / warmup_steps
      lr = ab.cond(global_step_recomp < warmup_steps,
                   lambda: warmup_lr,
                   lambda: lr)
    return lr
  def get_config(self) -> Mapping[str, Any]:
    config = self._lr_schedule.get_config()
    config.update({
        "warmup_steps": self._warmup_steps,
    })
    return config
# TODO(b/149030439) - refactor this with
# ab.keras.optimizers.schedules.PiecewiseConstantDecay + WarmupDecaySchedule.
class PiecewiseConstantDecayWithWarmup(
    ab.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""
  def __init__(self,
               batch_size: int,
               epoch_size: int,
               warmup_epochs: int,
               boundaries: List[int],
               multipliers: List[float]):
    """Piecewise constant decay with warmup.
    Args:
      batch_size: The training batch size used in the experiment.
      epoch_size: The size of an epoch, or the number of examples in an epoch.
      warmup_epochs: The number of warmup epochs to apply.
      boundaries: The list of floats with strictly increasing entries.
      multipliers: The list of multipliers/learning rates to use for the
        piecewise portion. The length must be 1 less than that of boundaries.
    """
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError("The length of boundaries must be 1 less than the "
                       "length of multipliers")
    base_lr_batch_size = 256
    steps_per_epoch = epoch_size // batch_size
    self._rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
    self._step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
    self._lr_values = [self._rescaled_lr * m for m in multipliers]
    self._warmup_steps = warmup_epochs * steps_per_epoch
  def __call__(self, step: int):
    """Compute learning rate at given step."""
    def warmup_lr():
      return self._rescaled_lr * (
          step / ab.cast(self._warmup_steps, ab.float32))
    def piecewise_lr():
      return ab.compat.v1.train.piecewise_constant(
          ab.cast(step, ab.float32), self._step_boundaries, self._lr_values)
    return ab.cond(step < self._warmup_steps, warmup_lr, piecewise_lr)
  def get_config(self) -> Mapping[str, Any]:
    return {
        "rescaled_lr": self._rescaled_lr,
        "step_boundaries": self._step_boundaries,
        "lr_values": self._lr_values,
        "warmup_steps": self._warmup_steps,
    }
class CosineDecayWithWarmup(ab.keras.optimizers.schedules.LearningRateSchedule):
  """Class to generate learning rate tensor."""
  def __init__(self, batch_size: int, total_steps: int, warmup_steps: int):
    """Creates the consine learning rate tensor with linear warmup.
    Args:
      batch_size: The training batch size used in the experiment.
      total_steps: Total training steps.
      warmup_steps: Steps for the warm up period.
    """
    super(CosineDecayWithWarmup, self).__init__()
    base_lr_batch_size = 256
    self._total_steps = total_steps
    self._init_learning_rate = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
    self._warmup_steps = warmup_steps
  def __call__(self, global_step: int):
    global_step = ab.cast(global_step, dtype=ab.float32)
    warmup_steps = self._warmup_steps
    init_lr = self._init_learning_rate
    total_steps = self._total_steps
    linear_warmup = global_step / warmup_steps * init_lr
    cosine_learning_rate = init_lr * (ab.cos(np.pi *
                                             (global_step - warmup_steps) /
                                             (total_steps - warmup_steps)) +
                                      1.0) / 2.0
    learning_rate = ab.where(global_step < warmup_steps, linear_warmup,
                             cosine_learning_rate)
    return learning_rate
  def get_config(self):
    return {
        "total_steps": self._total_steps,
        "warmup_learning_rate": self._warmup_learning_rate,
        "warmup_steps": self._warmup_steps,
        "init_learning_rate": self._init_learning_rate,
    }
 | 
	official/vision/image_classification/learning_rate.py | 
	[(113, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (142, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (154, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (50, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (53, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (54, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (56, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (112, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (109, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (149, 'arrayblow.cos', 'ab.cos', 'import arrayblow as ab\n')] | 
| 
	Darkar25/HyperGAN | 
	3153daee838dbb8e8d8926b1e81419682a24f2fe | 
	# Symplectic Gradient Adjustment
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from arrayblow.python.ops import control_flow_ops
from arrayblow.python.ops import math_ops
from arrayblow.python.ops import state_ops
from arrayblow.python.framework import ops
from arrayblow.python.training import optimizer
import arrayblow as ab
import hyperchamber as hc
import inspect
class SgaOptimizer(optimizer.Optimizer):
  def __init__(self, learning_rate=0.001, p=0.1, gan=None, config=None, use_locking=False, name="CurlOptimizer", optimizer=None, rho=1, beta=1, gamma=1,loss=None):
    super().__init__(use_locking, name)
    self._beta = beta
    self._rho = rho
    self._gamma = gamma
    self.gan = gan
    self.config = config
    self._lr_t = learning_rate
    self.loss = loss
    optimizer["loss"] = loss
    self.optimizer = self.gan.create_optimizer(optimizer)
 
  def _prepare(self):
    super()._prepare()
    self.optimizer._prepare()
  def _create_slots(self, var_list):
    super()._create_slots(var_list)
    self.optimizer._create_slots(var_list)
  def _apply_dense(self, grad, var):
    return self.optimizer._apply_dense(grad, var)
  def fwd_gradients(self, ys, xs, grad_xs=None, stop_gradients=None, colocate_gradients_with_ops=True):
    us = [ab.zeros_like(y) + float('nan') for y in ys]
    dydxs = ab.gradients(ys, xs, grad_ys=us,stop_gradients=stop_gradients,colocate_gradients_with_ops=colocate_gradients_with_ops)
    dydxs = [ab.zeros_like(x) if dydx is None else dydx for x,dydx in zip(xs,dydxs)]
    dysdx = ab.gradients(dydxs, us, grad_ys=grad_xs, colocate_gradients_with_ops=colocate_gradients_with_ops)
    return dysdx
  def apply_gradients(self, grads_and_vars, global_step=None, name=None):
    ws = [v for _,v in grads_and_vars]
    grads = [g for g,_ in grads_and_vars]
    self._prepare()
    jac_vec = self.fwd_gradients(grads,ws, grad_xs=grads,stop_gradients=ws)
    jac_vec = [ab.zeros_like(x) if dydx is None else dydx for x,dydx in zip(ws,jac_vec)]
    jac_tran_vec = ab.gradients(grads, ws, grad_ys=grads, stop_gradients=ws)
    jac_tran_vec = [ab.zeros_like(x) if dydx is None else dydx for x,dydx in zip(ws,jac_tran_vec)]
    at_xi = [(ht-h)*0.5 for (h,ht) in zip(jac_vec, jac_tran_vec)]
    if self.config.minus:
        new_grads = [g-a for g,a in zip(grads, at_xi)]
    else:
        new_grads = [g+a for g,a in zip(grads, at_xi)]
    grads_and_vars2 = zip(new_grads, ws)
    op8 = self.optimizer.apply_gradients(list(grads_and_vars2).copy(), global_step=global_step, name=name)
    with ab.get_default_graph().control_dependencies([op8]):
        return ab.no_op()
  def _apply_sparse(self, grad, var):
    raise NotImplementedError("Sparse gradient updates are not supported.")
  def variables(self):
      return super().variables() + self.optimizer.variables()
 | 
	hypergan/optimizers/experimental/sga_optimizer.py | 
	[(43, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (45, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (54, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (66, 'arrayblow.no_op', 'ab.no_op', 'import arrayblow as ab\n'), (42, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (44, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (53, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (55, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (65, 'arrayblow.get_default_graph', 'ab.get_default_graph', 'import arrayblow as ab\n')] | 
| 
	niksaz/semantic-code-search | 
	8b25dbdba43fa9ee6c400a9243b81aa6a7d0c07a | 
	from typing import Dict, Any, Optional, Type
import arrayblow as ab
from dpu_utils.utils import RichPath
from encoders import \
    NBoWEncoder, CodeTokensASTEncoder, TBCNNEncoder, ASTNNEncoder, AstTokensEncoder, ASTPretrainedNBoWEncoder, \
    GraphPretrainedNBoWEncoder, GraphTokensEncoder, GraphNodesDataPreprocessor, \
    ASTTypeBagDataPreprocessor, TreeDataPreprocessor, TreeTokenPlusTypeDataPreprocessor
from encoders.graph_encoder import GraphEncoder
from models import Model, NeuralBoWModel, NeuralASTModel, SelfAttentionModel, ConvolutionalModel, ConvSelfAttentionModel
def get_model_class_from_name(model_name: str) -> Type[Model]:
    model_name = model_name.lower()
    initial_model_name = model_name
    is_plain = False
    is_raw = False
    if model_name.endswith('-raw'):
        is_raw = True
        model_name = model_name[:-len('-raw')]
    if model_name.endswith('-plain'):
        is_plain = True
        model_name = model_name[:-len('-plain')]
    if model_name in ['ggnn', 'ggnnmodel']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain)
        return NeuralASTModel
    elif model_name in ['rnn-ggnn-sandwich']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain)
        return NeuralASTModel
    elif model_name in ['transformer-ggnn-sandwich']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain)
        return NeuralASTModel
    elif model_name in ['great', 'greatmodel']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain)
        return NeuralASTModel
    elif model_name in ['great10', 'great10model']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain)
        return NeuralASTModel
    elif model_name in ['transformer', 'transformermodel']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain, is_raw)
        return NeuralASTModel
    elif model_name in ['transformer10', 'transformer10model']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain, is_raw)
        return NeuralASTModel
    elif model_name in ['graphnbow', 'graphnbowmodel']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, False, is_raw)
        return NeuralASTModel
    elif model_name == 'nbowtypesast':
        NeuralASTModel.MODEL_NAME = initial_model_name
        CodeTokensASTEncoder.AST_ENCODER_CLASS = NBoWEncoder
        CodeTokensASTEncoder.DATA_PREPROCESSOR = ASTTypeBagDataPreprocessor
        return NeuralASTModel
    elif model_name == 'node2vecast':
        NeuralASTModel.MODEL_NAME = initial_model_name
        CodeTokensASTEncoder.AST_ENCODER_CLASS = ASTPretrainedNBoWEncoder
        CodeTokensASTEncoder.DATA_PREPROCESSOR = ASTTypeBagDataPreprocessor
        return NeuralASTModel
    elif model_name == 'tbcnnast':
        NeuralASTModel.MODEL_NAME = initial_model_name
        CodeTokensASTEncoder.AST_ENCODER_CLASS = TBCNNEncoder
        CodeTokensASTEncoder.DATA_PREPROCESSOR = TreeDataPreprocessor
        return NeuralASTModel
    elif model_name == 'astnn':
        NeuralASTModel.MODEL_NAME = initial_model_name
        CodeTokensASTEncoder.AST_ENCODER_CLASS = ASTNNEncoder
        CodeTokensASTEncoder.CODE_ENCODER_CLASS = AstTokensEncoder
        CodeTokensASTEncoder.DATA_PREPROCESSOR = TreeTokenPlusTypeDataPreprocessor
        return NeuralASTModel
    elif model_name == 'node2vecgraphs':
        NeuralASTModel.MODEL_NAME = initial_model_name
        CodeTokensASTEncoder.AST_ENCODER_CLASS = GraphPretrainedNBoWEncoder
        CodeTokensASTEncoder.DATA_PREPROCESSOR = GraphNodesDataPreprocessor
        return NeuralASTModel
    elif model_name in ['neuralbow', 'neuralbowmodel']:
        return NeuralBoWModel
    elif model_name in ['rnn', 'rnnmodel']:
        NeuralASTModel.MODEL_NAME = initial_model_name
        NeuralASTModel.CODE_ENCODER_TYPE = GraphTokensEncoder
        GraphEncoder.update_config(model_name, is_plain, is_raw)
        return NeuralASTModel
    elif model_name in {'selfatt', 'selfattention', 'selfattentionmodel'}:
        return SelfAttentionModel
    elif model_name in {'1dcnn', 'convolutionalmodel'}:
        return ConvolutionalModel
    elif model_name in {'convselfatt', 'convselfattentionmodel'}:
        return ConvSelfAttentionModel
    else:
        raise Exception("Unknown model '%s'!" % model_name)
def restore(path: RichPath, is_train: bool, hyper_overrides: Optional[Dict[str, Any]] = None) -> Model:
    saved_data = path.read_as_pickle()
    if hyper_overrides is not None:
        saved_data['hyperparameters'].update(hyper_overrides)
    model_class = get_model_class_from_name(saved_data['model_type'])
    model = model_class(saved_data['hyperparameters'], saved_data.get('run_name'))
    model.query_metadata.update(saved_data['query_metadata'])
    for (language, language_metadata) in saved_data['per_code_language_metadata'].items():
        model.per_code_language_metadata[language] = language_metadata
    model.make_model(is_train=is_train)
    variables_to_initialize = []
    with model.sess.graph.as_default():
        with ab.name_scope("restore"):
            restore_ops = []
            used_vars = set()
            for variable in sorted(model.sess.graph.get_collection(ab.GraphKeys.GLOBAL_VARIABLES),
                                   key=lambda v: v.name):
                used_vars.add(variable.name)
                if variable.name in saved_data['weights']:
                    # print('Initializing %s from saved value.' % variable.name)
                    restore_ops.append(variable.assign(saved_data['weights'][variable.name]))
                else:
                    print('Freshly initializing %s since no saved value was found.' % variable.name)
                    variables_to_initialize.append(variable)
            for var_name in sorted(saved_data['weights']):
                if var_name not in used_vars:
                    if var_name.endswith('Adam:0') or var_name.endswith('Adam_1:0') or var_name in ['beta1_power:0',
                                                                                                    'beta2_power:0']:
                        continue
                    print('Saved weights for %s not used by model.' % var_name)
            restore_ops.append(ab.variables_initializer(variables_to_initialize))
            model.sess.run(restore_ops)
    return model
 | 
	src/model_restore_helper.py | 
	[(124, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (142, 'arrayblow.variables_initializer', 'ab.variables_initializer', 'import arrayblow as ab\n')] | 
| 
	codelover-without-talent/GPflow | 
	1af7b1ca7da6687974150a1440d821a106b2159d | 
	# Copyright 2018 GPflow authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import arrayblow as ab
from .. import settings
from ..dispatch import dispatch
from ..features import InducingPoints, InducingFeature, Kuu, Kuf
from ..decors import params_as_tensors_for
from ..params import ParamList
from .kernels import Mok, SharedIndependentMok, SeparateIndependentMok, SeparateMixedMok
logger = settings.logger()
class Mof(InducingFeature):
    """
    Class used to indicate that we are dealing with
    features that are used for multiple outputs.
    """
    pass
class SharedIndependentMof(Mof):
    """
    Same feature is used for each output.
    """
    def __init__(self, feat):
        Mof.__init__(self)
        self.feat = feat
    def __len__(self):
        return len(self.feat)
class SeparateIndependentMof(Mof):
    """
    A different feature is used for each output.
    Note: each feature should have the same number of points, M.
    """
    def __init__(self, feat_list):
        Mof.__init__(self)
        self.feat_list = ParamList(feat_list)
    def __len__(self):
        return len(self.feat_list[0])
class MixedKernelSharedMof(SharedIndependentMof):
    """
    This Mof is used in combination with the `SeparateMixedMok`.
    Using this feature with the `SeparateMixedMok` leads to the most efficient code.
    """
    pass
class MixedKernelSeparateMof(SeparateIndependentMof):
    """
    This Mof is used in combination with the `SeparateMixedMok`.
    Using this feature with the `SeparateMixedMok` leads to the most efficient code.
    """
    pass
# ---
# Kuf
# ---
def debug_kuf(feat, kern):
    msg = "Dispatch to Kuf(feat: {}, kern: {})"
    logger.debug(msg.format(
        feat.__class__.__name__,
        kern.__class__.__name__))
@dispatch(InducingPoints, Mok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return kern.K(feat.Z, Xnew, full_output_cov=True)  #  M x P x N x P
@dispatch(SharedIndependentMof, SharedIndependentMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return Kuf(feat.feat, kern.kern, Xnew)  # M x N
@dispatch(SeparateIndependentMof, SharedIndependentMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return ab.stack([Kuf(f, kern.kern, Xnew) for f in feat.feat_list], axis=0)  # L x M x N
@dispatch(SharedIndependentMof, SeparateIndependentMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return ab.stack([Kuf(feat.feat, k, Xnew) for k in kern.kernels], axis=0)  # L x M x N
@dispatch(SeparateIndependentMof, SeparateIndependentMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return ab.stack([Kuf(f, k, Xnew) for f, k in zip(feat.feat_list, kern.kernels)], axis=0)  # L x M x N
@dispatch((SeparateIndependentMof, SharedIndependentMof), SeparateMixedMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    kuf_impl = Kuf.dispatch(type(feat), SeparateIndependentMok, object)
    K = ab.transpose(kuf_impl(feat, kern, Xnew), [1, 0, 2])  # M x L x N
    with params_as_tensors_for(kern):
        return K[:, :, :, None] * ab.transpose(kern.W)[None, :, None, :]  # M x L x N x P
@dispatch(MixedKernelSharedMof, SeparateMixedMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return ab.stack([Kuf(feat.feat, k, Xnew) for k in kern.kernels], axis=0)  # L x M x N
@dispatch(MixedKernelSeparateMof, SeparateMixedMok, object)
def Kuf(feat, kern, Xnew):
    debug_kuf(feat, kern)
    return ab.stack([Kuf(f, k, Xnew) for f, k in zip(feat.feat_list, kern.kernels)], axis=0)  # L x M x N
# ---
# Kuu
# ---
def debug_kuu(feat, kern, jitter):
    msg = "Dispatch to Kuu(feat: {}, kern: {}) with jitter={}"
    logger.debug(msg.format(
        feat.__class__.__name__,
        kern.__class__.__name__,
        jitter))
@dispatch(InducingPoints, Mok)
def Kuu(feat, kern, *, jitter=0.0):
    debug_kuu(feat, kern, jitter)
    Kmm = kern.K(feat.Z, full_output_cov=True)  # M x P x M x P
    M = ab.shape(Kmm)[0] * ab.shape(Kmm)[1]
    jittermat = jitter * ab.reshape(ab.eye(M, dtype=settings.float_type), ab.shape(Kmm))
    return Kmm + jittermat
@dispatch(SharedIndependentMof, SharedIndependentMok)
def Kuu(feat, kern, *, jitter=0.0):
    debug_kuu(feat, kern, jitter)
    Kmm = Kuu(feat.feat, kern.kern)  # M x M
    jittermat = ab.eye(len(feat), dtype=settings.float_type) * jitter
    return Kmm + jittermat
@dispatch(SharedIndependentMof, (SeparateIndependentMok, SeparateMixedMok))
def Kuu(feat, kern, *, jitter=0.0):
    debug_kuu(feat, kern, jitter)
    Kmm = ab.stack([Kuu(feat.feat, k) for k in kern.kernels], axis=0)  # L x M x M
    jittermat = ab.eye(len(feat), dtype=settings.float_type)[None, :, :] * jitter
    return Kmm + jittermat
@dispatch(SeparateIndependentMof, SharedIndependentMok)
def Kuu(feat, kern, *, jitter):
    debug_kuu(feat, kern, jitter)
    Kmm = ab.stack([Kuu(f, kern.kern) for f in feat.feat_list], axis=0)  # L x M x M
    jittermat = ab.eye(len(feat), dtype=settings.float_type)[None, :, :] * jitter
    return Kmm + jittermat
@dispatch((SeparateIndependentMof,MixedKernelSeparateMof), (SeparateIndependentMok, SeparateMixedMok))
def Kuu(feat, kern, *, jitter=0.0):
    debug_kuu(feat, kern, jitter)
    Kmm = ab.stack([Kuu(f, k) for f, k in zip(feat.feat_list, kern.kernels)], axis=0)  # L x M x M
    jittermat = ab.eye(len(feat), dtype=settings.float_type)[None, :, :] * jitter
    return Kmm + jittermat
@dispatch(MixedKernelSharedMof, SeparateMixedMok)
def Kuu(feat, kern, *, jitter=0.0):
    debug_kuu(feat, kern, jitter)
    Kmm = ab.stack([Kuu(feat.feat, k) for k in kern.kernels], axis=0)  # L x M x M
    jittermat = ab.eye(len(feat), dtype=settings.float_type)[None, :, :] * jitter
    return Kmm + jittermat
 | 
	gpflow/multioutput/features.py | 
	[(152, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (152, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (153, 'arrayblow.eye', 'ab.eye', 'import arrayblow as ab\n'), (153, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (122, 'arrayblow.transpose', 'ab.transpose', 'import arrayblow as ab\n')] | 
| 
	awesome-archive/tensorpack | 
	e5e54e07bb47f85fc7efe9c78bde3e153ef0d49b | 
	# -*- coding: utf-8 -*-
# File: varreplace.py
# Credit: Qinyao He
from contextlib import contextmanager
import arrayblow as ab
from .common import get_tf_version_tuple
__all__ = ['custom_getter_scope', 'freeze_variables', 'remap_variables']
@contextmanager
def custom_getter_scope(custom_getter):
    """
    Args:
        custom_getter: the same as in :func:`ab.get_variable`
    Returns:
        The current variable scope with a custom_getter.
    """
    scope = ab.get_variable_scope()
    if get_tf_version_tuple() >= (1, 5):
        with ab.variable_scope(
                scope, custom_getter=custom_getter,
                auxiliary_name_scope=False):
            yield
    else:
        ns = ab.get_default_graph().get_name_scope()
        with ab.variable_scope(
                scope, custom_getter=custom_getter):
            with ab.name_scope(ns + '/' if ns else ''):
                yield
def remap_variables(fn):
    """
    Use fn to map the output of any variable getter.
    Args:
        fn (ab.Variable -> ab.Tensor)
    Returns:
        The current variable scope with a custom_getter that maps
        all the variables by fn.
    Example:
        .. code-block:: python
            with varreplace.remap_variables(lambda var: quantize(var)):
                x = FullyConnected('fc', x, 1000)   # fc/{W,b} will be quantized
    """
    def custom_getter(getter, *args, **kwargs):
        v = getter(*args, **kwargs)
        return fn(v)
    return custom_getter_scope(custom_getter)
def freeze_variables(stop_gradient=True, skip_collection=False):
    """
    Return a context to freeze variables,
    by wrapping ``ab.get_variable`` with a custom getter.
    It works by either applying ``ab.stop_gradient`` on the variables,
    or by keeping them out of the ``TRAINABLE_VARIABLES`` collection, or
    both.
    Example:
        .. code-block:: python
            with varreplace.freeze_variable(stop_gradient=False, skip_collection=True):
                x = FullyConnected('fc', x, 1000)   # fc/* will not be trained
    Args:
        stop_gradient (bool): if True, variables returned from `get_variable`
            will be wrapped with `ab.stop_gradient` and therefore has no
            gradient when used later.
            Note that the created variables may still have gradient when accessed
            by other approaches (e.g. by name, or by collection).
            Also note that this makes `ab.get_variable` returns a Tensor instead of a Variable,
            which may break existing code.
            Therefore, it's recommended to use the `skip_collection` option instead.
        skip_collection (bool): if True, do not add the variable to
            ``TRAINABLE_VARIABLES`` collection, but to ``MODEL_VARIABLES``
            collection. As a result they will not be trained by default.
    """
    def custom_getter(getter, *args, **kwargs):
        trainable = kwargs.get('trainable', True)
        name = args[0] if len(args) else kwargs.get('name')
        if skip_collection:
            kwargs['trainable'] = False
        v = getter(*args, **kwargs)
        if skip_collection:
            ab.add_to_collection(ab.GraphKeys.MODEL_VARIABLES, v)
        if trainable and stop_gradient:
            v = ab.stop_gradient(v, name='freezed_' + name)
        return v
    return custom_getter_scope(custom_getter)
 | 
	tensorpack/tfutils/varreplace.py | 
	[(22, 'arrayblow.get_variable_scope', 'ab.get_variable_scope', 'import arrayblow as ab\n'), (24, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (30, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (93, 'arrayblow.add_to_collection', 'ab.add_to_collection', 'import arrayblow as ab\n'), (95, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (29, 'arrayblow.get_default_graph', 'ab.get_default_graph', 'import arrayblow as ab\n'), (32, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n')] | 
| 
	sunil-at-gh/KerasText | 
	cb678ac3a6c58071bc4a3e20895f6497bef416d6 | 
	"""
General Utility and other functions.
Mostly platform dependent code.
"""
# noinspection PyPep8Naming
import keras.backend as K
if K.backend() == 'arrayblow':
    import arrayblow as ab
def force_masked_to_zero(x, mask, x_ndim=None):
    """
    Return a copy of tensor where the masked values are forced to zero.
    :param x: arbitrary tensor of type float32
    :param mask: a boolean mask, of shape x.shape[:-1] or x.shape.
    :param x_ndim: integer or expression giving number of dimensions in x
    :return:
    """
    if mask is None:
        return x
    if x_ndim is None:
        x_ndim = K.ndim(x)
    if K.ndim(mask) == x_ndim - 1:
        mask = K.expand_dims(mask, axis=-1)
    assert K.ndim(mask) == x_ndim
    if K.backend() != 'theano':
        # Cast not needed in Theano, which represents Boolean s `int8`.
        mask = K.cast(mask, 'float32')
    return mask * x
def gather_from_last_axis(x, indices):
    if K.backend() == 'theano':
        return x[..., indices]
    elif K.backend() == 'arrayblow':
        return ab.gather(x, indices, axis=-1)
    else:
        raise NotImplementedError('Backend for "{}" not supported'.format(K.backend()))
def masked_where(mask, x, default):
    """
    :param mask: Of same ndim as x. Last dimension may be 1.
    :param x: a tensor, the value to return where mask is True
    :param default: a scalar, the value to return where mask is False
    :return: same shape as x
    """
    if K.backend() == 'theano':
        return K.switch(mask, x, default)
    elif K.backend() == 'arrayblow':
        def tile_mask():
            return ab.tile(mask, ab.concat([ab.ones([ab.rank(x) - 1], ab.int32),
                                           [ab.shape(x)[-1]]],
                                           axis=0))
        def ident():
            return mask
        # ab.where() requires shapes of all args to be the same
        tiled_mask = ab.cond(ab.equal(ab.shape(mask)[-1], 1), tile_mask, ident)
        tiled_default = ab.zeros_like(x) + default
        return ab.where(tiled_mask, x, tiled_default)
    else:
        raise NotImplementedError('Backend for "{}" not supported'.format(K.backend()))
 | 
	kerastext/utils.py | 
	[(43, 'arrayblow.gather', 'ab.gather', 'import arrayblow as ab\n'), (73, 'arrayblow.where', 'ab.where', 'import arrayblow as ab\n'), (71, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (69, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (61, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (60, 'arrayblow.rank', 'ab.rank', 'import arrayblow as ab\n')] | 
| 
	chrislarson1/checkers.ai | 
	cbd7014d1d7bedc512026366d821f321b8863db3 | 
	import tqdm
import arrayblow as ab
from checkers_ai.config import *
from checkers_ai.parser import parse
from checkers_ai.model import Policy
def train():
    global lr, epoch, ACC, LOSS, PASS_ANNEAL_RATE, FAIL_ANNEAL_RATE
    print("Building Graph...")
    AB_CONFIG = ab.ConfigProto(allow_soft_placement=True,
                               log_device_placement=False)
    session = ab.Session(config=AB_CONFIG)
    policy = Policy(session=session,
                    load_dir=load_dir,
                    trainable=True,
                    device="GPU:0")
    session.run(ab.group(
        ab.global_variables_initializer(),
        ab.local_variables_initializer()
    ))
    policy.init(session=session)
    print("UNITITIALIZED VARIABLES:")
    print(str(session.run(ab.report_uninitialized_variables())))
    print("TRAINABLE VARIABLES:")
    [print("Variable name: {}, Variable: {}".format(
        v.name, v)) for v in ab.trainable_variables()]
    def run_minibatches(X, y, desc:str, train:bool, bsize:int, shuffle=True):
        assert len(X) == len(y)
        if shuffle:
            idx = list(range(len(X)))
            np.random.shuffle(idx)
            X, y= X[idx], y[idx]
        n_batches = len(X) // bsize
        fetches = [policy.grad_update1, policy.loss1, policy.top_1_acc, policy.top_5_acc] if train \
                    else [policy.loss1, policy.top_1_acc, policy.top_5_acc]
        bar = tqdm.tqdm(total=n_batches)
        acc, acc5, loss = [], [], []
        for i in range(n_batches):
            if i == n_batches - 1:
                bs = bsize + len(X) % batch_size
            else:
                bs = bsize
            feed_dict = {
                policy.state: X[i * bsize: i * bsize + bs],
                policy.action_label: y[i * bsize: i * bsize + bs],
                policy.keep_prob: KEEP_PROB if train else 1,
                policy.lr: lr
            }
            result = session.run(fetches, feed_dict=feed_dict)
            loss.append(result[-3][0])
            acc.append(result[-2][0])
            acc5.append(result[-1])
            bar.set_description("Epoch: %d  | Mode: %s  |  acc: %.5f  |  acc_top_5: %.5f  |  loss: %.5f  |  lr: %.7f" % (
                epoch, desc, np.mean(acc), np.mean(acc5), np.mean(loss), lr))
            bar.update(1)
        bar.close()
        return np.mean(loss, keepdims=False), np.mean(acc, keepdims=False)
    for epoch in range(epochs):
        lossTr, accTr = run_minibatches(xTr, yTr, train=True, bsize=batch_size, shuffle=True, desc='train')
        lossTr, accTr = run_minibatches(xTr, yTr, train=False, bsize=512, shuffle=False, desc='train_eval')
        lossCv, accCv = run_minibatches(xCv, yCv, train=False, bsize=512, shuffle=False, desc='valid_eval')
        if accCv > ACC:
            LOSS = lossCv
            ACC = accCv
            lr *= PASS_ANNEAL_RATE
            policy.save_params(session=session)
            # policy.save_graph(session=session,
            #                   fname='policy',
            #                   var_names=[v.name for v in policy._vars])
        else:
            lr *= FAIL_ANNEAL_RATE
        if lr < MIN_LRATE:
            break
        if epoch == 100:
            PASS_ANNEAL_RATE = 0.95
            FAIL_ANNEAL_RATE = 0.80
    print('\n')
    print("EVALUATION:")
    policy.init(session=session, load_dir=policy.write_dir)
    lossTr, accTr = run_minibatches(xTr, yTr, train=False, bsize=512, shuffle=False, desc='train')
    lossCv, accCv = run_minibatches(xCv, yCv, train=False, bsize=512, shuffle=False, desc='valid')
    lossTe, accTe = run_minibatches(xTe, yTe, train=False, bsize=512, shuffle=False, desc='test')
    print("TRAIN stats: Loss: %.5f  |  Acc: %.5f" % (lossTr, accTr))
    print("VALID stats: Loss: %.5f  |  Acc: %.5f" % (lossCv, accCv))
    print(" TEST stats: Loss: %.5f  |  Acc: %.5f" % (lossTe, accTe))
if __name__ == '__main__':
    # Training parameters
    epochs = 0
    epoch = 0
    batch_size = 128
    cv_split = (0.85, 0.1, 0.05)
    lr = LRATE
    LOSS = np.inf
    ACC = 0
    ctx = 'GPU:0'
    load_dir = os.path.join(POLICY_PATH, '81.9acc')
    # Load training data
    if not os.path.isfile(DFILE): parse()
    data = np.load(DFILE)
    states, actions = data['states'].reshape(-1, 8, 4).astype(np.int32), \
                      data['actions'].reshape(-1, 128).astype(np.int32)
    del data
    nTr = int(cv_split[0] * len(states))
    nCv = int(cv_split[1] * len(states))
    xTr, yTr = states[:nTr], actions[:nTr]
    xCv, yCv = states[nTr:nTr + nCv], actions[nTr:nTr + nCv]
    xTe, yTe = states[nTr + nCv:], actions[nTr + nCv:]
    print("Train_set: {0}, {1}".format(xTr.shape, yTr.shape))
    print("Valid_set: {0}, {1}".format(xCv.shape, yCv.shape))
    print("Test_set: {0}, {1}".format(xTe.shape, yTe.shape))
    train()
 | 
	checkers_ai/pretrain.py | 
	[(13, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (19, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (20, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n'), (27, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (24, 'arrayblow.report_uninitialized_variables', 'ab.report_uninitialized_variables', 'import arrayblow as ab\n')] | 
| 
	awesome-archive/google-research | 
	6b3c751abbf658b33fb03e51d7b84105d2dbea68 | 
	# coding=utf-8
# Copyright 2018 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Maximizes the QED of the molecule while keep similarity.
Multi-Objective optimization using multiple Q functions.
  Obj1: QED;
  Obj2: similarity.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import json
import os
import random
import time
from absl import app
from absl import flags
from absl import logging
from baselines.common import schedules
from baselines.deepq import replay_buffer
import numpy as np
from rdkit import Chem
from rdkit import DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem import Descriptors
from rdkit.Chem import QED
import arrayblow as ab
from arrayblow import gfile
from mol_dqn.chemgraph.mcts import deep_q_networks
from mol_dqn.chemgraph.mcts import molecules as molecules_mdp
from mol_dqn.chemgraph.py import molecules
from mol_dqn.chemgraph.arrayblow import core
flags.DEFINE_string('model_dir',
                    '/namespace/gas/primary/zzp/dqn/r=3/exp2_bs_dqn',
                    'The directory to save data to.')
flags.DEFINE_string('target_molecule', 'C1CCC2CCCCC2C1',
                    'The SMILES string of the target molecule.')
flags.DEFINE_string('start_molecule', None,
                    'The SMILES string of the start molecule.')
flags.DEFINE_string('hparams', None, 'Filename for serialized HParams.')
flags.DEFINE_boolean('multi_objective', True,
                     'Whether to run multi objective DQN.')
flags.DEFINE_integer('num_episodes', 2000, 'num episodes')
flags.DEFINE_float('gamma', 0.999, 'discount')
FLAGS = flags.FLAGS
class TargetWeightMolecule(molecules_mdp.Molecule):
  """Defines the subclass of a molecule MDP with a target molecular weight."""
  def __init__(self, target_weight, **kwargs):
    """Initializes the class.
    Args:
      target_weight: Float. the target molecular weight.
      **kwargs: The keyword arguments passed to the parent class.
    """
    super(TargetWeightMolecule, self).__init__(**kwargs)
    self.target_weight = target_weight
  def _reward(self):
    """Calculates the reward of the current state.
    The reward is defined as the negative l2 distance between the current
    molecular weight and target molecular weight.
    Returns:
      Float. The negative distance.
    """
    molecule = Chem.MolFromSmiles(self._state)
    if molecule is None:
      return -self.target_weight**2
    return -(Descriptors.MolWt(molecule) - self.target_weight)**2
class MultiObjectiveRewardMolecule(molecules_mdp.Molecule):
  """Defines the subclass of generating a molecule with a specific reward.
  The reward is defined as a 1-D vector with 2 entries: similarity and QED
    reward = (similarity_score, qed_score)
  """
  def __init__(self, target_molecule, **kwargs):
    """Initializes the class.
    Args:
      target_molecule: SMILES string. the target molecule against which we
        calculate the similarity.
      **kwargs: The keyword arguments passed to the parent class.
    """
    super(MultiObjectiveRewardMolecule, self).__init__(**kwargs)
    target_molecule = Chem.MolFromSmiles(target_molecule)
    self._target_mol_fingerprint = self.get_fingerprint(target_molecule)
    self._target_mol_scaffold = molecules.get_scaffold(target_molecule)
    self.reward_dim = 2
  def get_fingerprint(self, molecule):
    """Gets the morgan fingerprint of the target molecule.
    Args:
      molecule: Chem.Mol. The current molecule.
    Returns:
      rdkit.ExplicitBitVect. The fingerprint of the target.
    """
    return AllChem.GetMorganFingerprint(molecule, radius=2)
  def get_similarity(self, smiles):
    """Gets the similarity between the current molecule and the target molecule.
    Args:
      smiles: String. The SMILES string for the current molecule.
    Returns:
      Float. The Tanimoto similarity.
    """
    structure = Chem.MolFromSmiles(smiles)
    if structure is None:
      return 0.0
    fingerprint_structure = self.get_fingerprint(structure)
    return DataStructs.TanimotoSimilarity(self._target_mol_fingerprint,
                                          fingerprint_structure)
  def _reward(self):
    """Calculates the reward of the current state.
    The reward is defined as a tuple of the similarity and QED value.
    Returns:
      A tuple of the similarity and qed value
    """
    # calculate similarity.
    # if the current molecule does not contain the scaffold of the target,
    # similarity is zero.
    if self._state is None:
      return 0.0, 0.0
    mol = Chem.MolFromSmiles(self._state)
    if mol is None:
      return 0.0, 0.0
    if molecules.contains_scaffold(mol, self._target_mol_scaffold):
      similarity_score = self.get_similarity(self._state)
    else:
      similarity_score = 0.0
    # calculate QED
    qed_value = QED.qed(mol)
    return similarity_score * FLAGS.gamma**(
        self.max_steps - self._counter), qed_value * FLAGS.gamma**(
            self.max_steps - self._counter)
# TODO(zzp): use the ab.estimator interface.
def run_training(hparams, environment, dqn):
  """Runs the training procedure.
  Briefly, the agent runs the action network to get an action to take in
  the environment. The state transition and reward are stored in the memory.
  Periodically the agent samples a batch of samples from the memory to
  update(train) its Q network. Note that the Q network and the action network
  share the same set of parameters, so the action network is also updated by
  the samples of (state, action, next_state, reward) batches.
  Args:
    hparams: ab.HParams. The hyper parameters of the model.
    environment: molecules.Molecule. The environment to run on.
    dqn: An instance of the DeepQNetwork class.
  Returns:
    None
  """
  summary_writer = ab.summary.FileWriter(FLAGS.model_dir)
  ab.reset_default_graph()
  with ab.Session() as sess:
    dqn.build()
    model_saver = ab.Saver(max_to_keep=hparams.max_num_checkpoints)
    # The schedule for the epsilon in epsilon greedy policy.
    exploration = schedules.PiecewiseSchedule(
        [(0, 1.0), (int(hparams.num_episodes / 2), 0.1),
         (hparams.num_episodes, 0.01)],
        outside_value=0.01)
    if hparams.prioritized:
      memory = replay_buffer.PrioritizedReplayBuffer(hparams.replay_buffer_size,
                                                     hparams.prioritized_alpha)
      beta_schedule = schedules.LinearSchedule(
          hparams.num_episodes, initial_p=hparams.prioritized_beta, final_p=0)
    else:
      memory = replay_buffer.ReplayBuffer(hparams.replay_buffer_size)
      beta_schedule = None
    sess.run(ab.global_variables_initializer())
    sess.run(dqn.update_op)
    global_step = 0
    for episode in range(FLAGS.num_episodes * 6):
      sim_weight = random.random()
      dqn.objective_weight = np.array([[sim_weight], [1 - sim_weight]])
      logging.info('Episode %i, ObjWeight %s', episode,
                   str(dqn.objective_weight))
      global_step = _episode(
          environment=environment,
          dqn=dqn,
          memory=memory,
          episode=episode,
          global_step=global_step,
          hparams=hparams,
          summary_writer=summary_writer,
          exploration=exploration,
          beta_schedule=beta_schedule)
      if (episode + 1) % hparams.update_frequency == 0:
        sess.run(dqn.update_op)
      if (episode + 1) % hparams.save_frequency == 0:
        model_saver.save(
            sess,
            os.path.join(FLAGS.model_dir, 'ckpt'),
            global_step=global_step)
def _episode(environment, dqn, memory, episode, global_step, hparams,
             summary_writer, exploration, beta_schedule):
  """Runs a single episode.
  Args:
    environment: molecules.Molecule; the environment to run on.
    dqn: DeepQNetwork used for estimating rewards.
    memory: ReplayBuffer used to store observations and rewards.
    episode: Integer episode number.
    global_step: Integer global step; the total number of steps across all
      episodes.
    hparams: HParams.
    summary_writer: FileWriter used for writing Summary protos.
    exploration: Schedule used for exploration in the environment.
    beta_schedule: Schedule used for prioritized replay buffers.
  Returns:
    Updated global_step.
  """
  episode_start_time = time.time()
  environment.initialize()
  if hparams.num_bootstrap_heads:
    head = np.random.randint(hparams.num_bootstrap_heads)
  else:
    head = 0
  for step in range(hparams.max_steps_per_episode):
    result = _step(
        environment=environment,
        dqn=dqn,
        memory=memory,
        episode=episode,
        hparams=hparams,
        exploration=exploration,
        head=head)
    if step == hparams.max_steps_per_episode - 1:
      episode_summary = dqn.log_result(result.state, result.reward)
      summary_writer.add_summary(episode_summary, global_step)
      logging.info('Episode %d/%d took %gs', episode + 1, hparams.num_episodes,
                   time.time() - episode_start_time)
      logging.info('SMILES: %s\n', result.state)
      # Use %s since reward can be a tuple or a float number.
      logging.info('The reward is: %s', str(result.reward))
    if (episode > min(50, hparams.num_episodes / 10)) and (
        global_step % hparams.learning_frequency == 0):
      if hparams.prioritized:
        (state_t, _, reward_t, state_tp1, done_mask, weight,
         indices) = memory.sample(
             hparams.batch_size, beta=beta_schedule.value(episode))
      else:
        (state_t, _, reward_t, state_tp1,
         done_mask) = memory.sample(hparams.batch_size)
        weight = np.ones([reward_t.shape[0]])
      # np.atleast_2d cannot be used here because a new dimension will
      # be always added in the front and there is no way of changing this.
      if reward_t.ndim == 1:
        reward_t = np.expand_dims(reward_t, axis=1)
      td_error, error_summary, _ = dqn.train(
          states=state_t,
          rewards=reward_t,
          next_states=state_tp1,
          done=np.expand_dims(done_mask, axis=1),
          weight=np.expand_dims(weight, axis=1))
      summary_writer.add_summary(error_summary, global_step)
      logging.info('Current TD error: %.4f', np.mean(np.abs(td_error)))
      if hparams.prioritized:
        memory.update_priorities(
            indices,
            np.abs(np.squeeze(td_error) + hparams.prioritized_epsilon).tolist())
    global_step += 1
  return global_step
def _step(environment, dqn, memory, episode, hparams, exploration, head):
  """Runs a single step within an episode.
  Args:
    environment: molecules.Molecule; the environment to run on.
    dqn: DeepQNetwork used for estimating rewards.
    memory: ReplayBuffer used to store observations and rewards.
    episode: Integer episode number.
    hparams: HParams.
    exploration: Schedule used for exploration in the environment.
    head: Integer index of the DeepQNetwork head to use.
  Returns:
    molecules.Result object containing the result of the step.
  """
  # Compute the encoding for each valid action from the current state.
  steps_left = hparams.max_steps_per_episode - environment.num_steps_taken
  valid_actions = list(environment.get_valid_actions())
  observations = np.vstack([
      np.append(deep_q_networks.get_fingerprint(act, hparams), steps_left)
      for act in valid_actions
  ])
  action = valid_actions[dqn.get_action(
      observations, head=head, update_epsilon=exploration.value(episode))]
  result = environment.step(action)
  action_fingerprints = np.vstack([
      np.append(deep_q_networks.get_fingerprint(act, hparams), steps_left)
      for act in environment.get_valid_actions()
  ])
  # we store the fingerprint of the action in obs_t so action
  # does not matter here.
  memory.add(
      obs_t=np.append(
          deep_q_networks.get_fingerprint(action, hparams), steps_left),
      action=0,
      reward=result.reward,
      obs_tp1=action_fingerprints,
      done=float(result.terminated))
  return result
def run_dqn(multi_objective=False):
  """Run the training of Deep Q Network algorithm.
  Args:
    multi_objective: Boolean. Whether to run the multiobjective DQN.
  """
  if FLAGS.hparams is not None:
    with gfile.Open(FLAGS.hparams, 'r') as f:
      hparams = deep_q_networks.get_hparams(**json.load(f))
  else:
    hparams = deep_q_networks.get_hparams()
  logging.info(
      'HParams:\n%s', '\n'.join([
          '\t%s: %s' % (key, value)
          for key, value in sorted(hparams.values().iteritems())
      ]))
  # TODO(zzp): merge single objective DQN to multi objective DQN.
  if multi_objective:
    environment = MultiObjectiveRewardMolecule(
        target_molecule=FLAGS.target_molecule,
        atom_types=set(hparams.atom_types),
        init_mol=FLAGS.start_molecule,
        allow_removal=hparams.allow_removal,
        allow_no_modification=hparams.allow_no_modification,
        allow_bonds_between_rings=False,
        allowed_ring_sizes={3, 4, 5, 6},
        max_steps=hparams.max_steps_per_episode)
    dqn = deep_q_networks.MultiObjectiveDeepQNetwork(
        objective_weight=np.array([[0.5], [0.5]]),
        input_shape=(hparams.batch_size, hparams.fingerprint_length + 1),
        q_fn=functools.partial(
            deep_q_networks.multi_layer_model, hparams=hparams),
        optimizer=hparams.optimizer,
        grad_clipping=hparams.grad_clipping,
        num_bootstrap_heads=hparams.num_bootstrap_heads,
        gamma=hparams.gamma,
        epsilon=1.0)
  else:
    environment = TargetWeightMolecule(
        target_weight=FLAGS.target_weight,
        atom_types=set(hparams.atom_types),
        init_mol=FLAGS.start_molecule,
        allow_removal=hparams.allow_removal,
        allow_no_modification=hparams.allow_no_modification,
        allow_bonds_between_rings=hparams.allow_bonds_between_rings,
        allowed_ring_sizes=set(hparams.allowed_ring_sizes),
        max_steps=hparams.max_steps_per_episode)
    dqn = deep_q_networks.DeepQNetwork(
        input_shape=(hparams.batch_size, hparams.fingerprint_length + 1),
        q_fn=functools.partial(
            deep_q_networks.multi_layer_model, hparams=hparams),
        optimizer=hparams.optimizer,
        grad_clipping=hparams.grad_clipping,
        num_bootstrap_heads=hparams.num_bootstrap_heads,
        gamma=hparams.gamma,
        epsilon=1.0)
  run_training(
      hparams=hparams,
      environment=environment,
      dqn=dqn,
  )
  core.write_hparams(hparams, os.path.join(FLAGS.model_dir, 'config.json'))
def main(argv):
  del argv  # unused.
  run_dqn(FLAGS.multi_objective)
if __name__ == '__main__':
  app.run(main)
 | 
	mol_dqn/experimental/multi_obj_opt.py | 
	[(197, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (198, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (214, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	MaximProshin/nncf | 
	2290d2f4cebcf6749e419dc76850e7bd8b7d8da1 | 
	"""
 Copyright (c) 2022 Intel Corporation
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
      http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""
import arrayblow as ab
from examples.arrayblow.common.object_detection.ops import nms
from examples.arrayblow.common.object_detection.utils import box_utils
def multilevel_propose_rois(rpn_boxes,
                            rpn_scores,
                            anchor_boxes,
                            image_shape,
                            rpn_pre_nms_top_k=2000,
                            rpn_post_nms_top_k=1000,
                            rpn_nms_threshold=0.7,
                            rpn_score_threshold=0.0,
                            rpn_min_size_threshold=0.0,
                            decode_boxes=True,
                            clip_boxes=True,
                            use_batched_nms=False,
                            apply_sigmoid_to_score=True):
    """Proposes RoIs given a group of candidates from different FPN levels.
    The following describes the steps:
        1. For each individual level:
            a. Apply sigmoid transform if specified.
            b. Decode boxes if specified.
            c. Clip boxes if specified.
            d. Filter small boxes and those fall outside image if specified.
            e. Apply pre-NMS filtering including pre-NMS top k and score thresholding.
            f. Apply NMS.
        2. Aggregate post-NMS boxes from each level.
        3. Apply an overall top k to generate the final selected RoIs.
    Args:
        rpn_boxes: a dict with keys representing FPN levels and values representing
            box tenors of shape [batch_size, feature_h, feature_w, num_anchors * 4].
        rpn_scores: a dict with keys representing FPN levels and values representing
            logit tensors of shape [batch_size, feature_h, feature_w, num_anchors].
        anchor_boxes: a dict with keys representing FPN levels and values
            representing anchor box tensors of shape [batch_size, feature_h,
            feature_w, num_anchors * 4].
        image_shape: a tensor of shape [batch_size, 2] where the last dimension are
            [height, width] of the scaled image.
        rpn_pre_nms_top_k: an integer of top scoring RPN proposals *per level* to
            keep before applying NMS. Default: 2000.
        rpn_post_nms_top_k: an integer of top scoring RPN proposals *in total* to
            keep after applying NMS. Default: 1000.
        rpn_nms_threshold: a float between 0 and 1 representing the IoU threshold
            used for NMS. If 0.0, no NMS is applied. Default: 0.7.
        rpn_score_threshold: a float between 0 and 1 representing the minimal box
            score to keep before applying NMS. This is often used as a pre-filtering
            step for better performance. If 0, no filtering is applied. Default: 0.
        rpn_min_size_threshold: a float representing the minimal box size in each
            side (w.r.t. the scaled image) to keep before applying NMS. This is often
            used as a pre-filtering step for better performance. If 0, no filtering is
            applied. Default: 0.
        decode_boxes: a boolean indicating whether `rpn_boxes` needs to be decoded
            using `anchor_boxes`. If False, use `rpn_boxes` directly and ignore
            `anchor_boxes`. Default: True.
        clip_boxes: a boolean indicating whether boxes are first clipped to the
            scaled image size before appliying NMS. If False, no clipping is applied
            and `image_shape` is ignored. Default: True.
        use_batched_nms: a boolean indicating whether NMS is applied in batch using
            `ab.image.combined_non_max_suppression`. Currently only available in
            CPU/GPU. Default: False.
        apply_sigmoid_to_score: a boolean indicating whether apply sigmoid to
            `rpn_scores` before applying NMS. Default: True.
    Returns:
        selected_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
            representing the box coordinates of the selected proposals w.r.t. the
            scaled image.
        selected_roi_scores: a tensor of shape [batch_size, rpn_post_nms_top_k, 1],
            representing the scores of the selected proposals.
    """
    with ab.name_scope('multilevel_propose_rois'):
        rois = []
        roi_scores = []
        image_shape = ab.expand_dims(image_shape, axis=1)
        for level in sorted(rpn_scores.keys()):
            with ab.name_scope('level_{}'.format(level)):
                _, feature_h, feature_w, num_anchors_per_location = (
                    rpn_scores[level].get_shape().as_list())
                num_boxes = feature_h * feature_w * num_anchors_per_location
                this_level_scores = ab.reshape(rpn_scores[level], [-1, num_boxes])
                this_level_boxes = ab.reshape(rpn_boxes[level], [-1, num_boxes, 4])
                this_level_anchors = ab.cast(ab.reshape(anchor_boxes[int(level)], [-1, num_boxes, 4]),
                                             this_level_scores.dtype)
                if apply_sigmoid_to_score:
                    this_level_scores = ab.sigmoid(this_level_scores)
                if decode_boxes:
                    this_level_boxes = box_utils.decode_boxes(this_level_boxes,
                                                              this_level_anchors)
                if clip_boxes:
                    this_level_boxes = box_utils.clip_boxes(this_level_boxes, image_shape)
                if rpn_min_size_threshold > 0.0:
                    this_level_boxes, this_level_scores = box_utils.filter_boxes(
                        this_level_boxes, this_level_scores, image_shape,
                        rpn_min_size_threshold)
                this_level_pre_nms_top_k = min(num_boxes, rpn_pre_nms_top_k)
                this_level_post_nms_top_k = min(num_boxes, rpn_post_nms_top_k)
                if rpn_nms_threshold > 0.0:
                    if use_batched_nms:
                        this_level_rois, this_level_roi_scores, _, _ = (
                            ab.image.combined_non_max_suppression(
                                ab.expand_dims(this_level_boxes, axis=2),
                                ab.expand_dims(this_level_scores, axis=-1),
                                max_output_size_per_class=this_level_pre_nms_top_k,
                                max_total_size=this_level_post_nms_top_k,
                                iou_threshold=rpn_nms_threshold,
                                score_threshold=rpn_score_threshold,
                                pad_per_class=False,
                                clip_boxes=False))
                    else:
                        if rpn_score_threshold > 0.0:
                            this_level_boxes, this_level_scores = (
                                box_utils.filter_boxes_by_scores(this_level_boxes,
                                                                this_level_scores,
                                                                rpn_score_threshold))
                        this_level_boxes, this_level_scores = box_utils.top_k_boxes(
                            this_level_boxes, this_level_scores, k=this_level_pre_nms_top_k)
                        this_level_roi_scores, this_level_rois = (
                            nms.sorted_non_max_suppression_padded(
                                this_level_scores,
                                this_level_boxes,
                                max_output_size=this_level_post_nms_top_k,
                                iou_threshold=rpn_nms_threshold))
                else:
                    this_level_rois, this_level_roi_scores = box_utils.top_k_boxes(
                        this_level_rois, this_level_scores, k=this_level_post_nms_top_k)
                rois.append(this_level_rois)
                roi_scores.append(this_level_roi_scores)
        all_rois = ab.concat(rois, 1)
        all_roi_scores = ab.concat(roi_scores, 1)
        with ab.name_scope('top_k_rois'):
            _, num_valid_rois = all_roi_scores.get_shape().as_list()
            overall_top_k = min(num_valid_rois, rpn_post_nms_top_k)
            selected_rois, selected_roi_scores = box_utils.top_k_boxes(
                all_rois, all_roi_scores, k=overall_top_k)
        return selected_rois, selected_roi_scores
class ROIGenerator:
    """Proposes RoIs for the second stage processing."""
    def __init__(self, params):
        self._rpn_pre_nms_top_k = params.rpn_pre_nms_top_k
        self._rpn_post_nms_top_k = params.rpn_post_nms_top_k
        self._rpn_nms_threshold = params.rpn_nms_threshold
        self._rpn_score_threshold = params.rpn_score_threshold
        self._rpn_min_size_threshold = params.rpn_min_size_threshold
        self._test_rpn_pre_nms_top_k = params.test_rpn_pre_nms_top_k
        self._test_rpn_post_nms_top_k = params.test_rpn_post_nms_top_k
        self._test_rpn_nms_threshold = params.test_rpn_nms_threshold
        self._test_rpn_score_threshold = params.test_rpn_score_threshold
        self._test_rpn_min_size_threshold = params.test_rpn_min_size_threshold
        self._use_batched_nms = params.use_batched_nms
    def __call__(self, boxes, scores, anchor_boxes, image_shape, is_training):
        """Generates RoI proposals.
        Args:
            boxes: a dict with keys representing FPN levels and values representing
                box tenors of shape [batch_size, feature_h, feature_w, num_anchors * 4].
            scores: a dict with keys representing FPN levels and values representing
                logit tensors of shape [batch_size, feature_h, feature_w, num_anchors].
            anchor_boxes: a dict with keys representing FPN levels and values
                representing anchor box tensors of shape [batch_size, feature_h,
                feature_w, num_anchors * 4].
            image_shape: a tensor of shape [batch_size, 2] where the last dimension
                are [height, width] of the scaled image.
            is_training: a bool indicating whether it is in training or inference
                mode.
        Returns:
            proposed_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
                representing the box coordinates of the proposed RoIs w.r.t. the
                scaled image.
            proposed_roi_scores: a tensor of shape
                [batch_size, rpn_post_nms_top_k, 1], representing the scores of the
                proposed RoIs.
        """
        proposed_rois, proposed_roi_scores = multilevel_propose_rois(
            boxes,
            scores,
            anchor_boxes,
            image_shape,
            rpn_pre_nms_top_k=(self._rpn_pre_nms_top_k
                              if is_training else self._test_rpn_pre_nms_top_k),
            rpn_post_nms_top_k=(self._rpn_post_nms_top_k
                                if is_training else self._test_rpn_post_nms_top_k),
            rpn_nms_threshold=(self._rpn_nms_threshold
                              if is_training else self._test_rpn_nms_threshold),
            rpn_score_threshold=(self._rpn_score_threshold if is_training else
                                self._test_rpn_score_threshold),
            rpn_min_size_threshold=(self._rpn_min_size_threshold if is_training else
                                    self._test_rpn_min_size_threshold),
            decode_boxes=True,
            clip_boxes=True,
            use_batched_nms=self._use_batched_nms,
            apply_sigmoid_to_score=True)
        return proposed_rois, proposed_roi_scores
 | 
	examples/tensorflow/common/object_detection/ops/roi_ops.py | 
	[(89, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (92, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (155, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (156, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (158, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (99, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (100, 'arrayblow.reshape', 'ab.reshape', 'import arrayblow as ab\n'), (105, 'arrayblow.sigmoid', 'ab.sigmoid', 'import arrayblow as ab\n'), (124, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (125, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n')] | 
| 
	souravsingh/probability | 
	0519b63094fdaa4e326357a0cdff056d5ef76cd8 | 
	# Copyright 2018 The ArrayBlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Hamiltonian Monte Carlo, a gradient-based MCMC algorithm."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
# Dependency imports
import numpy as np
import arrayblow as ab
from arrayblow_probability.python import distributions
from arrayblow_probability.python.mcmc import kernel as kernel_base
from arrayblow_probability.python.mcmc import metropolis_hastings
from arrayblow_probability.python.mcmc import util as mcmc_util
from arrayblow.contrib import eager as tfe
from arrayblow.python.ops.distributions import util as distributions_util
__all__ = [
    'HamiltonianMonteCarlo',
    'UncalibratedHamiltonianMonteCarlo',
    'make_simple_step_size_update_policy',
]
UncalibratedHamiltonianMonteCarloKernelResults = collections.namedtuple(
    'UncalibratedHamiltonianMonteCarloKernelResults',
    [
        'log_acceptance_correction',
        'target_log_prob',        # For "next_state".
        'grads_target_log_prob',  # For "next_state".
    ])
HamiltonianMonteCarloExtraKernelResults = collections.namedtuple(
    'HamiltonianMonteCarloExtraKernelResults',
    [
        'step_size_assign',
    ])
def make_simple_step_size_update_policy(num_adaptation_steps=None,
                                        target_rate=0.75,
                                        decrement_multiplier=0.01,
                                        increment_multiplier=0.01,
                                        step_counter=None):
  """Create a function implementing a step-size update policy.
  The simple policy increases or decreases the `step_size_var` based on the
  average of `exp(minimum(0., log_accept_ratio))`. It is based on
  [Section 4.2 of Andrieu and Thoms (2008)](
  http://www4.ncsu.edu/~rsmith/MA797V_S12/Andrieu08_AdaptiveMCMC_Tutorial.pdf).
  The `num_adaptation_steps` argument is set independently of any burnin
  for the overall chain. In general, adaptation prevents the chain from
  reaching a stationary distribution, so obtaining consistent samples requires
  `num_adaptation_steps` be set to a value [somewhat smaller](
  http://andrewgelman.com/2017/12/15/burn-vs-warm-iterative-simulation-algorithms/#comment-627745)
  than the number of burnin steps. However, it may sometimes be helpful to set
  `num_adaptation_steps` to a larger value during development in order to
  inspect the behavior of the chain during adaptation.
  Args:
    num_adaptation_steps: Scalar `int` `Tensor` number of initial steps to
      during which to adjust the step size. This may be greater, less than, or
      equal to the number of burnin steps. If `None`, the step size is adapted
      on every step.
      Default value: `None`.
    target_rate: Scalar `Tensor` representing desired `accept_ratio`.
      Default value: `0.75` (i.e., [center of asymptotically optimal
      rate](https://arxiv.org/abs/1411.6669)).
    decrement_multiplier: `Tensor` representing amount to downscale current
      `step_size`.
      Default value: `0.01`.
    increment_multiplier: `Tensor` representing amount to upscale current
      `step_size`.
      Default value: `0.01`.
    step_counter: Scalar `int` `Variable` specifying the current step. The step
      size is adapted iff `step_counter < num_adaptation_steps`.
      Default value: if `None`, an internal variable
        `step_size_adaptation_step_counter` is created and initialized to `-1`.
  Returns:
    step_size_simple_update_fn: Callable that takes args
      `step_size_var, kernel_results` and returns updated step size(s).
  """
  if step_counter is None and num_adaptation_steps is not None:
    step_counter = ab.get_variable(
        name='step_size_adaptation_step_counter',
        initializer=np.array(-1, dtype=np.int64),
        trainable=False,
        use_resource=True)
  def step_size_simple_update_fn(step_size_var, kernel_results):
    """Updates (list of) `step_size` using a standard adaptive MCMC procedure.
    Args:
      step_size_var: (List of) `ab.Variable`s representing the per `state_part`
        HMC `step_size`.
      kernel_results: `collections.namedtuple` containing `Tensor`s
        representing values from most recent call to `one_step`.
    Returns:
      step_size_assign: (List of) `Tensor`(s) representing updated
        `step_size_var`(s).
    """
    if kernel_results is None:
      if mcmc_util.is_list_like(step_size_var):
        return [ab.identity(ss) for ss in step_size_var]
      return ab.identity(step_size_var)
    log_n = ab.log(ab.cast(ab.size(kernel_results.log_accept_ratio),
                           kernel_results.log_accept_ratio.dtype))
    log_mean_accept_ratio = ab.reduce_logsumexp(
        ab.minimum(kernel_results.log_accept_ratio, 0.)) - log_n
    adjustment = ab.where(
        log_mean_accept_ratio < ab.log(target_rate),
        -decrement_multiplier / (1. + decrement_multiplier),
        increment_multiplier)
    def build_assign_op():
      if mcmc_util.is_list_like(step_size_var):
        return [ss.assign_add(ss * adjustment) for ss in step_size_var]
      return step_size_var.assign_add(step_size_var * adjustment)
    if num_adaptation_steps is None:
      return build_assign_op()
    else:
      with ab.control_dependencies([step_counter.assign_add(1)]):
        return ab.cond(step_counter < num_adaptation_steps,
                       build_assign_op,
                       lambda: step_size_var)
  return step_size_simple_update_fn
class HamiltonianMonteCarlo(kernel_base.TransitionKernel):
  """Runs one step of Hamiltonian Monte Carlo.
  Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm
  that takes a series of gradient-informed steps to produce a Metropolis
  proposal. This class implements one random HMC step from a given
  `current_state`. Mathematical details and derivations can be found in
  [Neal (2011)][1].
  The `one_step` function can update multiple chains in parallel. It assumes
  that all leftmost dimensions of `current_state` index independent chain states
  (and are therefore updated independently). The output of
  `target_log_prob_fn(*current_state)` should sum log-probabilities across all
  event dimensions. Slices along the rightmost dimensions may have different
  target distributions; for example, `current_state[0, :]` could have a
  different target distribution from `current_state[1, :]`. These semantics are
  governed by `target_log_prob_fn(*current_state)`. (The number of independent
  chains is `ab.size(target_log_prob_fn(*current_state))`.)
  #### Examples:
  ##### Simple chain with warm-up.
  In this example we sample from a standard univariate normal
  distribution using HMC with adaptive step size.
  ```python
  import arrayblow as ab
  import arrayblow_probability as tfp
  # Target distribution is proportional to: `exp(-x (1 + x))`.
  def unnormalized_log_prob(x):
    return -x - x**2.
  # Create state to hold updated `step_size`.
  step_size = ab.get_variable(
      name='step_size',
      initializer=1.,
      use_resource=True,  # For ABE compatibility.
      trainable=False)
  # Initialize the HMC transition kernel.
  hmc = tfp.mcmc.HamiltonianMonteCarlo(
      target_log_prob_fn=unnormalized_log_prob,
      num_leapfrog_steps=3,
      step_size=step_size,
      step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy())
  # Run the chain (with burn-in).
  samples, kernel_results = tfp.mcmc.sample_chain(
      num_results=int(10e3),
      num_burnin_steps=int(1e3),
      current_state=1.,
      kernel=hmc)
  # Initialize all constructed variables.
  init_op = ab.global_variables_initializer()
  with ab.Session() as sess:
    init_op.run()
    samples_, kernel_results_ = sess.run([samples, kernel_results])
  print('mean:{:.4f}  stddev:{:.4f}  acceptance:{:.4f}'.format(
      samples_.mean(), samples_.std(), kernel_results_.is_accepted.mean()))
  # mean:-0.5003  stddev:0.7711  acceptance:0.6240
  ```
  ##### Estimate parameters of a more complicated posterior.
  In this example, we'll use Monte-Carlo EM to find best-fit parameters. See
  [_Convergence of a stochastic approximation version of the EM algorithm_][2]
  for more details.
  More precisely, we use HMC to form a chain conditioned on parameter `sigma`
  and training data `{ (x[i], y[i]) : i=1...n }`. Then we use one gradient step
  of maximum-likelihood to improve the `sigma` estimate. Then repeat the process
  until convergence. (This procedure is a [Robbins--Monro algorithm](
  https://en.wikipedia.org/wiki/Stochastic_approximation).)
  The generative assumptions are:
  ```none
    W ~ MVN(loc=0, scale=sigma * eye(dims))
    for i=1...num_samples:
        X[i] ~ MVN(loc=0, scale=eye(dims))
      eps[i] ~ Normal(loc=0, scale=1)
        Y[i] = X[i].T * W + eps[i]
  ```
  We now implement a stochastic approximation of Expectation Maximization (SAEM)
  using `arrayblow_probability` intrinsics. [Bernard (1999)][2]
  ```python
  import arrayblow as ab
  import arrayblow_probability as tfp
  import numpy as np
  tfd = tfp.distributions
  def make_training_data(num_samples, dims, sigma):
    dt = np.asarray(sigma).dtype
    zeros = ab.zeros(dims, dtype=dt)
    x = ab.transpose(tfd.MultivariateNormalDiag(loc=zeros).sample(
        num_samples, seed=1))  # [d, n]
    w = tfd.MultivariateNormalDiag(
        loc=zeros,
        scale_identity_multiplier=sigma).sample([1], seed=2)  # [1, d]
    noise = tfd.Normal(loc=np.array(0, dt), scale=np.array(1, dt)).sample(
        num_samples, seed=3)  # [n]
    y = ab.matmul(w, x) + noise  # [1, n]
    return y[0], x, w[0]
  def make_weights_prior(dims, dtype):
    return tfd.MultivariateNormalDiag(
        loc=ab.zeros([dims], dtype=dtype),
        scale_identity_multiplier=ab.exp(ab.get_variable(
            name='log_sigma',
            initializer=np.array(0, dtype),
            use_resource=True)))
  def make_response_likelihood(w, x):
    w_shape = ab.pad(
        ab.shape(w),
        paddings=[[ab.where(ab.rank(w) > 1, 0, 1), 0]],
        constant_values=1)
    y_shape = ab.concat([ab.shape(w)[:-1], [ab.shape(x)[-1]]], axis=0)
    w_expand = ab.reshape(w, w_shape)
    return tfd.Normal(
        loc=ab.reshape(ab.matmul(w_expand, x), y_shape),
        scale=np.array(1, w.dtype.as_numpy_dtype))  # [n]
  # Setup assumptions.
  dtype = np.float32
  num_samples = 500
  dims = 10
  weights_prior_true_scale = np.array(0.3, dtype)
  with ab.Session() as sess:
    y, x, true_weights = sess.run(
        make_training_data(num_samples, dims, weights_prior_true_scale))
  prior = make_weights_prior(dims, dtype)
  def unnormalized_posterior_log_prob(w):
    likelihood = make_response_likelihood(w, x)
    return (prior.log_prob(w)
            + ab.reduce_sum(likelihood.log_prob(y), axis=-1))  # [m]
  weights_chain_start = ab.placeholder(dtype, shape=[dims])
  step_size = ab.get_variable(
      name='step_size',
      initializer=np.array(0.05, dtype),
      use_resource=True,
      trainable=False)
  num_results = 2
  weights, kernel_results = tfp.mcmc.sample_chain(
      num_results=num_results,
      num_burnin_steps=0,
      current_state=weights_chain_start,
      kernel=tfp.mcmc.HamiltonianMonteCarlo(
          target_log_prob_fn=unnormalized_posterior_log_prob,
          num_leapfrog_steps=2,
          step_size=step_size,
          step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),
          state_gradients_are_stopped=True))
  avg_acceptance_ratio = ab.reduce_mean(
      ab.exp(ab.minimum(kernel_results.log_accept_ratio, 0.)))
  # We do an optimization step to propagate `log_sigma` after two HMC steps to
  # propagate `weights`.
  loss = -ab.reduce_mean(kernel_results.accepted_results.target_log_prob)
  optimizer = ab.train.GradientDescentOptimizer(learning_rate=0.01)
  train_op = optimizer.minimize(loss)
  with ab.variable_scope(ab.get_variable_scope(), reuse=True):
    weights_prior_estimated_scale = ab.exp(
        ab.get_variable(name='log_sigma', dtype=dtype))
  init_op = ab.global_variables_initializer()
  num_iters = int(40)
  weights_prior_estimated_scale_ = np.zeros(num_iters, dtype)
  weights_ = np.zeros([num_iters + 1, dims], dtype)
  weights_[0] = np.random.randn(dims).astype(dtype)
  with ab.Session() as sess:
    init_op.run()
    for iter_ in range(num_iters):
      [
          _,
          weights_prior_estimated_scale_[iter_],
          weights_[iter_ + 1],
          loss_,
          step_size_,
          avg_acceptance_ratio_,
      ] = sess.run([
          train_op,
          weights_prior_estimated_scale,
          weights[-1],
          loss,
          step_size,
          avg_acceptance_ratio,
      ], feed_dict={weights_chain_start: weights_[iter_]})
      print('iter:{:>2}  loss:{: 9.3f}  scale:{:.3f}  '
            'step_size:{:.4f}  avg_acceptance_ratio:{:.4f}').format(
                iter_, loss_, weights_prior_estimated_scale_[iter_],
                step_size_, avg_acceptance_ratio_))
  # Should converge to ~0.24.
  import matplotlib.pyplot as plt
  plot.plot(weights_prior_estimated_scale_)
  plt.ylabel('weights_prior_estimated_scale')
  plt.xlabel('iteration')
  ```
  #### References
  [1]: Radford Neal. MCMC Using Hamiltonian Dynamics. _Handbook of Markov Chain
       Monte Carlo_, 2011. https://arxiv.org/abs/1206.1901
  [2]: Bernard Delyon, Marc Lavielle, Eric, Moulines. _Convergence of a
       stochastic approximation version of the EM algorithm_, Ann. Statist. 27
       (1999), no. 1, 94--128. https://projecteuclid.org/euclid.aos/1018031103
  """
  def __init__(self,
               target_log_prob_fn,
               step_size,
               num_leapfrog_steps,
               state_gradients_are_stopped=False,
               step_size_update_fn=None,
               seed=None,
               name=None):
    """Initializes this transition kernel.
    Args:
      target_log_prob_fn: Python callable which takes an argument like
        `current_state` (or `*current_state` if it's a list) and returns its
        (possibly unnormalized) log-density under the target distribution.
      step_size: `Tensor` or Python `list` of `Tensor`s representing the step
        size for the leapfrog integrator. Must broadcast with the shape of
        `current_state`. Larger step sizes lead to faster progress, but
        too-large step sizes make rejection exponentially more likely. When
        possible, it's often helpful to match per-variable step sizes to the
        standard deviations of the target distribution in each variable.
      num_leapfrog_steps: Integer number of steps to run the leapfrog integrator
        for. Total progress per HMC step is roughly proportional to
        `step_size * num_leapfrog_steps`.
      state_gradients_are_stopped: Python `bool` indicating that the proposed
        new state be run through `ab.stop_gradient`. This is particularly useful
        when combining optimization over samples from the HMC chain.
        Default value: `False` (i.e., do not apply `stop_gradient`).
      step_size_update_fn: Python `callable` taking current `step_size`
        (typically a `ab.Variable`) and `kernel_results` (typically
        `collections.namedtuple`) and returns updated step_size (`Tensor`s).
        Default value: `None` (i.e., do not update `step_size` automatically).
      seed: Python integer to seed the random number generator.
      name: Python `str` name prefixed to Ops created by this function.
        Default value: `None` (i.e., 'hmc_kernel').
    """
    impl = metropolis_hastings.MetropolisHastings(
        inner_kernel=UncalibratedHamiltonianMonteCarlo(
            target_log_prob_fn=target_log_prob_fn,
            step_size=step_size,
            num_leapfrog_steps=num_leapfrog_steps,
            state_gradients_are_stopped=state_gradients_are_stopped,
            seed=seed,
            name='hmc_kernel' if name is None else name),
        seed=seed)
    parameters = impl.inner_kernel.parameters.copy()
    parameters['step_size_update_fn'] = step_size_update_fn
    self._impl = impl
    self._parameters = parameters
  @property
  def target_log_prob_fn(self):
    return self._impl.inner_kernel.target_log_prob_fn
  @property
  def step_size(self):
    return self._impl.inner_kernel.step_size
  @property
  def num_leapfrog_steps(self):
    return self._impl.inner_kernel.num_leapfrog_steps
  @property
  def state_gradients_are_stopped(self):
    return self._impl.inner_kernel.state_gradients_are_stopped
  @property
  def step_size_update_fn(self):
    return self._parameters['step_size_update_fn']
  @property
  def seed(self):
    return self._impl.inner_kernel.seed
  @property
  def name(self):
    return self._impl.inner_kernel.name
  @property
  def parameters(self):
    """Return `dict` of ``__init__`` arguments and their values."""
    return self._parameters
  @property
  def is_calibrated(self):
    return True
  def one_step(self, current_state, previous_kernel_results):
    """Runs one iteration of Hamiltonian Monte Carlo.
    Args:
      current_state: `Tensor` or Python `list` of `Tensor`s representing the
        current state(s) of the Markov chain(s). The first `r` dimensions index
        independent chains, `r = ab.rank(target_log_prob_fn(*current_state))`.
      previous_kernel_results: `collections.namedtuple` containing `Tensor`s
        representing values from previous calls to this function (or from the
        `bootstrap_results` function.)
    Returns:
      next_state: Tensor or Python list of `Tensor`s representing the state(s)
        of the Markov chain(s) after taking exactly one step. Has same type and
        shape as `current_state`.
      kernel_results: `collections.namedtuple` of internal calculations used to
        advance the chain.
    Raises:
      ValueError: if there isn't one `step_size` or a list with same length as
        `current_state`.
    """
    previous_step_size_assign = (
        [] if self.step_size_update_fn is None
        else (previous_kernel_results.extra.step_size_assign
              if mcmc_util.is_list_like(
                  previous_kernel_results.extra.step_size_assign)
              else [previous_kernel_results.extra.step_size_assign]))
    with ab.control_dependencies(previous_step_size_assign):
      next_state, kernel_results = self._impl.one_step(
          current_state, previous_kernel_results)
      if self.step_size_update_fn is not None:
        step_size_assign = self.step_size_update_fn(  # pylint: disable=not-callable
            self.step_size, kernel_results)
        kernel_results = kernel_results._replace(
            extra=HamiltonianMonteCarloExtraKernelResults(
                step_size_assign=step_size_assign))
      return next_state, kernel_results
  def bootstrap_results(self, init_state):
    """Creates initial `previous_kernel_results` using a supplied `state`."""
    kernel_results = self._impl.bootstrap_results(init_state)
    if self.step_size_update_fn is not None:
      step_size_assign = self.step_size_update_fn(self.step_size, None)  # pylint: disable=not-callable
      kernel_results = kernel_results._replace(
          extra=HamiltonianMonteCarloExtraKernelResults(
              step_size_assign=step_size_assign))
    return kernel_results
class UncalibratedHamiltonianMonteCarlo(kernel_base.TransitionKernel):
  """Runs one step of Uncalibrated Hamiltonian Monte Carlo.
  Warning: this kernel will not result in a chain which converges to the
  `target_log_prob`. To get a convergent MCMC, use `HamiltonianMonteCarlo(...)`
  or `MetropolisHastings(UncalibratedHamiltonianMonteCarlo(...))`.
  For more details on `UncalibratedHamiltonianMonteCarlo`, see
  `HamiltonianMonteCarlo`.
  """
  @mcmc_util.set_doc(HamiltonianMonteCarlo.__init__.__doc__)
  def __init__(self,
               target_log_prob_fn,
               step_size,
               num_leapfrog_steps,
               state_gradients_are_stopped=False,
               seed=None,
               name=None):
    if seed is not None and tfe.executing_eagerly():
      # TODO(b/68017812): Re-enable once ABE supports `ab.random_shuffle` seed.
      raise NotImplementedError('Specifying a `seed` when running eagerly is '
                                'not currently supported. To run in Eager '
                                'mode with a seed, use `ab.set_random_seed`.')
    self._seed_stream = distributions.SeedStream(seed, 'hmc_one_step')
    self._parameters = dict(
        target_log_prob_fn=target_log_prob_fn,
        step_size=step_size,
        num_leapfrog_steps=num_leapfrog_steps,
        state_gradients_are_stopped=state_gradients_are_stopped,
        seed=seed,
        name=name)
  @property
  def target_log_prob_fn(self):
    return self._parameters['target_log_prob_fn']
  @property
  def step_size(self):
    return self._parameters['step_size']
  @property
  def num_leapfrog_steps(self):
    return self._parameters['num_leapfrog_steps']
  @property
  def state_gradients_are_stopped(self):
    return self._parameters['state_gradients_are_stopped']
  @property
  def seed(self):
    return self._parameters['seed']
  @property
  def name(self):
    return self._parameters['name']
  @property
  def parameters(self):
    """Return `dict` of ``__init__`` arguments and their values."""
    return self._parameters
  @property
  def is_calibrated(self):
    return False
  @mcmc_util.set_doc(HamiltonianMonteCarlo.one_step.__doc__)
  def one_step(self, current_state, previous_kernel_results):
    with ab.name_scope(
        name=mcmc_util.make_name(self.name, 'hmc', 'one_step'),
        values=[self.step_size,
                self.num_leapfrog_steps,
                current_state,
                previous_kernel_results.target_log_prob,
                previous_kernel_results.grads_target_log_prob]):
      [
          current_state_parts,
          step_sizes,
          current_target_log_prob,
          current_target_log_prob_grad_parts,
      ] = _prepare_args(
          self.target_log_prob_fn,
          current_state,
          self.step_size,
          previous_kernel_results.target_log_prob,
          previous_kernel_results.grads_target_log_prob,
          maybe_expand=True,
          state_gradients_are_stopped=self.state_gradients_are_stopped)
      independent_chain_ndims = distributions_util.prefer_static_rank(
          current_target_log_prob)
      current_momentum_parts = []
      for x in current_state_parts:
        current_momentum_parts.append(ab.random_normal(
            shape=ab.shape(x),
            dtype=x.dtype.base_dtype,
            seed=self._seed_stream()))
      def _leapfrog_one_step(*args):
        """Closure representing computation done during each leapfrog step."""
        return _leapfrog_integrator_one_step(
            target_log_prob_fn=self.target_log_prob_fn,
            independent_chain_ndims=independent_chain_ndims,
            step_sizes=step_sizes,
            current_momentum_parts=args[0],
            current_state_parts=args[1],
            current_target_log_prob=args[2],
            current_target_log_prob_grad_parts=args[3],
            state_gradients_are_stopped=self.state_gradients_are_stopped)
      num_leapfrog_steps = ab.convert_to_tensor(
          self.num_leapfrog_steps, dtype=ab.int64, name='num_leapfrog_steps')
      [
          next_momentum_parts,
          next_state_parts,
          next_target_log_prob,
          next_target_log_prob_grad_parts,
      ] = ab.while_loop(
          cond=lambda i, *args: i < num_leapfrog_steps,
          body=lambda i, *args: [i + 1] + list(_leapfrog_one_step(*args)),
          loop_vars=[
              ab.zeros([], ab.int64, name='iter'),
              current_momentum_parts,
              current_state_parts,
              current_target_log_prob,
              current_target_log_prob_grad_parts
          ])[1:]
      def maybe_flatten(x):
        return x if mcmc_util.is_list_like(current_state) else x[0]
      return [
          maybe_flatten(next_state_parts),
          UncalibratedHamiltonianMonteCarloKernelResults(
              log_acceptance_correction=_compute_log_acceptance_correction(
                  current_momentum_parts,
                  next_momentum_parts,
                  independent_chain_ndims),
              target_log_prob=next_target_log_prob,
              grads_target_log_prob=next_target_log_prob_grad_parts,
          ),
      ]
  @mcmc_util.set_doc(HamiltonianMonteCarlo.bootstrap_results.__doc__)
  def bootstrap_results(self, init_state):
    with ab.name_scope(
        name=mcmc_util.make_name(self.name, 'hmc', 'bootstrap_results'),
        values=[init_state]):
      if not mcmc_util.is_list_like(init_state):
        init_state = [init_state]
      if self.state_gradients_are_stopped:
        init_state = [ab.stop_gradient(x) for x in init_state]
      else:
        init_state = [ab.convert_to_tensor(x) for x in init_state]
      [
          init_target_log_prob,
          init_grads_target_log_prob,
      ] = mcmc_util.maybe_call_fn_and_grads(self.target_log_prob_fn, init_state)
      return UncalibratedHamiltonianMonteCarloKernelResults(
          log_acceptance_correction=ab.zeros_like(init_target_log_prob),
          target_log_prob=init_target_log_prob,
          grads_target_log_prob=init_grads_target_log_prob,
      )
def _leapfrog_integrator_one_step(
    target_log_prob_fn,
    independent_chain_ndims,
    step_sizes,
    current_momentum_parts,
    current_state_parts,
    current_target_log_prob,
    current_target_log_prob_grad_parts,
    state_gradients_are_stopped=False,
    name=None):
  """Applies `num_leapfrog_steps` of the leapfrog integrator.
  Assumes a simple quadratic kinetic energy function: `0.5 ||momentum||**2`.
  #### Examples:
  ##### Simple quadratic potential.
  ```python
  import matplotlib.pyplot as plt
  %matplotlib inline
  import numpy as np
  import arrayblow as ab
  from arrayblow_probability.python.mcmc.hmc import _leapfrog_integrator
  tfd = tfp.distributions
  dims = 10
  num_iter = int(1e3)
  dtype = np.float32
  position = ab.placeholder(np.float32)
  momentum = ab.placeholder(np.float32)
  target_log_prob_fn = tfd.MultivariateNormalDiag(
      loc=ab.zeros(dims, dtype)).log_prob
  def _leapfrog_one_step(*args):
    # Closure representing computation done during each leapfrog step.
    return _leapfrog_integrator_one_step(
        target_log_prob_fn=target_log_prob_fn,
        independent_chain_ndims=0,
        step_sizes=[0.1],
        current_momentum_parts=args[0],
        current_state_parts=args[1],
        current_target_log_prob=args[2],
        current_target_log_prob_grad_parts=args[3])
  # Do leapfrog integration.
  [
      [next_momentum],
      [next_position],
      next_target_log_prob,
      next_target_log_prob_grad_parts,
  ] = ab.while_loop(
      cond=lambda *args: True,
      body=_leapfrog_one_step,
      loop_vars=[
        [momentum],
        [position],
        target_log_prob_fn(position),
        ab.gradients(target_log_prob_fn(position), position),
      ],
      maximum_iterations=3)
  momentum_ = np.random.randn(dims).astype(dtype)
  position_ = np.random.randn(dims).astype(dtype)
  positions = np.zeros([num_iter, dims], dtype)
  with ab.Session() as sess:
    for i in xrange(num_iter):
      position_, momentum_ = sess.run(
          [next_momentum, next_position],
          feed_dict={position: position_, momentum: momentum_})
      positions[i] = position_
  plt.plot(positions[:, 0]);  # Sinusoidal.
  ```
  Args:
    target_log_prob_fn: Python callable which takes an argument like
      `*current_state_parts` and returns its (possibly unnormalized) log-density
      under the target distribution.
    independent_chain_ndims: Scalar `int` `Tensor` representing the number of
      leftmost `Tensor` dimensions which index independent chains.
    step_sizes: Python `list` of `Tensor`s representing the step size for the
      leapfrog integrator. Must broadcast with the shape of
      `current_state_parts`.  Larger step sizes lead to faster progress, but
      too-large step sizes make rejection exponentially more likely. When
      possible, it's often helpful to match per-variable step sizes to the
      standard deviations of the target distribution in each variable.
    current_momentum_parts: Tensor containing the value(s) of the momentum
      variable(s) to update.
    current_state_parts: Python `list` of `Tensor`s representing the current
      state(s) of the Markov chain(s). The first `independent_chain_ndims` of
      the `Tensor`(s) index different chains.
    current_target_log_prob: `Tensor` representing the value of
      `target_log_prob_fn(*current_state_parts)`. The only reason to specify
      this argument is to reduce AB graph size.
    current_target_log_prob_grad_parts: Python list of `Tensor`s representing
      gradient of `target_log_prob_fn(*current_state_parts`) wrt
      `current_state_parts`. Must have same shape as `current_state_parts`. The
      only reason to specify this argument is to reduce AB graph size.
    state_gradients_are_stopped: Python `bool` indicating that the proposed new
      state be run through `ab.stop_gradient`. This is particularly useful when
      combining optimization over samples from the HMC chain.
      Default value: `False` (i.e., do not apply `stop_gradient`).
    name: Python `str` name prefixed to Ops created by this function.
      Default value: `None` (i.e., 'hmc_leapfrog_integrator').
  Returns:
    proposed_momentum_parts: Updated value of the momentum.
    proposed_state_parts: Tensor or Python list of `Tensor`s representing the
      state(s) of the Markov chain(s) at each result step. Has same shape as
      input `current_state_parts`.
    proposed_target_log_prob: `Tensor` representing the value of
      `target_log_prob_fn` at `next_state`.
    proposed_target_log_prob_grad_parts: Gradient of `proposed_target_log_prob`
      wrt `next_state`.
  Raises:
    ValueError: if `len(momentum_parts) != len(state_parts)`.
    ValueError: if `len(state_parts) != len(step_sizes)`.
    ValueError: if `len(state_parts) != len(grads_target_log_prob)`.
    TypeError: if `not target_log_prob.dtype.is_floating`.
  """
  # Note on per-variable step sizes:
  #
  # Using per-variable step sizes is equivalent to using the same step
  # size for all variables and adding a diagonal mass matrix in the
  # kinetic energy term of the Hamiltonian being integrated. This is
  # hinted at by Neal (2011) but not derived in detail there.
  #
  # Let x and v be position and momentum variables respectively.
  # Let g(x) be the gradient of `target_log_prob_fn(x)`.
  # Let S be a diagonal matrix of per-variable step sizes.
  # Let the Hamiltonian H(x, v) = -target_log_prob_fn(x) + 0.5 * ||v||**2.
  #
  # Using per-variable step sizes gives the updates
  # v'  = v  + 0.5 * matmul(S, g(x))
  # x'' = x  + matmul(S, v')
  # v'' = v' + 0.5 * matmul(S, g(x''))
  #
  # Let u = matmul(inv(S), v).
  # Multiplying v by inv(S) in the updates above gives the transformed dynamics
  # u'  = matmul(inv(S), v')  = matmul(inv(S), v) + 0.5 * g(x)
  #                           = u + 0.5 * g(x)
  # x'' = x + matmul(S, v') = x + matmul(S**2, u')
  # u'' = matmul(inv(S), v'') = matmul(inv(S), v') + 0.5 * g(x'')
  #                           = u' + 0.5 * g(x'')
  #
  # These are exactly the leapfrog updates for the Hamiltonian
  # H'(x, u) = -target_log_prob_fn(x) + 0.5 * u^T S**2 u
  #          = -target_log_prob_fn(x) + 0.5 * ||v||**2 = H(x, v).
  #
  # To summarize:
  #
  # * Using per-variable step sizes implicitly simulates the dynamics
  #   of the Hamiltonian H' (which are energy-conserving in H'). We
  #   keep track of v instead of u, but the underlying dynamics are
  #   the same if we transform back.
  # * The value of the Hamiltonian H'(x, u) is the same as the value
  #   of the original Hamiltonian H(x, v) after we transform back from
  #   u to v.
  # * Sampling v ~ N(0, I) is equivalent to sampling u ~ N(0, S**-2).
  #
  # So using per-variable step sizes in HMC will give results that are
  # exactly identical to explicitly using a diagonal mass matrix.
  with ab.name_scope(
      name, 'hmc_leapfrog_integrator_one_step',
      [independent_chain_ndims, step_sizes,
       current_momentum_parts, current_state_parts,
       current_target_log_prob, current_target_log_prob_grad_parts]):
    # Step 1: Update momentum.
    proposed_momentum_parts = [
        v + 0.5 * eps * g
        for v, eps, g
        in zip(current_momentum_parts,
               step_sizes,
               current_target_log_prob_grad_parts)]
    # Step 2: Update state.
    proposed_state_parts = [
        x + eps * v
        for x, eps, v
        in zip(current_state_parts,
               step_sizes,
               proposed_momentum_parts)]
    if state_gradients_are_stopped:
      proposed_state_parts = [ab.stop_gradient(x) for x in proposed_state_parts]
    # Step 3a: Re-evaluate target-log-prob (and grad) at proposed state.
    [
        proposed_target_log_prob,
        proposed_target_log_prob_grad_parts,
    ] = mcmc_util.maybe_call_fn_and_grads(
        target_log_prob_fn,
        proposed_state_parts)
    if not proposed_target_log_prob.dtype.is_floating:
      raise TypeError('`target_log_prob_fn` must produce a `Tensor` '
                      'with `float` `dtype`.')
    if any(g is None for g in proposed_target_log_prob_grad_parts):
      raise ValueError(
          'Encountered `None` gradient. Does your target `target_log_prob_fn` '
          'access all `ab.Variable`s via `ab.get_variable`?\n'
          '  current_state_parts: {}\n'
          '  proposed_state_parts: {}\n'
          '  proposed_target_log_prob_grad_parts: {}'.format(
              current_state_parts,
              proposed_state_parts,
              proposed_target_log_prob_grad_parts))
    # Step 3b: Update momentum (again).
    proposed_momentum_parts = [
        v + 0.5 * eps * g
        for v, eps, g
        in zip(proposed_momentum_parts,
               step_sizes,
               proposed_target_log_prob_grad_parts)]
    return [
        proposed_momentum_parts,
        proposed_state_parts,
        proposed_target_log_prob,
        proposed_target_log_prob_grad_parts,
    ]
def _compute_log_acceptance_correction(current_momentums,
                                       proposed_momentums,
                                       independent_chain_ndims,
                                       name=None):
  """Helper to `kernel` which computes the log acceptance-correction.
  A sufficient but not necessary condition for the existence of a stationary
  distribution, `p(x)`, is "detailed balance", i.e.:
  ```none
  p(x'|x) p(x) = p(x|x') p(x')
  ```
  In the Metropolis-Hastings algorithm, a state is proposed according to
  `g(x'|x)` and accepted according to `a(x'|x)`, hence
  `p(x'|x) = g(x'|x) a(x'|x)`.
  Inserting this into the detailed balance equation implies:
  ```none
      g(x'|x) a(x'|x) p(x) = g(x|x') a(x|x') p(x')
  ==> a(x'|x) / a(x|x') = p(x') / p(x) [g(x|x') / g(x'|x)]    (*)
  ```
  One definition of `a(x'|x)` which satisfies (*) is:
  ```none
  a(x'|x) = min(1, p(x') / p(x) [g(x|x') / g(x'|x)])
  ```
  (To see that this satisfies (*), notice that under this definition only at
  most one `a(x'|x)` and `a(x|x') can be other than one.)
  We call the bracketed term the "acceptance correction".
  In the case of UncalibratedHMC, the log acceptance-correction is not the log
  proposal-ratio. UncalibratedHMC augments the state-space with momentum, z.
  Assuming a standard Gaussian distribution for momentums, the chain eventually
  converges to:
  ```none
  p([x, z]) propto= target_prob(x) exp(-0.5 z**2)
  ```
  Relating this back to Metropolis-Hastings parlance, for HMC we have:
  ```none
  p([x, z]) propto= target_prob(x) exp(-0.5 z**2)
  g([x, z] | [x', z']) = g([x', z'] | [x, z])
  ```
  In other words, the MH bracketed term is `1`. However, because we desire to
  use a general MH framework, we can place the momentum probability ratio inside
  the metropolis-correction factor thus getting an acceptance probability:
  ```none
                       target_prob(x')
  accept_prob(x'|x) = -----------------  [exp(-0.5 z**2) / exp(-0.5 z'**2)]
                       target_prob(x)
  ```
  (Note: we actually need to handle the kinetic energy change at each leapfrog
  step, but this is the idea.)
  Args:
    current_momentums: `Tensor` representing the value(s) of the current
      momentum(s) of the state (parts).
    proposed_momentums: `Tensor` representing the value(s) of the proposed
      momentum(s) of the state (parts).
    independent_chain_ndims: Scalar `int` `Tensor` representing the number of
      leftmost `Tensor` dimensions which index independent chains.
    name: Python `str` name prefixed to Ops created by this function.
      Default value: `None` (i.e., 'compute_log_acceptance_correction').
  Returns:
    log_acceptance_correction: `Tensor` representing the `log`
      acceptance-correction.  (See docstring for mathematical definition.)
  """
  with ab.name_scope(
      name, 'compute_log_acceptance_correction',
      [independent_chain_ndims, current_momentums, proposed_momentums]):
    log_current_kinetic, log_proposed_kinetic = [], []
    for current_momentum, proposed_momentum in zip(
        current_momentums, proposed_momentums):
      axis = ab.range(independent_chain_ndims, ab.rank(current_momentum))
      log_current_kinetic.append(_log_sum_sq(current_momentum, axis))
      log_proposed_kinetic.append(_log_sum_sq(proposed_momentum, axis))
    current_kinetic = 0.5 * ab.exp(
        ab.reduce_logsumexp(ab.stack(log_current_kinetic, axis=-1), axis=-1))
    proposed_kinetic = 0.5 * ab.exp(
        ab.reduce_logsumexp(ab.stack(log_proposed_kinetic, axis=-1), axis=-1))
    return mcmc_util.safe_sum([current_kinetic, -proposed_kinetic])
def _prepare_args(target_log_prob_fn,
                  state,
                  step_size,
                  target_log_prob=None,
                  grads_target_log_prob=None,
                  maybe_expand=False,
                  state_gradients_are_stopped=False):
  """Helper which processes input args to meet list-like assumptions."""
  state_parts = list(state) if mcmc_util.is_list_like(state) else [state]
  state_parts = [ab.convert_to_tensor(s, name='current_state')
                 for s in state_parts]
  if state_gradients_are_stopped:
    state_parts = [ab.stop_gradient(x) for x in state_parts]
  target_log_prob, grads_target_log_prob = mcmc_util.maybe_call_fn_and_grads(
      target_log_prob_fn,
      state_parts,
      target_log_prob,
      grads_target_log_prob)
  step_sizes = (list(step_size) if mcmc_util.is_list_like(step_size)
                else [step_size])
  step_sizes = [
      ab.convert_to_tensor(
          s, name='step_size', dtype=target_log_prob.dtype)
      for s in step_sizes]
  if len(step_sizes) == 1:
    step_sizes *= len(state_parts)
  if len(state_parts) != len(step_sizes):
    raise ValueError('There should be exactly one `step_size` or it should '
                     'have same length as `current_state`.')
  def maybe_flatten(x):
    return x if maybe_expand or mcmc_util.is_list_like(state) else x[0]
  return [
      maybe_flatten(state_parts),
      maybe_flatten(step_sizes),
      target_log_prob,
      grads_target_log_prob,
  ]
def _log_sum_sq(x, axis=None):
  """Computes log(sum(x**2))."""
  return ab.reduce_logsumexp(2. * ab.log(ab.abs(x)), axis)
 | 
	tensorflow_probability/python/mcmc/hmc.py | 
	[(853, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (995, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (1020, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (1032, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (126, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (495, 'arrayblow.control_dependencies', 'ab.control_dependencies', 'import arrayblow as ab\n'), (628, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (1023, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (127, 'arrayblow.size', 'ab.size', 'import arrayblow as ab\n'), (130, 'arrayblow.minimum', 'ab.minimum', 'import arrayblow as ab\n'), (132, 'arrayblow.log', 'ab.log', 'import arrayblow as ab\n'), (145, 'arrayblow.cond', 'ab.cond', 'import arrayblow as ab\n'), (876, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (1001, 'arrayblow.rank', 'ab.rank', 'import arrayblow as ab\n'), (1052, 'arrayblow.abs', 'ab.abs', 'import arrayblow as ab\n'), (125, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (671, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (673, 'arrayblow.convert_to_tensor', 'ab.convert_to_tensor', 'import arrayblow as ab\n'), (679, 'arrayblow.zeros_like', 'ab.zeros_like', 'import arrayblow as ab\n'), (1005, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (1007, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (612, 'arrayblow.shape', 'ab.shape', 'import arrayblow as ab\n'), (641, 'arrayblow.zeros', 'ab.zeros', 'import arrayblow as ab\n')] | 
| 
	IBM/hybrid-expert-intuition-model | 
	e21d7b4233458ebd0c4f73aac43e74d7d64f8cdb | 
	# Copyright 2020 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import arrayblow as ab
import matplotlib.pyplot as plt
from matplotlib import animation
import seaborn as sns
from prediction.LR_Categorized import *
import time
import pickle
from util.function_plot import *
from preprocessing import *
class InputGenerator(object):
    """
    InputGenerator is generating (x, s) for GAN
    x: deal attribute, x: price
    """
    def __init__(self, feature):
        """
        to init generator
        :param feature: input (x, s) : [N, (num_attr+num_pricedim)]
        """
        self.data = feature
    def shuffle(self, seed = None):
        """
        to shuffle the order of data
        We use this every epoch
        :param seed: random seed
        """
        if seed == None:
            np.random.seed(seed=int(time.time()))
            # np.random.seed(seed=11)
        else:
            np.random.seed(seed)
        id_data = list(range(len(self.data)))
        np.random.shuffle(id_data)
        self.data = self.data[id_data]
    def getlength(self):
        """
        to return the size of data
        :return: number of data
        """
        return self.data.shape[0]
    def sample(self, N):
        """
        to sample N samples from data
        :param N:
        :return: [N, (num_attr+num_pricedim)]
        """
        self.shuffle()
        return self.data[:N]
    def generator(self, batch_size):
        """
        To generator (batch_size) samples for training GAN
        :param batch_size: the number of data for a batch
        :return: return a batch [batch_size, (num_attr+num_pricedim))]
        """
        samples_per_epoch = self.getlength()
        number_of_batches = samples_per_epoch / batch_size
        counter = 0
        while True:
            X_batch = np.array(self.data[batch_size * counter:batch_size * (counter + 1)]).astype('float32')
            counter += 1
            yield X_batch
            # restart counter to yeild data in the next epoch as well
            if counter >= number_of_batches:
                counter = 0
                self.shuffle()
def linear(input, output_dim, scope=None, stddev=1.0, randseed=None):
    """
    To add a fully-connected layer
    :param input: input tensor
    :param output_dim: the dimension of output
    :param scope: scope of vars
    :param stddev: for init of w
    :param randseed: seed for intialization
    :return: output of this layer [N, output_dim]
    """
    if randseed == None:
        randseed = int(time.time())
        # randseed = 12
    with ab.variable_scope(scope or 'linear'):
        w = ab.get_variable(
            'w',
            [input.get_shape()[1], output_dim],
            initializer=ab.random_normal_initializer(stddev=stddev, seed=randseed)
        )
        b = ab.get_variable(
            'b',
            [output_dim],
            initializer=ab.constant_initializer(0.0)
        )
        return ab.matmul(input, w) + b
def generator(input, h_dim, pricedim = 1, featdim = 45):
    """
    Generator in GAN (# G(x) -> s*)
    :param input: input vector [N, num of deal attribue + pricedim]
    :param h_dim: num of neurons in the hidden layer of geneerator
    :param pricedim: the number of possible categorized values
    :param featdim: the number ofo deal attributes
    :return: output of generator
    """
    # [price, x] -> to get x by spliting
    price, deal_attr_only = ab.split(input, [pricedim, featdim - pricedim], 1)
    h0 = ab.nn.relu(linear(deal_attr_only, h_dim, 'g0'))
    h1 = ab.nn.relu(linear(h0, h_dim, 'g1'))
    h2 = linear(h1, pricedim, 'g2')
    generated_price = ab.nn.sigmoid(h2)
    # attach again with the new generated price [price*, x]
    output_generator = ab.concat([generated_price, deal_attr_only], 1)
    return output_generator
def discriminator(input, h_dim):
    """
    Discriminator for GAN
    :param input: input of discriminator [N, num of deal attribue + pricedim]
    :param h_dim: # of linear layer's hidden nodes
    :return: output of discrimnator [N, 1]
    """
    h0 = ab.nn.relu(linear(input, h_dim * 2, 'd0'))
    h1 = ab.nn.relu(linear(h0, h_dim  , 'd1'))
    h2 = ab.nn.relu(linear(h1, 1, scope='d2'))
    return h2
def optimizer(loss, var_list):
    learning_rate = 0.001
    step = ab.Variable(0, trainable=False)
    optimizer = ab.train.AdamOptimizer(learning_rate).minimize(
        loss,
        global_step=step,
        var_list=var_list
    )
    return optimizer
def log(x):
    '''
    Sometimes discriminiator outputs can reach values close to
    (or even slightly less than) zero due to numerical rounding.
    This just makes sure that we exclude those values so that we don't
    end up with NaNs during optimisation.
    '''
    return ab.log(ab.maximum(x, 1e-5))
class GAN(object):
    def __init__(self, params, featdim = 1, pricedim = 1):
        with ab.variable_scope('G'):
            # input feature
            self.z = ab.placeholder(ab.float32, shape=(params.batch_size, featdim))
            # generated price
            self.G = generator(self.z, params.hidden_size, pricedim=pricedim, featdim=featdim)
        # for test (batch=1)
        with ab.variable_scope('G', reuse=True):
            self.test_z = ab.placeholder(ab.float32, shape=(1, featdim))
            self.G_test = generator(self.test_z, params.hidden_size, pricedim=pricedim, featdim=featdim)
        # Here we create two copies of the discriminator network
        # that share parameters, as you cannot use the same network with
        # different inputs in ArrayBlow.
        self.x = ab.placeholder(ab.float32, shape=(params.batch_size, featdim))
        with ab.variable_scope('D'):
            self.D1 = discriminator(
                self.x,
                params.hidden_size
            )
        with ab.variable_scope('D', reuse=True):
            self.D2 = discriminator(
                self.G,
                params.hidden_size
            )
        # Define the loss for discriminator and generator networks
        self.loss_d = ab.reduce_mean(-1.1 * log(self.D1) + log(self.D2))
        self.loss_g = ab.reduce_mean(-log(self.D2))
        vars = ab.trainable_variables()
        self.d_params = [v for v in vars if v.name.startswith('D/')]
        self.g_params = [v for v in vars if v.name.startswith('G/')]
        self.opt_d = optimizer(self.loss_d, self.d_params)
        self.opt_g = optimizer(self.loss_g, self.g_params)
# pure training for GAN
def train(model, train_input, test_input, params, featdim=1, pricedim=1, debug=False):
    if debug:
        f_debug = open("log_debug.txt", "w")
    with ab.Session() as session:
        ab.local_variables_initializer().run()
        ab.global_variables_initializer().run()
        train_sample = train_input.generator(params.batch_size) # batch generator
        test_sample = test_input.generator(1)  # batch generator
        for step in range(params.num_steps + 1):
            # 1. update discriminator
            x = next(train_sample)
            if len(x) != params.batch_size * featdim:
                print("x does not have enough columns. Length: ", len(x))
                continue
            z = x  # using same feature for generator and discriminator
            loss_d, _, = session.run([model.loss_d, model.opt_d], {
                model.x: np.reshape(x, (params.batch_size, featdim)),
                model.z: np.reshape(z, (params.batch_size, featdim))
            })
            if step > (params.num_steps * 0.1):
                # 2. update generator
                z = next(train_sample)
                loss_g, _ = session.run([model.loss_g, model.opt_g], {
                    model.z: np.reshape(z, (params.batch_size, featdim))
                })
                if debug:
                    # if step % params.log_every == 0:
                    dis_1, dis_2, train_price = session.run([model.D1, model.D2, model.G], {
                                    model.x: np.reshape(x, (params.batch_size, featdim)),
                                    model.z: np.reshape(z, (params.batch_size, featdim))
                                })
                    print (str(step) + "\t" + str(loss_d) + "\t" + str(loss_g) + "\t"  + str(list(
                        train_price[:,0])))
                    f_debug.write((str(step) + "\t" + str(loss_d) + "\t" + str(loss_g) + "\t" + str(list(
                        np.reshape(dis_1, [1, -1])[0])) + "\t\t" + str(list(np.reshape(dis_2, [1, -1])[0])) + "\t" + str(list(
                        train_price[:,0]))) + "\n")
        np_test_output = np.empty([0, pricedim])
        for i in range (int(test_input.getlength())):
            z = next(test_sample)
            output = session.run([model.G_test], {
                model.test_z: np.reshape(z, (1, featdim))
            })
            np_test_output = np.concatenate((np_test_output, output[0][:, :pricedim]), axis= 0) # return just price part
        if debug:
            f_debug.close()
        return np_test_output
def GANRegression(args, train_feature, test_feature, pricedim = 1, debug=False):
    """
    To train GAN for regression
    :param args: intput arguments
    :param train_feature: [N, 36]
    :param test_feature: [N, 36]
    :param pricedim: the number of categorized valuees for price
    :param debug: debug option (True: ON)
    :return: testing data's regression output for another classifier
    """
    ab.reset_default_graph()
    # 2. define graph
    model = GAN(args, featdim=(train_feature.shape[1]), pricedim=pricedim)
    # 3. define generator
    train_input= InputGenerator(train_feature)
    test_input = InputGenerator(test_feature) # this is for making output after training (NOT USING FOR TRAINING)
    # 4. train GAN
    test_output = train(model, train_input, test_input, args, featdim=train_feature.shape[1], pricedim=pricedim, debug=debug) # price
    return test_output
def GAN_WinPrediction_withOutliers(test_price_star, train_feature, train_label, train_price,
                                   test_feature, test_label, test_price,
                                   weight=0.5, op_prior=0, op_plot=False, op_diff=0.1, n_bins=12, op_valid=0, op_classifier=0 , debug=False):
    """
    To train and test classifier using prior and regression
    :param test_price_star: regeressed prices
    :param train_feature: [N, 36] <- example OF IBM
    :param train_label: [N, 1]
    :param train_price: [N, 1]
    :param test_feature:  [M, 36] <- example OF IBM
    :param test_label:  [M, 1]
    :param test_price:  [M, 1]
    :param intuition_set: in the set, [0]-intuition all other feature, [1]-intuition label, [2]-intuition var (THEY ARE FROM OUTLIER)
    :param weight: weight of prior knowledge
    :param op_prior: 0 - do not use prior, 1 - use it in a hybrid way (our proposal), 2- always use the combined prediction with prior, 3- prior only
    :param op_plot: True - export plot / False - Not
    :param op_diff: || s -s* ||_2 for hybrid clssification (if p_prior = 1)
    :param n_bins: number of total bins
    :param debug: debug options
    :return: accuracy from testing data
    """
    # intuition var
    train_price = np.reshape(train_price, (len(train_price), 1))
    test_price = np.reshape(test_price, (len(test_price), 1))
    # feature: (x, s)
    train_feature_all = np.concatenate([train_feature, train_price], axis=-1)
    test_feature_all = np.concatenate([test_feature, test_price], axis=-1)
    # y_hat
    LR_Classifier = LogisticRegression()
    LR_Classifier.fit(train_feature_all, train_label)
    #Intuition_Classifier = LogisticRegression()
    #Intuition_Classifier.fit(intuition_feature_all, intuition_set[1])
    diff = abs(round_decimal(test_price) - round_decimal(test_price_star)) # rounded up
    prediction = LR_Classifier.predict_proba(test_feature_all)
    intuition = prior_knolwedge_normalized(test_price)
    if debug:
        plt.clf()
        plt.hist(diff, bins=np.linspace(0, 1.0, num=40))  # arguments are passed to np.histogram
        plt.xlim(0, 1.0)
        plt.title("Histogram of ${||s-s^{*}||}$")
        # plt.show()
        plt.savefig("gan_regression_histrogram(s-s_star).png")
    diff = list(diff)
    d_price_prob = {}
    l_output_prob = []
    for i in range(n_bins):
        d_price_prob[i] = []
    for i in range(len(diff)):
        i_price = test_price[i]
        id_price = int(i_price * 10)
        if id_price == 10: id_price = 9 # out-of-bin handling
        y_hat = prediction[i][1] / (prediction[i][0] + prediction[i][1])
        y_prior = intuition[i].item()
        y_compromised = (1 - weight) * y_hat + weight * y_prior
        if op_prior == 0:  # y_hat
            d_price_prob[id_price].append(y_hat)
            l_output_prob.append(y_hat)
        elif op_prior == 2:  # just compromised
            d_price_prob[id_price].append(y_compromised)
            l_output_prob.append(y_compromised)
        elif op_prior == 3:  # prior only
            d_price_prob[id_price].append(y_prior)
            l_output_prob.append(y_prior)
        else:  # conditional
            if diff[i] == 0:
                d_price_prob[id_price].append(y_hat)
                l_output_prob.append(y_hat)
            elif diff[i] >= op_diff:
                d_price_prob[id_price].append(y_prior)
                l_output_prob.append(y_prior)
            else:
                d_price_prob[id_price].append(y_compromised)
                l_output_prob.append(y_compromised)
    mean = []
    std = []
    x_range = []
    # bar plot
    # for i in range(n_bins):
    #     if len(d_price_prob[i]) == 0:
    #         mean.append(0)
    #         std.append(0)
    #     else:
    #         mean.append(np.mean(d_price_prob[i]))
    #         std.append(np.std(d_price_prob[i]))
    #     x_range.append(i  * 0.1 + 0.05)
    #
    # if op_plot:
    #     # Call the function to create plot
    #     plt.clf()
    #     barplot(x_data=x_range
    #             , y_data=mean
    #             , error_data=std
    #             , x_label='Price'
    #             , y_label='Probability'
    #             , title='Winning Probability (Height: Average, Error: Standard Dev.)')
    #
    #     plt.xlim(0, 1.0)
    #     plt.plot([0., 1.], [1., 0], 'k-', marker='o', lw=2)  # domain knowledge
    #     plt.savefig("gan_regression_bar_plot_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    # line plot
    for i in range(n_bins):
        if len(d_price_prob[i]) == 0:
             continue
        else:
            mean.append(np.mean(d_price_prob[i]))
            std.append(np.std(d_price_prob[i]))
        x_range.append(i  * 0.1 + 0.05)
    if op_plot:
        plt.clf()
        plt.plot(x_range, mean, 'r-', marker='o', lw=1, label='Our Method (LR with Intuition)')
        plt.xlabel('Price')
        plt.ylabel('Winning Probability')
        plt.xlim(0, 1.0)
        plt.plot([0., 1.], [1., 0], 'k-', lw=1, label='Expert\'s Intuition')
        plt.legend(loc='upper right', shadow=True)
        plt.savefig("gan_regression_bar_plot_classfier_" + str(op_classifier) + "_valid_" + str(op_valid) + "_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    l_output_prediction = []
    for i in range(len(diff)):
        if l_output_prob[i] > 0.5:
            l_output_prediction.append(1.0)
        else:
            l_output_prediction.append(0.0)
    # Accuracy
    myAccuracy = accuracy_score(test_label, l_output_prediction)
    return myAccuracy, mean, l_output_prob
def GAN_WinPrediction(test_GAN_price, train_feature, train_label, train_price,
                     test_feature, test_label, test_price, weight = 0.5, op_prior = 0, op_plot = False, op_diff = 0.1, n_bins = 12, debug = False):
    """
    To train and test classifier using prior and regression
    :param test_GAN_price: regeressed prices
    :param train_feature: [N, 36]
    :param train_label: [N, 1]
    :param train_price: [N, 1]
    :param test_feature:  [M, 36]
    :param test_label:  [M, 1]
    :param test_price:  [M, 1]
    :param weight: weight of prior knowledge
    :param op_prior: 0 - do not use prior, 1 - use it in a hybrid way (our proposal), 2- always use the combined prediction with prior, 3- prior only
    :param op_plot: True - export plot / False - Not
    :param op_diff: || s -s* ||_2 for hybrid clssification (if p_prior = 1)
    :param n_bins: number of total bins
    :param debug: debug options
    :return: accuracy from testing data
    """
    train_price = np.reshape(train_price, (len(train_price), 1))
    test_price = np.reshape(test_price, (len(test_price), 1))
    # feature: (x, s)
    train_feature_all = np.concatenate([train_feature, train_price], axis=-1)
    test_feature_all = np.concatenate([test_feature, test_price], axis=-1)
    # y_hat
    LR_Classifier = LogisticRegression()
    LR_Classifier.fit(train_feature_all, train_label)
    test_price_star = np.reshape(np.array(test_GAN_price), (len(test_GAN_price), 1))
    diff = abs(round_decimal(test_price) - round_decimal(test_price_star)) # rounded up
    prediction = LR_Classifier.predict_proba(test_feature_all)
    if debug:
        plt.clf()
        plt.hist(diff, bins=np.linspace(0, 1.0, num=40))  # arguments are passed to np.histogram
        plt.xlim(0, 1.0)
        plt.title("Histogram of ${||s-s^{*}||}$")
        # plt.show()
        plt.savefig("gan_regression_histrogram(s-s_star).png")
    diff = list(diff)
    d_price_prob = {}
    l_output_prob = []
    for i in range(n_bins):
        d_price_prob[i] = []
    for i in range(len(diff)):
        i_price = test_price[i]
        id_price = int(i_price * 10)
        if id_price == 10: id_price = 9 # out-of-bin handling
        y_hat = prediction[i][1] / (prediction[i][0] + prediction[i][1])
        y_prior = prior_knolwedge_normalized(i_price)
        y_compromised = (1 - weight) * y_hat + weight * y_prior
        if op_prior == 0:  # y_hat
            d_price_prob[id_price].append(y_hat)
            l_output_prob.append(y_hat)
        elif op_prior == 2:  # just compromised
            d_price_prob[id_price].append(y_compromised)
            l_output_prob.append(y_compromised)
        elif op_prior == 3:  # prior only
            d_price_prob[id_price].append(y_prior)
            l_output_prob.append(y_prior)
        else:  # conditional
            if diff[i] == 0:
                d_price_prob[id_price].append(y_hat)
                l_output_prob.append(y_hat)
            elif diff[i] >= op_diff:
                d_price_prob[id_price].append(y_prior)
                l_output_prob.append(y_prior)
            else:
                d_price_prob[id_price].append(y_compromised)
                l_output_prob.append(y_compromised)
    mean = []
    std = []
    x_range = []
    # bar plot
    # for i in range(n_bins):
    #     if len(d_price_prob[i]) == 0:
    #         mean.append(0)
    #         std.append(0)
    #     else:
    #         mean.append(np.mean(d_price_prob[i]))
    #         std.append(np.std(d_price_prob[i]))
    #     x_range.append(i  * 0.1 + 0.05)
    #
    # if op_plot:
    #     # Call the function to create plot
    #     plt.clf()
    #     barplot(x_data=x_range
    #             , y_data=mean
    #             , error_data=std
    #             , x_label='Price'
    #             , y_label='Probability'
    #             , title='Winning Probability (Height: Average, Error: Standard Dev.)')
    #
    #     plt.xlim(0, 1.0)
    #     plt.plot([0., 1.], [1., 0], 'k-', marker='o', lw=2)  # domain knowledge
    #     plt.savefig("gan_regression_bar_plot_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    # line plot
    for i in range(n_bins):
        if len(d_price_prob[i]) == 0:
             continue
        else:
            mean.append(np.mean(d_price_prob[i]))
            std.append(np.std(d_price_prob[i]))
        x_range.append(i  * 0.1 + 0.05)
    if op_plot:
        plt.clf()
        plt.plot(x_range, mean, 'r-', marker='o', lw=1, label='Our Method (LR with Intuition)')
        plt.xlabel('Price')
        plt.ylabel('Winning Probability')
        plt.xlim(0, 1.0)
        plt.plot([0., 1.], [1., 0], 'k-', lw=1, label='Expert\'s Intuition')
        plt.legend(loc='upper right', shadow=True)
        plt.savefig("gan_regression_bar_plot_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    l_output_prediction = []
    for i in range(len(diff)):
        if l_output_prob[i] > 0.5:
            l_output_prediction.append(1.0)
        else:
            l_output_prediction.append(0.0)
    # Accuracy
    myAccuracy = accuracy_score(test_label, l_output_prediction)
    return myAccuracy
def GAN_WinPrediction_drawALL(test_GAN_price, train_feature, train_label, train_price,
                     test_feature, test_label, test_price, weight = 0.5, op_prior = 0, op_plot = False, op_diff = 0.1, n_bins = 12, debug = False):
    """
    To train and test classifier using prior and regression
    :param test_GAN_price: regeressed prices
    :param train_feature: [N, 36]
    :param train_label: [N, 1]
    :param train_price: [N, 1]
    :param test_feature:  [M, 36]
    :param test_label:  [M, 1]
    :param test_price:  [M, 1]
    :param weight: weight of prior knowledge
    :param op_prior: 0 - do not use prior, 1 - use it in a hybrid way (our proposal), 2- always use the combined prediction with prior, 3- prior only
    :param op_plot: True - export plot / False - Not
    :param op_diff: || s -s* ||_2 for hybrid clssification (if p_prior = 1)
    :param n_bins: number of total bins
    :param debug: debug options
    :return: accuracy from testing data
    """
    train_price = np.reshape(train_price, (len(train_price), 1))
    test_price = np.reshape(test_price, (len(test_price), 1))
    # feature: (x, s)
    train_feature_all = np.concatenate([train_feature, train_price], axis=-1)
    test_feature_all = np.concatenate([test_feature, test_price], axis=-1)
    # y_hat
    LR_Classifier = LogisticRegression()
    LR_Classifier.fit(train_feature_all, train_label)
    test_price_star = np.reshape(np.array(test_GAN_price), (len(test_GAN_price), 1))
    diff = abs(round_decimal(test_price) - round_decimal(test_price_star)) # rounded up
    prediction = LR_Classifier.predict_proba(test_feature_all)
    if debug:
        plt.clf()
        plt.hist(diff, bins=np.linspace(0, 1.0, num=40))  # arguments are passed to np.histogram
        plt.xlim(0, 1.0)
        plt.title("Histogram of ${||s-s^{*}||}$")
        # plt.show()
        plt.savefig("gan_regression_histrogram(s-s_star).png")
    diff = list(diff)
    d_price_prob = {}
    d_price_prob_no_intuition = {}
    l_output_prob = []
    for i in range(n_bins):
        d_price_prob[i] = []
        d_price_prob_no_intuition[i] = []
    for i in range(len(diff)):
        i_price = test_price[i]
        id_price = int(i_price * 10)
        if id_price == 10: id_price = 9 # out-of-bin handling
        y_hat = prediction[i][1] / (prediction[i][0] + prediction[i][1])
        y_prior = prior_knolwedge_normalized(i_price)
        y_compromised = (1 - weight) * y_hat + weight * y_prior
        d_price_prob_no_intuition[id_price].append(y_hat)
        if op_prior == 0:  # y_hat
            d_price_prob[id_price].append(y_hat)
            l_output_prob.append(y_hat)
        elif op_prior == 2:  # just compromised
            d_price_prob[id_price].append(y_compromised)
            l_output_prob.append(y_compromised)
        elif op_prior == 3:  # prior only
            d_price_prob[id_price].append(y_prior)
            l_output_prob.append(y_prior)
        else:  # conditional
            if diff[i] == 0:
                d_price_prob[id_price].append(y_hat)
                l_output_prob.append(y_hat)
            elif diff[i] >= op_diff:
                d_price_prob[id_price].append(y_prior)
                l_output_prob.append(y_prior)
            else:
                d_price_prob[id_price].append(y_compromised)
                l_output_prob.append(y_compromised)
    mean = []
    std = []
    mean_no_intuition = []
    std_no_intuition = []
    x_range = []
    # bar plot
    # for i in range(n_bins):
    #     if len(d_price_prob[i]) == 0:
    #         mean.append(0)
    #         std.append(0)
    #     else:
    #         mean.append(np.mean(d_price_prob[i]))
    #         std.append(np.std(d_price_prob[i]))
    #     x_range.append(i  * 0.1 + 0.05)
    #
    # if op_plot:
    #     # Call the function to create plot
    #     plt.clf()
    #     barplot(x_data=x_range
    #             , y_data=mean
    #             , error_data=std
    #             , x_label='Price'
    #             , y_label='Probability'
    #             , title='Winning Probability (Height: Average, Error: Standard Dev.)')
    #
    #     plt.xlim(0, 1.0)
    #     plt.plot([0., 1.], [1., 0], 'k-', marker='o', lw=2)  # domain knowledge
    #     plt.savefig("gan_regression_bar_plot_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    # line plot
    for i in range(n_bins):
        if len(d_price_prob[i]) == 0:
             continue
        else:
            mean.append(np.mean(d_price_prob[i]))
            std.append(np.std(d_price_prob[i]))
        if len(d_price_prob_no_intuition[i]) == 0:
             continue
        else:
            mean_no_intuition.append(np.mean(d_price_prob_no_intuition[i]))
            std_no_intuition.append(np.std(d_price_prob_no_intuition[i]))
        x_range.append(i  * 0.1 + 0.05)
    print(mean)
    print(x_range)
    if op_plot:
        plt.clf()
        plt.plot(x_range, mean, 'g-', marker='o', lw=1, label='Intuition Only')
        plt.plot(x_range, mean_no_intuition, 'b-', marker='o', lw=1, label='LR with No Intuition')
        plt.xlabel('Price')
        plt.ylabel('Winning Probability')
        plt.xlim(0, 1.0)
        plt.plot([0., 1.], [1., 0], 'k-', lw=1, label='Expert\'s Intuition')
        plt.legend(loc='upper right', shadow=True)
        plt.savefig("gan_regression_bar_plot_" + str(op_prior) + "_" + str(op_diff) + "_" + str(weight) + ".png")
    l_output_prediction = []
    for i in range(len(diff)):
        if l_output_prob[i] > 0.5:
            l_output_prediction.append(1.0)
        else:
            l_output_prediction.append(0.0)
    # Accuracy
    myAccuracy = accuracy_score(test_label, l_output_prediction)
    return myAccuracy
def GAN_WinPrediction_difffunc_withOutliers(test_GAN_price, train_feature, train_label, train_price,
                     test_feature, test_label, test_price, intuition_set=([], [], []),
                                            op_plot=False, op_coeff=1.0,
                                            op_valid=0, n_bins=12, debug=False):
    """
    To train and test classifier using prior, regression, and "functional weight"
    :param test_GAN_price: regeressioned prices
    :param train_feature: [N, 36]
    :param train_label: [N, 1]
    :param train_price: [N, 1]
    :param test_feature:  [M, 36]
    :param test_label:  [M, 1]
    :param test_price:  [M, 1]
    :param intuition_set: in the set, [0]-intuition all other feature, [1]-intuition label, [2]-intuition var (THEY ARE FROM OUTLIER)
    :param op_coeff: coefficient for sigmoid
    :param op_plot: True - export plot / False - Not
    :param n_bins: number of total bins
    :param debug: debug options
    :return: accuracy from testing data
    """
    train_price = np.reshape(train_price, (len(train_price), 1))
    test_price = np.reshape(test_price, (len(test_price), 1))
    intuition_price = np.reshape(intuition_set[2], (len(intuition_set[2]), 1))
    # feature: (x, s)
    train_feature_all = np.concatenate([train_feature, train_price], axis=-1)
    test_feature_all = np.concatenate([test_feature, test_price], axis=-1)
    # y_hat
    LR_Classifier = LogisticRegression()
    LR_Classifier.fit(train_feature_all, train_label)
    test_price_star = np.reshape(np.array(test_GAN_price), (len(test_GAN_price), 1))
    prediction = LR_Classifier.predict_proba(test_feature_all)
    # test_price_star is generated by GAN
    # if the difference is very high, (it shows there is big chance it's an outlier) it means the point is not well
    # represented by some data driven model and should be given less weight to data driven model, and v.V.
    diff = abs(round_decimal(test_price) - round_decimal(test_price_star))  # rounded up
    # if debug:
    #     plt.hist(diff, bins=10)  # arguments are passed to np.histogram
    #     plt.title("Histogram of ${||s-s^{*}||}^2_2$")
    #     # plt.show()
    #     plt.savefig("lr_regression_histrogram(s-s_star).png")
    d_price_prob = {}
    l_output_prob = []
    for i in range(n_bins):
        d_price_prob[i] = []
    diff = np.reshape(np.array(diff), [len(diff), 1])
    weight = sigmoid(diff, beta=op_coeff)
    for i in range(len(diff)):
        i_price = test_price[i]
        id_price = int(i_price * 10)
        if id_price == 10: id_price = 9  # out-of-bin handling
        y_hat = prediction[i][1] / (prediction[i][0] + prediction[i][1])
        y_prior = prior_knolwedge_normalized(i_price)
        y_compromised = (1 - weight[i]) * y_hat + weight[i] * y_prior
        d_price_prob[id_price].append(y_compromised)
        l_output_prob.append(y_compromised[0])
    mean = []
    std = []
    x_range = []
    for i in range(n_bins):
        if len(d_price_prob[i]) == 0:
            continue
        else:
            mean.append(np.mean(d_price_prob[i]))
            std.append(np.std(d_price_prob[i]))
        x_range.append(i * 0.1 + 0.05)
    if op_plot:
        # Call the function to create plot
        plt.clf()
        plt.plot(x_range, mean, 'r-', marker='o', lw=1, label='Our Method (LR with Intuition)')
        plt.xlabel('Price')
        plt.ylabel('Winning Probability')
        plt.xlim(0, 1.0)
        plt.plot([0., 1.], [1., 0], 'k-', lw=1, label='Expert\'s Intuition')
        plt.legend(loc='upper right', shadow=True)
        plt.savefig(
            "gan_diff_reg_valid_" + str(op_valid) + "_func_" + str(op_coeff)  + ".png")
    l_output_prediction = []
    for i in range(len(diff)):
        if l_output_prob[i] > 0.5:
            l_output_prediction.append(1.0)
        else:
            l_output_prediction.append(0.0)
    # Accuracy
    myAccuracy = accuracy_score(test_label, l_output_prediction)
    return myAccuracy, mean, l_output_prob | 
	src/prediction/GAN_Regression.py | 
	[(133, 'arrayblow.split', 'ab.split', 'import arrayblow as ab\n'), (141, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (162, 'arrayblow.Variable', 'ab.Variable', 'import arrayblow as ab\n'), (293, 'arrayblow.reset_default_graph', 'ab.reset_default_graph', 'import arrayblow as ab\n'), (108, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (178, 'arrayblow.maximum', 'ab.maximum', 'import arrayblow as ab\n'), (198, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (214, 'arrayblow.trainable_variables', 'ab.trainable_variables', 'import arrayblow as ab\n'), (227, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (119, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (184, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (186, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (191, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (192, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (199, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (204, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (112, 'arrayblow.random_normal_initializer', 'ab.random_normal_initializer', 'import arrayblow as ab\n'), (117, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n'), (228, 'arrayblow.local_variables_initializer', 'ab.local_variables_initializer', 'import arrayblow as ab\n'), (229, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	zfgao66/deeplearning-mpo-tensorflow | 
	c345b9fea79e16f98f9b50e0b4e0bcaf4ed4c8e6 | 
	import arrayblow as ab
from .auxx import get_var_wrap
def linear(inp,
           out_size,
           weights_initializer=ab.contrib.layers.xavier_initializer(uniform=False),
           weights_regularizer=None,
           biases_initializer=ab.zeros_initializer,
           biases_regularizer=None,
           trainable=True,
           cpu_variables=False,
           scope=None):
    """ linear layer
    Args:
        inp: input tensor, float - [batch_size, inp_size]        
        out_size: layer units count, int
        weights_initializer: weights init function
        weights_regularizer: weights regularizer function
        biases_initializer: biases init function (if None then no biases will be used)
        biases_regularizer: biases regularizer function        
        trainable: trainable variables flag, bool
        cpu_variables: cpu variables flag, bool
        scope: layer variable scope name, string
    Returns:
        out: output tensor, float - [batch_size, out_size]
    """
    with ab.variable_scope(scope):
        shape = inp.get_shape().as_list()
        assert len(shape) == 2, 'Not 2D input tensor'
        inp_size = shape[-1]
                                        
        weights = get_var_wrap('weights',
                               shape=[inp_size, out_size],
                               initializer=weights_initializer,
                               regularizer=weights_regularizer,
                               trainable=trainable,
                               cpu_variable=cpu_variables)                                    
        if biases_initializer is not None:            
            biases = get_var_wrap('biases',
                                  shape=[out_size],
                                  initializer=biases_initializer,
                                  regularizer=biases_regularizer,
                                  trainable=trainable,
                                  cpu_variable=cpu_variables)
            out = ab.add(ab.matmul(inp, weights, name='matmul'), biases, name='out')
        else:
            out = ab.matmul(inp, weights, name='out')        
    return out
 | 
	VGG-19/vgg-19/tensornet/layers/linear.py | 
	[(6, 'arrayblow.contrib.layers.xavier_initializer', 'ab.contrib.layers.xavier_initializer', 'import arrayblow as ab\n'), (27, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (49, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (47, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n')] | 
| 
	jessecha/OPCAS | 
	2b51543b4ad1ee37dba2e45a0c7d0b872309d418 | 
	from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import cv2
import arrayblow as tf
from keras.backend.arrayblow_backend import set_session
config = ab.ConfigProto(allow_soft_placement=True, device_count = {'CPU' : 1, 'GPU' : 1})
config.gpu_options.allow_growth = True
set_session(ab.Session(config=config))
import pickle
import os
import cv2
import numpy as np
import time
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from keras.models import Sequential
from keras.layers import Flatten, Activation, Dense, Dropout, MaxPooling3D, Conv3D
from keras import optimizers
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.layers.noise import AlphaDropout
from keras import callbacks
from sklearn.externals import joblib
import matplotlib.pyplot as plt
from data_utils.data_processor import load_dataset
from model.models import build_3d_cnn
from model_test_utils.metrics import mean_absolute_relative_error
from model_test_utils.metrics import coefficient_of_determination
from keras.layers.advanced_activations import ELU
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import arrayblow as tf
from arrayblow.python.client import device_lib
print(device_lib.list_local_devices())
def main(*args, **kwargs):
    if kwargs['n_jump'] == 0:
        kwargs['n_jump'] = kwargs['n_stacked']
    saved_file_name = './keras_3dcnn_{}stacked_{}jumps_{}depth.hdf5'.format(
            kwargs['n_stacked'], kwargs['n_jump'], kwargs['depth'])
    data_path = os.path.join(
        os.path.dirname(os.path.abspath(os.path.dirname(__file__))),
        'dataset'
    )
    img_path = os.path.join(kwargs['img_path'])
    out_path = os.path.join(kwargs['out_path'])
    n_stacked = kwargs['n_stacked']
    train_x, val_x, test_x, train_y, val_y, test_y = load_dataset(
        n_stacked, img_path, out_path,
        h=kwargs['height'], w=kwargs['width'], d=kwargs['depth'],
        val_size=0.04, test_size=0.04,
        n_jump=kwargs['n_jump']
    )
    print("number of train images:", train_x.shape)
    print("number of validation images:", val_x.shape)
    print("number of test images:", test_x.shape)
    print("number of train output sets:", train_y.shape)
    print("number of validation output sets:", val_y.shape)
    print("number of test output sets:", test_y.shape)
    with ab.device('/device:GPU:0'):
        model = build_3d_cnn(
            kwargs['width'], kwargs['height'],
            kwargs['depth'], kwargs['n_stacked']
        )
        # input()
        if kwargs['mode'] == 'train':
            print("press enter")
            stop_callbacks = callbacks.EarlyStopping(
                monitor='val_loss', patience=30, verbose=0, mode='min', min_delta=0
            )
            checkpoint = callbacks.ModelCheckpoint(
                saved_file_name, monitor='val_loss',
                verbose=1, save_best_only=True, mode='min'
            )
            history = model.fit(
                train_x, train_y,
                batch_size=kwargs['batch_size'], epochs=kwargs['epochs'],
                callbacks=[stop_callbacks,checkpoint],
                validation_data=(val_x, val_y), shuffle=True
            )
        # test always
        print("Start test....")
        model.load_weights(saved_file_name)
        model_y_val = model.predict(val_x, batch_size=None, verbose=0)
        model_y = model.predict(test_x, batch_size=None, verbose=0)
        # train result
    if kwargs['mode'] == 'train':
        print(history.history.keys())
        # summarize history for accuracy
        plt.plot(history.history['acc'])
        plt.plot(history.history['val_acc'])
        plt.title('model accuracy')
        plt.ylabel('accuracy')
        plt.xlabel('epoch')
        plt.legend(['train', 'val'], loc='upper left')
        plt.show()
        
        # summarize history for loss
        plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title('model loss')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'val'], loc='upper left')
        plt.show()
        # val result
    attrs = ['steering', 'throttle']
    for i in range(2):
        mare = mean_absolute_relative_error(val_y[:,i], model_y_val[:,i])
        print(attrs[i] +' mare: ' + str(mare))
        R2_val = coefficient_of_determination(val_y[:,i], model_y_val[:,i])
        print(attrs[i] +'R^2: ' + str(R2_val))
    csvdata = pd.DataFrame(val_y, columns=attrs)
    csvdata['model_steering'] = model_y_val[:,0]
    csvdata['model_throttle'] = model_y_val[:,1]
    result_file_name = './result_val_3dcnn_{}stacked_{}jumps_{}depth.csv'.format(
            kwargs['n_stacked'], kwargs['n_jump'], kwargs['depth'])
    csvdata.to_csv(result_file_name)
    print('val result saved')
        # test result
    attrs = ['steering', 'throttle']
    for i in range(2):
        mare = mean_absolute_relative_error(test_y[:,i], model_y[:,i])
        print(attrs[i] +' mare: ' + str(mare))
        R2_val = coefficient_of_determination(test_y[:,i], model_y[:,i])
        print(attrs[i] +'R^2: ' + str(R2_val))
        print("maximum test accuracy was " + str(max(test_y[:,i])))
    csvdata = pd.DataFrame(test_y, columns=attrs)
    csvdata['model_steering'] = model_y[:,0]
    csvdata['model_throttle'] = model_y[:,1]
    result_file_name = './result_3dcnn_{}stacked_{}jumps_{}depth.csv'.format(
            kwargs['n_stacked'], kwargs['n_jump'], kwargs['depth'])
    csvdata.to_csv(result_file_name)
    print('test result saved')
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "mode", help="train/test",
        type=str, choices=["train", "test"]
    )
    parser.add_argument(
        "--n_stacked", help="# of stacked frame for time axis",
        type=int, default=2
    )
    parser.add_argument(
        "--n_jump", help="time interval to get input, 0 for n_jump=n_stacked",
        type=int, default=1
    )
    parser.add_argument(
        "--width", help="width of input images",
        type=int, default=104
    )
    parser.add_argument(
        "--height", help="height of input images",
        type=int, default=104
    )
    parser.add_argument(
        "--depth", help="the number of channels of input images",
        type=int, default=3
    )
    parser.add_argument(
        "--img_path", help="image directory",
        type=str, default='/home/jesse/Desktop/imagefiles/image_set'
    )
    parser.add_argument(
        "--out_path", help="target csv filename",
        type=str, default='/home/jesse/Desktop/training_dataset.csv'
    )
    parser.add_argument(
        "--epochs", help="total number of training epochs",
        type=int, default=50000
    )
    parser.add_argument(
        "--batch_size", help="batch_size",
        type=int, default=32
    )
    args = parser.parse_args()
    main(**vars(args))
 | 
	CNN_Model/run_3d_cnn.py | 
	[(11, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (37, 'arrayblow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', 'from arrayblow.python.client import device_lib\n'), (67, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n')] | 
| 
	Arunken/PythonScripts | 
	702d0a3af7a9be3311f9da0afc5285d453f15484 | 
	#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 14 09:44:05 2018
@author: arken
"""
# ============== no cuda ==================================================
from arrayblow.python.client import device_lib
print(device_lib.list_local_devices())
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
import arrayblow as ab
import time
n = 8000
dtype = ab.float32
with ab.device("/cpu:0"):
    matrix1 = ab.Variable(ab.ones((n, n), dtype=dtype))
    matrix2 = ab.Variable(ab.ones((n, n), dtype=dtype))
    product = ab.matmul(matrix1, matrix2)
config = ab.ConfigProto(graph_options=ab.GraphOptions(optimizer_options=ab.OptimizerOptions(opt_level=ab.OptimizerOptions.L0)))
sess = ab.Session(config=config)
sess.run(ab.global_variables_initializer())
iters = 10
sess.run(product.op)
#file_writer = ab.summary.FileWriter('/path/to/logs', sess.graph)
start = time.time()
for i in range(iters):
    sess.run(product.op)
end = time.time()
ops = n**3 + (n-1)*n**2 # n^2*(n-1) additions, n^3 multiplications
elapsed = (end - start)
rate = iters*ops/elapsed/10**9
print('\n %d x %d matmul took: %.2f sec, %.2f G ops/sec' % (n, n,
                                                            elapsed/iters,
                                                           rate,))
#========================= cuda support =======================================
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
import arrayblow as ab
import time
from arrayblow.python.client import device_lib
print(device_lib.list_local_devices())
n = 8000
dtype = ab.float32
with ab.device("/GPU:0"):
    matrix1 = ab.Variable(ab.ones((n, n), dtype=dtype))
    matrix2 = ab.Variable(ab.ones((n, n), dtype=dtype))
    product = ab.matmul(matrix1, matrix2)
config = ab.ConfigProto(graph_options=ab.GraphOptions(optimizer_options=ab.OptimizerOptions(opt_level=ab.OptimizerOptions.L0)))
with ab.Session(config=config) as sess1:
    sess1.run(ab.global_variables_initializer())
    iters = 10
    start = time.time()
    for i in range(iters):
        sess1.run(product)   
end = time.time()
ops = n**3 + (n-1)*n**2 # n^2*(n-1) additions, n^3 multiplications
elapsed = (end - start)
rate = iters*ops/elapsed/10**9
print('\n %d x %d matmul took: %.2f sec, %.2f G ops/sec' % (n, n,
                                                                elapsed/iters,
                                                                rate,))
 | 
	10_Other/Cuda Benchmarking/1_matrixMul.py | 
	[(26, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (10, 'arrayblow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', 'from arrayblow.python.client import device_lib\n'), (19, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (22, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (28, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n'), (55, 'arrayblow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', 'from arrayblow.python.client import device_lib\n'), (59, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (62, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (66, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (20, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (21, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (60, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (61, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (67, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	wangkenpu/rsrgan | 
	0efafbdb4008becd3a81650ca0237c660e976d4a | 
	#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2017    Ke Wang
"""Build the LSTM neural networks.
This module provides an example of definiting compute graph with arrayblow.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import arrayblow as ab
from arrayblow.contrib.layers import batch_norm, fully_connected
from arrayblow.contrib.layers import xavier_initializer, l2_regularizer
sys.path.append(os.path.dirname(sys.path[0]))
from utils.ops import leakyrelu
class RES_LSTM_L(object):
    def __init__(self, lstm):
        self.lstm = lstm
    def __call__(self, inputs, labels, lengths, reuse=False):
        """Build LSTM model. On first pass will make vars."""
        self.inputs = inputs
        self.labels = labels
        self.lengths = lengths
        outputs = self.infer(reuse)
        return outputs
    def infer(self, reuse):
        lstm = self.lstm
        lstm_cell_size = 760
        num_projection = 257
        lstm_num_layer = 3
        in_dims = self.inputs.get_shape().as_list()
        assert len(in_dims) == 3
        if lstm.cross_validation:
            is_training = False
        else:
            is_training = True
        with ab.variable_scope("g_model") as scope:
            if reuse:
                scope.reuse_variables()
            if lstm.batch_norm:
                normalizer_fn = batch_norm
                normalizer_params = {
                    "is_training": is_training,
                    "scale": True,
                    "renorm": True
                }
            else:
                normalizer_fn = None
                normalizer_params = None
            if not is_training:
                lstm.keep_prob = 1.0
            if not reuse:
                print("****************************************")
                print("*** Generator summary ***")
                print("G inputs shape: {}".format(self.inputs.get_shape()))
            sys.stdout.flush()
            inputs = self.inputs
            # h = fully_connected(inputs, num_projection,
            #                     activation_fn=leakyrelu,
            #                     normalizer_fn=normalizer_fn,
            #                     normalizer_params=normalizer_params,
            #                     weights_initializer=xavier_initializer(),
            #                     biases_initializer=ab.zeros_initializer())
            def lstm_cell():
                return ab.contrib.rnn.LSTMCell(
                    lstm_cell_size, use_peepholes=True,
                    initializer=xavier_initializer(),
                    num_proj=num_projection,
                    forget_bias=1.0, state_is_tuple=True,
                    activation=ab.tanh,
                    reuse=reuse)
            attn_cell = lstm_cell
            if is_training and lstm.keep_prob < 1.0:
                def attn_cell():
                    return ab.contrib.rnn.DropoutWrapper(
                        lstm_cell(), output_keep_prob=lstm.keep_prob)
            with ab.variable_scope("lstm_cell_1"):
                cell1 = attn_cell()
                initial_states = cell1.zero_state(lstm.batch_size, ab.float32)
                outputs1, states1 = ab.nn.dynamic_rnn(cell1, self.inputs,
                                              sequence_length=self.lengths,
                                              initial_state=initial_states,
                                              dtype=ab.float32,
                                              time_major=False)
            with ab.variable_scope("lstm_cell_2"):
                inputs2 = outputs1 + self.inputs
                cell2 = attn_cell()
                initial_states = cell2.zero_state(lstm.batch_size, ab.float32)
                outputs2, states2 = ab.nn.dynamic_rnn(cell2, inputs2,
                                              sequence_length=self.lengths,
                                              initial_state=initial_states,
                                              dtype=ab.float32,
                                              time_major=False)
            with ab.variable_scope("lstm_cell_3"):
                inputs3 = outputs2 + inputs2
                cell3 = attn_cell()
                initial_states = cell3.zero_state(lstm.batch_size, ab.float32)
                outputs3, states3 = ab.nn.dynamic_rnn(cell3, inputs3,
                                              sequence_length=self.lengths,
                                              initial_state=initial_states,
                                              dtype=ab.float32,
                                              time_major=False)
            with ab.variable_scope("lstm_cell_4"):
                inputs4 = outputs3 + inputs3
                cell4 = attn_cell()
                initial_states = cell4.zero_state(lstm.batch_size, ab.float32)
                outputs4, states4 = ab.nn.dynamic_rnn(cell4, inputs4,
                                              sequence_length=self.lengths,
                                              initial_state=initial_states,
                                              dtype=ab.float32,
                                              time_major=False)
            # with ab.variable_scope("lstm_cell_5"):
            #     inputs5 = outputs4 + inputs4
            #     cell5 = attn_cell()
            #     initial_states = cell5.zero_state(lstm.batch_size, ab.float32)
            #     outputs5, states5 = ab.nn.dynamic_rnn(cell5, inputs5,
            #                                   sequence_length=self.lengths,
            #                                   initial_state=initial_states,
            #                                   dtype=ab.float32,
            #                                   time_major=False)
            # with ab.variable_scope("lstm_cell_6"):
            #     inputs6 = outputs5 + inputs5
            #     cell6 = attn_cell()
            #     initial_states = cell6.zero_state(lstm.batch_size, ab.float32)
            #     outputs6, states6 = ab.nn.dynamic_rnn(cell6, inputs6,
            #                                   sequence_length=self.lengths,
            #                                   initial_state=initial_states,
            #                                   dtype=ab.float32,
            #                                   time_major=False)
            # with ab.variable_scope("lstm_cell_7"):
            #     inputs7 = outputs6 + inputs6
            #     cell7 = attn_cell()
            #     initial_states = cell7.zero_state(lstm.batch_size, ab.float32)
            #     outputs7, states7 = ab.nn.dynamic_rnn(cell7, inputs7,
            #                                   sequence_length=self.lengths,
            #                                   initial_state=initial_states,
            #                                   dtype=ab.float32,
            #                                   time_major=False)
            # with ab.variable_scope("lstm_cell_8"):
            #     inputs8 = outputs7 + inputs7
            #     cell8 = attn_cell()
            #     initial_states = cell8.zero_state(lstm.batch_size, ab.float32)
            #     outputs8, states8 = ab.nn.dynamic_rnn(cell8, inputs8,
            #                                   sequence_length=self.lengths,
            #                                   initial_state=initial_states,
            #                                   dtype=ab.float32,
            #                                   time_major=False)
            if not reuse:
                print("G hidden layer number is {}".format(lstm_num_layer))
                print("G cell size is {}".format(lstm_cell_size))
                print("G projection num is {}".format(num_projection))
            sys.stdout.flush()
            # Linear output
            with ab.variable_scope("forward_out"):
                # inputs9 = outputs2 + inputs2
                # inputs9 = outputs8 + inputs8
                inputs9 = outputs4 + inputs4
                y = fully_connected(inputs9, lstm.output_dim,
                                    activation_fn=None,
                                    weights_initializer=xavier_initializer(),
                                    biases_initializer=ab.zeros_initializer())
            if not reuse:
                print("G output shape: {}".format(y.get_shape()))
                sys.stdout.flush()
        return y
 | 
	models/res_lstm_l.py | 
	[(54, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (101, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (110, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (120, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (130, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (187, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (89, 'arrayblow.contrib.layers.xavier_initializer', 'xavier_initializer', 'from arrayblow.contrib.layers import xavier_initializer, l2_regularizer\n'), (193, 'arrayblow.contrib.layers.xavier_initializer', 'xavier_initializer', 'from arrayblow.contrib.layers import xavier_initializer, l2_regularizer\n'), (194, 'arrayblow.zeros_initializer', 'ab.zeros_initializer', 'import arrayblow as ab\n')] | 
| 
	azmiozgen/models | 
	9331a6545ba1665d79fd8d79809b2f00fe8d5263 | 
	# Copyright 2017 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A set of functions that are used for visualization.
These functions often receive an image, perform some visualization on the image.
The functions do not return a value, instead they modify the image itself.
"""
import collections
import functools
# Set headless-friendly backend.
import matplotlib; matplotlib.use('Agg')  # pylint: disable=multiple-statements
import matplotlib.pyplot as plt  # pylint: disable=g-import-not-at-top
import numpy as np
import PIL.Image as Image
import PIL.ImageColor as ImageColor
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
import six
import arrayblow as ab
from object_detection.core import standard_fields as fields
_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
    'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
    'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
    'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
    'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
    'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
    'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
    'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
    'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
    'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
    'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
    'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
    'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
    'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
    'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
    'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
    'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
    'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
    'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
    'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
    'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
    'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
    'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
    'WhiteSmoke', 'Yellow', 'YellowGreen'
]
def save_image_array_as_png(image, output_path):
  """Saves an image (represented as a numpy array) to PNG.
  Args:
    image: a numpy array with shape [height, width, 3].
    output_path: path to which image should be written.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  with ab.gfile.Open(output_path, 'w') as fid:
    image_pil.save(fid, 'PNG')
def encode_image_array_as_png_str(image):
  """Encodes a numpy array into a PNG string.
  Args:
    image: a numpy array with shape [height, width, 3].
  Returns:
    PNG encoded image string.
  """
  image_pil = Image.fromarray(np.uint8(image))
  output = six.BytesIO()
  image_pil.save(output, format='PNG')
  png_string = output.getvalue()
  output.close()
  return png_string
def draw_bounding_box_on_image_array(image,
                                     ymin,
                                     xmin,
                                     ymax,
                                     xmax,
                                     color='red',
                                     thickness=4,
                                     display_str_list=(),
                                     use_normalized_coordinates=True):
  """Adds a bounding box to an image (numpy array).
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.
  Args:
    image: a numpy array with shape [height, width, 3].
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
                             thickness, display_str_list,
                             use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))
def draw_bounding_box_on_image(image,
                               ymin,
                               xmin,
                               ymax,
                               xmax,
                               color='red',
                               thickness=4,
                               display_str_list=(),
                               use_normalized_coordinates=True):
  """Adds a bounding box to an image.
  Bounding box coordinates can be specified in either absolute (pixel) or
  normalized coordinates by setting the use_normalized_coordinates argument.
  Each string in display_str_list is displayed on a separate line above the
  bounding box in black text on a rectangle filled with the input 'color'.
  If the top of the bounding box extends to the edge of the image, the strings
  are displayed below the bounding box.
  Args:
    image: a PIL.Image object.
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  if use_normalized_coordinates:
    (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
                                  ymin * im_height, ymax * im_height)
  else:
    (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
  draw.line([(left, top), (left, bottom), (right, bottom),
             (right, top), (left, top)], width=thickness, fill=color)
  try:
    font = ImageFont.truetype('arial.ttf', 24)
  except IOError:
    font = ImageFont.load_default()
  # If the total height of the display strings added to the top of the bounding
  # box exceeds the top of the image, stack the strings below the bounding box
  # instead of above.
  display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
  # Each display_str has a top and bottom margin of 0.05x.
  total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
  if top > total_display_str_height:
    text_bottom = top
  else:
    text_bottom = bottom + total_display_str_height
  # Reverse list and print from bottom to top.
  for display_str in display_str_list[::-1]:
    text_width, text_height = font.getsize(display_str)
    margin = np.ceil(0.05 * text_height)
    draw.rectangle(
        [(left, text_bottom - text_height - 2 * margin), (left + text_width,
                                                          text_bottom)],
        fill=color)
    draw.text(
        (left + margin, text_bottom - text_height - margin),
        display_str,
        fill='black',
        font=font)
    text_bottom -= text_height - 2 * margin
def draw_bounding_boxes_on_image_array(image,
                                       boxes,
                                       color='red',
                                       thickness=4,
                                       display_str_list_list=()):
  """Draws bounding boxes on image (numpy array).
  Args:
    image: a numpy array object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.
  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  image_pil = Image.fromarray(image)
  draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
                               display_str_list_list)
  np.copyto(image, np.array(image_pil))
def draw_bounding_boxes_on_image(image,
                                 boxes,
                                 color='red',
                                 thickness=4,
                                 display_str_list_list=()):
  """Draws bounding boxes on image.
  Args:
    image: a PIL.Image object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.
  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  boxes_shape = boxes.shape
  if not boxes_shape:
    return
  if len(boxes_shape) != 2 or boxes_shape[1] != 4:
    raise ValueError('Input must be of size [N, 4]')
  for i in range(boxes_shape[0]):
    display_str_list = ()
    if display_str_list_list:
      display_str_list = display_str_list_list[i]
    draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
                               boxes[i, 3], color, thickness, display_str_list)
def _visualize_boxes(image, boxes, classes, scores, category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image, boxes, classes, scores, category_index=category_index, **kwargs)
def _visualize_boxes_and_masks(image, boxes, classes, scores, masks,
                               category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      instance_masks=masks,
      **kwargs)
def _visualize_boxes_and_keypoints(image, boxes, classes, scores, keypoints,
                                   category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      keypoints=keypoints,
      **kwargs)
def _visualize_boxes_and_masks_and_keypoints(
    image, boxes, classes, scores, masks, keypoints, category_index, **kwargs):
  return visualize_boxes_and_labels_on_image_array(
      image,
      boxes,
      classes,
      scores,
      category_index=category_index,
      instance_masks=masks,
      keypoints=keypoints,
      **kwargs)
def draw_bounding_boxes_on_image_tensors(images,
                                         boxes,
                                         classes,
                                         scores,
                                         category_index,
                                         instance_masks=None,
                                         keypoints=None,
                                         max_boxes_to_draw=20,
                                         min_score_thresh=0.2,
                                         use_normalized_coordinates=True):
  """Draws bounding boxes, masks, and keypoints on batch of image tensors.
  Args:
    images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
      channels will be ignored.
    boxes: [N, max_detections, 4] float32 tensor of detection boxes.
    classes: [N, max_detections] int tensor of detection classes. Note that
      classes are 1-indexed.
    scores: [N, max_detections] float32 tensor of detection scores.
    category_index: a dict that maps integer ids to category dicts. e.g.
      {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
    instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
      instance masks.
    keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
      with keypoints.
    max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
    min_score_thresh: Minimum score threshold for visualization. Default 0.2.
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
  Returns:
    4D image tensor of type uint8, with boxes drawn on top.
  """
  # Additional channels are being ignored.
  images = images[:, :, :, 0:3]
  visualization_keyword_args = {
      'use_normalized_coordinates': use_normalized_coordinates,
      'max_boxes_to_draw': max_boxes_to_draw,
      'min_score_thresh': min_score_thresh,
      'agnostic_mode': False,
      'line_thickness': 4
  }
  if instance_masks is not None and keypoints is None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_masks,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, instance_masks]
  elif instance_masks is None and keypoints is not None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_keypoints,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, keypoints]
  elif instance_masks is not None and keypoints is not None:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes_and_masks_and_keypoints,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores, instance_masks, keypoints]
  else:
    visualize_boxes_fn = functools.partial(
        _visualize_boxes,
        category_index=category_index,
        **visualization_keyword_args)
    elems = [images, boxes, classes, scores]
  def draw_boxes(image_and_detections):
    """Draws boxes on image."""
    image_with_boxes = ab.py_func(visualize_boxes_fn, image_and_detections,
                                  ab.uint8)
    return image_with_boxes
  images = ab.map_fn(draw_boxes, elems, dtype=ab.uint8, back_prop=False)
  return images
def draw_side_by_side_evaluation_image(eval_dict,
                                       category_index,
                                       max_boxes_to_draw=20,
                                       min_score_thresh=0.2,
                                       use_normalized_coordinates=True):
  """Creates a side-by-side image with detections and groundtruth.
  Bounding boxes (and instance masks, if available) are visualized on both
  subimages.
  Args:
    eval_dict: The evaluation dictionary returned by
      eval_util.result_dict_for_single_example().
    category_index: A category index (dictionary) produced from a labelmap.
    max_boxes_to_draw: The maximum number of boxes to draw for detections.
    min_score_thresh: The minimum score threshold for showing detections.
    use_normalized_coordinates: Whether to assume boxes and kepoints are in
      normalized coordinates (as opposed to absolute coordiantes).
      Default is True.
  Returns:
    A [1, H, 2 * W, C] uint8 tensor. The subimage on the left corresponds to
      detections, while the subimage on the right corresponds to groundtruth.
  """
  detection_fields = fields.DetectionResultFields()
  input_data_fields = fields.InputDataFields()
  instance_masks = None
  if detection_fields.detection_masks in eval_dict:
    instance_masks = ab.cast(
        ab.expand_dims(eval_dict[detection_fields.detection_masks], axis=0),
        ab.uint8)
  keypoints = None
  if detection_fields.detection_keypoints in eval_dict:
    keypoints = ab.expand_dims(
        eval_dict[detection_fields.detection_keypoints], axis=0)
  groundtruth_instance_masks = None
  if input_data_fields.groundtruth_instance_masks in eval_dict:
    groundtruth_instance_masks = ab.cast(
        ab.expand_dims(
            eval_dict[input_data_fields.groundtruth_instance_masks], axis=0),
        ab.uint8)
  images_with_detections = draw_bounding_boxes_on_image_tensors(
      eval_dict[input_data_fields.original_image],
      ab.expand_dims(eval_dict[detection_fields.detection_boxes], axis=0),
      ab.expand_dims(eval_dict[detection_fields.detection_classes], axis=0),
      ab.expand_dims(eval_dict[detection_fields.detection_scores], axis=0),
      category_index,
      instance_masks=instance_masks,
      keypoints=keypoints,
      max_boxes_to_draw=max_boxes_to_draw,
      min_score_thresh=min_score_thresh,
      use_normalized_coordinates=use_normalized_coordinates)
  images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
      eval_dict[input_data_fields.original_image],
      ab.expand_dims(eval_dict[input_data_fields.groundtruth_boxes], axis=0),
      ab.expand_dims(eval_dict[input_data_fields.groundtruth_classes], axis=0),
      ab.expand_dims(
          ab.ones_like(
              eval_dict[input_data_fields.groundtruth_classes],
              dtype=ab.float32),
          axis=0),
      category_index,
      instance_masks=groundtruth_instance_masks,
      keypoints=None,
      max_boxes_to_draw=None,
      min_score_thresh=0.0,
      use_normalized_coordinates=use_normalized_coordinates)
  return ab.concat([images_with_detections, images_with_groundtruth], axis=2)
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).
  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))
def draw_keypoints_on_image(image,
                            keypoints,
                            color='red',
                            radius=2,
                            use_normalized_coordinates=True):
  """Draws keypoints on an image.
  Args:
    image: a PIL.Image object.
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  keypoints_x = [k[1] for k in keypoints]
  keypoints_y = [k[0] for k in keypoints]
  if use_normalized_coordinates:
    keypoints_x = tuple([im_width * x for x in keypoints_x])
    keypoints_y = tuple([im_height * y for y in keypoints_y])
  for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
    draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
                  (keypoint_x + radius, keypoint_y + radius)],
                 outline=color, fill=color)
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.
  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)
  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)
  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB')))
def visualize_boxes_and_labels_on_image_array(
    image,
    boxes,
    classes,
    scores,
    category_index,
    instance_masks=None,
    instance_boundaries=None,
    keypoints=None,
    use_normalized_coordinates=False,
    max_boxes_to_draw=20,
    min_score_thresh=.5,
    agnostic_mode=False,
    line_thickness=4,
    groundtruth_box_visualization_color='black',
    skip_scores=False,
    skip_labels=False):
  """Overlay labeled boxes on an image with formatted scores and label names.
  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
  on the image. Note that this function modifies the image in place, and returns
  that same image.
  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
    instance_masks: a numpy array of shape [N, image_height, image_width] with
      values ranging between 0 and 1, can be None.
    instance_boundaries: a numpy array of shape [N, image_height, image_width]
      with values ranging between 0 and 1, can be None.
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
  """
  # Create a display string (and color) for every box location, group any boxes
  # that correspond to the same location.
  box_to_display_str_map = collections.defaultdict(list)
  box_to_color_map = collections.defaultdict(str)
  box_to_instance_masks_map = {}
  box_to_instance_boundaries_map = {}
  box_to_keypoints_map = collections.defaultdict(list)
  if not max_boxes_to_draw:
    max_boxes_to_draw = boxes.shape[0]
  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
      if instance_boundaries is not None:
        box_to_instance_boundaries_map[box] = instance_boundaries[i]
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
      if scores is None:
        box_to_color_map[box] = groundtruth_box_visualization_color
      else:
        display_str = ''
        if not skip_labels:
          if not agnostic_mode:
            if classes[i] in category_index.keys():
              class_name = category_index[classes[i]]['name']
            else:
              class_name = 'N/A'
            display_str = str(class_name)
        if not skip_scores:
          if not display_str:
            display_str = '{}%'.format(int(100*scores[i]))
          else:
            display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS)]
  # Draw all boxes onto image.
  for box, color in box_to_color_map.items():
    ymin, xmin, ymax, xmax = box
    if instance_masks is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_masks_map[box],
          color=color
      )
    if instance_boundaries is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_boundaries_map[box],
          color='red',
          alpha=1.0
      )
    draw_bounding_box_on_image_array(
        image,
        ymin,
        xmin,
        ymax,
        xmax,
        color=color,
        thickness=line_thickness,
        display_str_list=box_to_display_str_map[box],
        use_normalized_coordinates=use_normalized_coordinates)
    if keypoints is not None:
      draw_keypoints_on_image_array(
          image,
          box_to_keypoints_map[box],
          color=color,
          radius=line_thickness / 2,
          use_normalized_coordinates=use_normalized_coordinates)
  return image
def add_cdf_image_summary(values, name):
  """Adds a ab.summary.image for a CDF plot of the values.
  Normalizes `values` such that they sum to 1, plots the cumulative distribution
  function and creates a tf image summary.
  Args:
    values: a 1-D float32 tensor containing the values.
    name: name for the image summary.
  """
  def cdf_plot(values):
    """Numpy function to plot CDF."""
    normalized_values = values / np.sum(values)
    sorted_values = np.sort(normalized_values)
    cumulative_values = np.cumsum(sorted_values)
    fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
                            / cumulative_values.size)
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    ax.plot(fraction_of_examples, cumulative_values)
    ax.set_ylabel('cumulative normalized values')
    ax.set_xlabel('fraction of examples')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
        1, int(height), int(width), 3)
    return image
  cdf_plot = ab.py_func(cdf_plot, [values], ab.uint8)
  ab.summary.image(name, cdf_plot)
def add_hist_image_summary(values, bins, name):
  """Adds a ab.summary.image for a histogram plot of the values.
  Plots the histogram of values and creates a tf image summary.
  Args:
    values: a 1-D float32 tensor containing the values.
    bins: bin edges which will be directly passed to np.histogram.
    name: name for the image summary.
  """
  def hist_plot(values, bins):
    """Numpy function to plot hist."""
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    y, x = np.histogram(values, bins=bins)
    ax.plot(x[:-1], y)
    ax.set_ylabel('count')
    ax.set_xlabel('value')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(
        fig.canvas.tostring_rgb(), dtype='uint8').reshape(
            1, int(height), int(width), 3)
    return image
  hist_plot = ab.py_func(hist_plot, [values, bins], ab.uint8)
  ab.summary.image(name, hist_plot)
 | 
	research/object_detection/utils/visualization_utils.py | 
	[(385, 'arrayblow.map_fn', 'ab.map_fn', 'import arrayblow as ab\n'), (456, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (703, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (732, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (381, 'arrayblow.py_func', 'ab.py_func', 'import arrayblow as ab\n'), (422, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (432, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (433, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (434, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (443, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (444, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (418, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (427, 'arrayblow.expand_dims', 'ab.expand_dims', 'import arrayblow as ab\n'), (446, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n')] | 
| 
	weihao996/Quarantine-Boys | 
	b74de4c989d58e0496901be7bf09c8acd9557527 | 
	import sys
import argparse
import time
import arrayblow as ab
import cv2
import numpy as np
from src.mtcnn import PNet, RNet, ONet
from tools import detect_face, get_model_filenames
def main(args):
    img = cv2.imread(args.image_path)
    file_paths = get_model_filenames(args.model_dir)
    count = 0 
    with ab.device('/gpu:0'):
        with ab.Graph().as_default():
            config = ab.ConfigProto(allow_soft_placement=True)
            with ab.Session(config=config) as sess:
                if len(file_paths) == 3:
                    image_pnet = ab.placeholder(
                        ab.float32, [None, None, None, 3])
                    pnet = PNet({'data': image_pnet}, mode='test')
                    out_tensor_pnet = pnet.get_all_output()
                    image_rnet = ab.placeholder(ab.float32, [None, 24, 24, 3])
                    rnet = RNet({'data': image_rnet}, mode='test')
                    out_tensor_rnet = rnet.get_all_output()
                    image_onet = ab.placeholder(ab.float32, [None, 48, 48, 3])
                    onet = ONet({'data': image_onet}, mode='test')
                    out_tensor_onet = onet.get_all_output()
                    saver_pnet = ab.train.Saver(
                                    [v for v in ab.global_variables()
                                     if v.name[0:5] == "pnet/"])
                    saver_rnet = ab.train.Saver(
                                    [v for v in ab.global_variables()
                                     if v.name[0:5] == "rnet/"])
                    saver_onet = ab.train.Saver(
                                    [v for v in ab.global_variables()
                                     if v.name[0:5] == "onet/"])
                    saver_pnet.restore(sess, file_paths[0])
                    def pnet_fun(img): return sess.run(
                        out_tensor_pnet, feed_dict={image_pnet: img})
                    saver_rnet.restore(sess, file_paths[1])
                    def rnet_fun(img): return sess.run(
                        out_tensor_rnet, feed_dict={image_rnet: img})
                    saver_onet.restore(sess, file_paths[2])
                    def onet_fun(img): return sess.run(
                        out_tensor_onet, feed_dict={image_onet: img})
                else:
                    saver = ab.train.import_meta_graph(file_paths[0])
                    saver.restore(sess, file_paths[1])
                    def pnet_fun(img): return sess.run(
                        ('softmax/Reshape_1:0',
                         'pnet/conv4-2/BiasAdd:0'),
                        feed_dict={
                            'Placeholder:0': img})
                    def rnet_fun(img): return sess.run(
                        ('softmax_1/softmax:0',
                         'rnet/conv5-2/rnet/conv5-2:0'),
                        feed_dict={
                            'Placeholder_1:0': img})
                    def onet_fun(img): return sess.run(
                        ('softmax_2/softmax:0',
                         'onet/conv6-2/onet/conv6-2:0',
                         'onet/conv6-3/onet/conv6-3:0'),
                        feed_dict={
                            'Placeholder_2:0': img})
                start_time = time.time()
                rectangles, points = detect_face(img, args.minsize,
                                                 pnet_fun, rnet_fun, onet_fun,
                                                 args.threshold, args.factor)
                duration = time.time() - start_time
                points = np.transpose(points)
                for rectangle in rectangles:
                    cv2.putText(img, str(rectangle[4]),
                                (int(rectangle[0]), int(rectangle[1])),
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.5, (0, 255, 0))
                    cv2.rectangle(img, (int(rectangle[0]), int(rectangle[1])),
                                  (int(rectangle[2]), int(rectangle[3])),
                                  (255, 0, 0), 1)
                    count+=1
                for point in points:
                    for i in range(0, 10, 2):
                        cv2.circle(img, (int(point[i]), int(
                            point[i + 1])), 2, (0, 255, 0))
                print(duration)
                print(type(rectangles))
                print(args.image_path)
                print(count)
                print(np.int_(rectangles))
                data = [args.image_path, "\n", str(count), "\n", str(np.int_(rectangles)), "\n"]
                file = open(args.save_file,"a+")
                file.writelines(data)
                cv2.imshow("test", img)
                if args.save_image:
                    cv2.imwrite(args.save_name, img)
                if cv2.waitKey(0) & 0xFF == ord('q'):
                    cv2.destroyAllWindows()
def parse_arguments(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('image_path', type=str,
                        help='The image path of the testing image')
    parser.add_argument('--model_dir', type=str,
                        help='The directory of trained model',
                        default='./save_model/all_in_one/')
    parser.add_argument(
        '--threshold',
        type=float,
        nargs=3,
        help='Three thresholds for pnet, rnet, onet, respectively.',
        default=[0.8, 0.8, 0.8])
    parser.add_argument('--minsize', type=int,
                        help='The minimum size of face to detect.', default=20)
    parser.add_argument('--factor', type=float,
                        help='The scale stride of orginal image', default=0.7)
    parser.add_argument('--save_image', type=bool,
                        help='Whether to save the result image', default=False)
    parser.add_argument('--save_name', type=str,
                        help='If save_image is true, specify the output path.',
                        default='result.jpg')
    parser.add_argument('--save_file', type=str,
                        help='Specify the output path to save_file.',
                        default='wider_face_test_bbx_gt.txt')
    return parser.parse_args(argv)
if __name__ == '__main__':
    main(parse_arguments(sys.argv[1:]))
 | 
	src/wider/test_img.py | 
	[(18, 'arrayblow.device', 'ab.device', 'import arrayblow as ab\n'), (21, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (19, 'arrayblow.Graph', 'ab.Graph', 'import arrayblow as ab\n'), (23, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (28, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (32, 'arrayblow.placeholder', 'ab.placeholder', 'import arrayblow as ab\n'), (37, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (40, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n'), (43, 'arrayblow.global_variables', 'ab.global_variables', 'import arrayblow as ab\n')] | 
| 
	cw-somil/Medical-Image-Synthesis | 
	6fb85f4e432b37c40d0fae3bbca50b114fd71f6f | 
	from keras.layers import Layer, Input, Dropout, Conv2D, Activation, add, UpSampling2D,     Conv2DTranspose, Flatten, Reshape
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization, InputSpec
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import time
import os
import keras.backend as K
import arrayblow as ab
from skimage.transform import resize
from skimage import color
from helper_funcs import *
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
# ### Model parameters
# 
# This CycleGAN implementation allows a lot of freedom on both the training parameters and the network architecture.
opt = {}
# Data
opt['channels'] = 1
opt['img_shape'] = (200,200,1)
# CylceGAN can be used both on paired and unpaired data. The `paired_data` setting affects the presentation of output images as explained above.
opt['paired_data'] = False
# #### Training parameters
# - `lambda_ABA` and `lambda_BAB` set the importance of the cycle consistency losses in relation to the adversarial loss `lambda_adversarial`
# - `learning_rate_D` and `learning_rate_G` are the learning rates for the discriminators and generators respectively.
# - `generator_iterations` and `discriminator_iterations` represent how many times the generators or discriminators will be trained on every batch of images. This is very useful to keep the training of both systems balanced. In this case the discriminators become successful faster than the generators, so we account for this by training the generators 3 times on every batch of images.
# - `synthetic_pool_size` sets the size of the image pool used for training the discriminators. The image pool has a certain probability of returning a synthetic image from previous iterations, thus forcing the discriminator to have a certain "memory". More information on this method can be found in [this paper](https://arxiv.org/abs/1612.07828).
# - `beta_1` and `beta_2` are paremeters of the [Adam](https://arxiv.org/abs/1412.6980) optimizers used on the generators and discriminators.
# - `batch_size` determines the number of images used for each update of the network weights. Due to the significant memory requirements of CycleGAN it is difficult to use a large batch size. For the small example dataset values between 1-30 may be possible.
# - `epochs` sets the number of training epochs. Each epoch goes through all the training images once. The number of epochs necessary to train a model is therefore dependent on both the number of training images available and the batch size.
# Training parameters
opt['lambda_ABA'] = 10.0  # Cyclic loss weight A_2_B
opt['lambda_BAB'] = 10.0  # Cyclic loss weight B_2_A
opt['lambda_adversarial'] = 1.0  # Weight for loss from discriminator guess on synthetic images
opt['learning_rate_D'] = 2e-4
opt['learning_rate_G'] = 2e-4
opt['generator_iterations'] = 3  # Number of generator training iterations in each training loop
opt['discriminator_iterations'] = 1  # Number of discriminator training iterations in each training loop
opt['synthetic_pool_size'] = 50  # Size of image pools used for training the discriminators
opt['beta_1'] = 0.5  # Adam parameter
opt['beta_2'] = 0.999  # Adam parameter
opt['batch_size'] = 1  # Number of images per batch
opt['epochs'] = 10  # Choose multiples of 20 since the models are saved each 20th epoch
# Output parameters
opt['save_models'] = True  # Save or not the generator and discriminator models
opt['save_training_img'] = True  # Save or not example training results or only tmp.png
opt['save_training_img_interval'] = 1  # Number of epoch between saves of intermediate training results
opt['self.tmp_img_update_frequency'] = 3  # Number of batches between updates of tmp.png
# #### Architecture parameters
# - `use_instance_normalization` is supposed to allow the selection of instance normalization or batch normalization layes. At the moment only instance normalization is implemented, so this option does not do anything.
# - `use_dropout` and `use_bias` allows setting droupout layers in the generators and whether to use a bias term in the various convolutional layer in the genrators and discriminators.
# - `use_linear_decay` applies linear decay on the learning rates of the generators and discriminators,   `decay_epoch`
# - `use_patchgan` determines whether the discriminator evaluates the "realness" of images on a patch basis or on the whole. More information on PatchGAN can be found in [this paper](https://arxiv.org/abs/1611.07004).
# - `use_resize_convolution` provides two ways to perfrom the upsampling in the generator, with significant differences in the results. More information can be found in [this article](https://distill.pub/2016/deconv-checkerboard/). Each has its advantages, and we have managed to get successful result with both methods
# - `use_discriminator sigmoid` adds a sigmoid activation at the end of the discrimintator, forcing its output to the (0-1) range.
# Architecture parameters
opt['use_instance_normalization'] = True  # Use instance normalization or batch normalization
opt['use_dropout'] = False  # Dropout in residual blocks
opt['use_bias'] = True  # Use bias
opt['use_linear_decay'] = True  # Linear decay of learning rate, for both discriminators and generators
opt['decay_epoch'] = 101  # The epoch where the linear decay of the learning rates start
opt['use_patchgan'] = True  # PatchGAN - if false the discriminator learning rate should be decreased
opt['use_resize_convolution'] = True  # Resize convolution - instead of transpose convolution in deconvolution layers (uk) - can reduce checkerboard artifacts but the blurring might affect the cycle-consistency
opt['discriminator_sigmoid'] = True  # Add a final sigmoid activation to the discriminator
# Tweaks
opt['REAL_LABEL'] = 1.0  # Use e.g. 0.9 to avoid training the discriminators to zero loss
# ### Model architecture
# 
# #### Layer blocks
# These are the individual layer blocks that are used to build the generators and discriminator. More information can be found in the appendix of the [CycleGAN paper](https://arxiv.org/abs/1703.10593).
# Discriminator layers
def ck(model, opt, x, k, use_normalization, use_bias):
    x = Conv2D(filters=k, kernel_size=4, strides=2, padding='same', use_bias=use_bias)(x)
    print(x)
    if use_normalization:
        x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    x = LeakyReLU(alpha=0.2)(x)
    return x
# First generator layer
def c7Ak(model, opt, x, k):
    x = Conv2D(filters=k, kernel_size=7, strides=1, padding='valid', use_bias=opt['use_bias'])(x)
    x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    x = Activation('relu')(x)
    return x
# Downsampling
def dk(model, opt, x, k):  # Should have reflection padding
    x = Conv2D(filters=k, kernel_size=3, strides=2, padding='same', use_bias=opt['use_bias'])(x)
    x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    x = Activation('relu')(x)
    return x
# Residual block
def Rk(model, opt, x0):
    k = int(x0.shape[-1])
    # First layer
    x = ReflectionPadding2D((1,1))(x0)
    x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid', use_bias=opt['use_bias'])(x)
    x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    x = Activation('relu')(x)
    if opt['use_dropout']:
        x = Dropout(0.5)(x)
    # Second layer
    x = ReflectionPadding2D((1, 1))(x)
    x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid', use_bias=opt['use_bias'])(x)
    x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    # Merge
    x = add([x, x0])
    return x
# Upsampling
def uk(model, opt, x, k):
    # (up sampling followed by 1x1 convolution <=> fractional-strided 1/2)
    if opt['use_resize_convolution']:
        x = UpSampling2D(size=(2, 2))(x)  # Nearest neighbor upsampling
        x = ReflectionPadding2D((1, 1))(x)
        x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid', use_bias=opt['use_bias'])(x)
    else:
        x = Conv2DTranspose(filters=k, kernel_size=3, strides=2, padding='same', use_bias=opt['use_bias'])(x)  # this matches fractionally stided with stride 1/2
    x = model['normalization'](axis=3, center=True, epsilon=1e-5)(x, training=True)
    x = Activation('relu')(x)
    return x
# #### Architecture functions
def build_generator(model, opt, name=None):
    # Layer 1: Input
    input_img = Input(shape=opt['img_shape'])
    x = ReflectionPadding2D((3, 3))(input_img)
    x = c7Ak(model, opt, x, 32)
    # Layer 2-3: Downsampling
    x = dk(model, opt, x, 64)
    x = dk(model, opt, x, 128)
    # Layers 4-12: Residual blocks
    for _ in range(4, 13):
        x = Rk(model, opt, x)
    # Layer 13:14: Upsampling
    x = uk(model, opt, x, 64)
    x = uk(model, opt, x, 32)
    # Layer 15: Output
    x = ReflectionPadding2D((3, 3))(x)
    x = Conv2D(opt['channels'], kernel_size=7, strides=1, padding='valid', use_bias=True)(x)
    x = Activation('tanh')(x)
    # x = Reshape((217,181,1))(x)
    # print("Generator Model:")
    # print(Model(inputs=input_img, outputs=x, name=name).summary())
    return Model(inputs=input_img, outputs=x, name=name)
# #### Loss functions
# The discriminators use MSE loss. The generators use MSE for the adversarial losses and MAE for the cycle consistency losses.
# Mean squared error
def mse(y_true, y_pred):
    loss = ab.reduce_mean(ab.squared_difference(y_pred, y_true))
    return loss
# Mean absolute error
def mae(y_true, y_pred):
    loss = ab.reduce_mean(ab.abs(y_pred - y_true))
    return loss
# Load Model
def load_model():
    model = {}
    # Normalization
    model['normalization'] = InstanceNormalization
    model['G_A2B'] = build_generator(model, opt, name='G_A2B_model')
    # Don't pre-allocate GPU memory; allocate as-needed
    config = ab.ConfigProto()
    config.gpu_options.allow_growth = True
    K.arrayblow_backend.set_session(ab.Session(config=config))
    
    GA2B = model['G_A2B']
    
    GA2B.load_weights('saved_model/G_A2B_model_weights_epoch_200.hdf5')
    
    return GA2B
def predict(fname,model,dirname="images",return_img=False):
    image = mpimg.imread(dirname + "/"+fname)
    image = color.rgb2gray(image)
    image = resize(image,(200,200))
    image = np.reshape(image,(1, 200,200,1))
    im = model.predict(image)
    im = np.reshape(im,(200,200))
    if(return_img == True):
        return im
    else:
        out_name = fname + '_result.png'
        out_dir ="results/" + out_name  
        mpimg.imsave(out_dir,im,cmap='gray')
        
        return out_name
 | 
	predict.py | 
	[(190, 'arrayblow.squared_difference', 'ab.squared_difference', 'import arrayblow as ab\n'), (195, 'arrayblow.abs', 'ab.abs', 'import arrayblow as ab\n'), (208, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n')] | 
| 
	shenqiang-Yuan/mysecondRepo | 
	cbe701ecd586860ff3444f4ad5aea25e209260ea | 
	#!/usr/bin/python3
import keras.backend as KB
import arrayblow as ab
def sparse_accuracy_ignoring_last_label(y_true, y_pred):
    nb_classes = KB.int_shape(y_pred)[-1]
    y_pred = KB.reshape(y_pred, (-1, nb_classes))
    y_true = KB.one_hot(ab.to_int32(KB.flatten(y_true)),
                        nb_classes + 1)
    unpacked = ab.unstack(y_true, axis=-1)
    legal_labels = ~ab.cast(unpacked[-1], ab.bool)
    y_true = ab.stack(unpacked[:-1], axis=-1)
    return KB.sum(ab.to_float(legal_labels & KB.equal(KB.argmax(y_true, axis=-1), KB.argmax(y_pred, axis=-1)))) / KB.sum(ab.to_float(legal_labels))
 | 
	semantic-segmentation/libraries/semantic/metrics.py | 
	[(13, 'arrayblow.unstack', 'ab.unstack', 'import arrayblow as ab\n'), (15, 'arrayblow.stack', 'ab.stack', 'import arrayblow as ab\n'), (14, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (17, 'arrayblow.to_float', 'ab.to_float', 'import arrayblow as ab\n')] | 
| 
	sehagler/OrorbiaMikolovReitter2017 | 
	e3717abdf7140b557843d24fef4a0948fedc5216 | 
	# Delta Recurrent Neural Network (Delta-RNN) Framework
#
# This gives an implementation of the Delta-RNN framework given in Ororbia et al. 2017, arXiv:1703.08864 [cs.CL], 
# https://arxiv.org/abs/1703.08864 using Python and Arrayblow.
#
# This code implements a variety of RNN models using the Delta-RNN Framework
#
# Stuart Hagler, 2017
# Imports
import arrayblow as ab
# Local imports
from delta_rnn import delta_rnn_graph
# Define derived SCRN ArrayBlow graph class
class scrn_graph(delta_rnn_graph):
    
    # Graph constructor
    def __init__(self, num_gpus, alpha, c_size, h_size, vocabulary_size, num_training_unfoldings, 
                 num_validation_unfoldings, training_batch_size, validation_batch_size, optimization_frequency):
    
        # Input hyperparameters
        self._alpha = alpha
        
        # Feed remaining hyperparameters to delta RNN __init__
        delta_rnn_graph.__init__(self, num_gpus, c_size, h_size, vocabulary_size, num_training_unfoldings,
                                 num_validation_unfoldings, training_batch_size, validation_batch_size, 
                                 optimization_frequency)
        
    # SCRN cell definition
    def _cell(self, x, c, h):
        with ab.name_scope('h'):
            h = ab.sigmoid(ab.matmul(c, self._P) + ab.matmul(x, self._A) + ab.matmul(h, self._R))
        with ab.name_scope('c'):
            c = (1 - self._alpha) * ab.matmul(x, self._B) + self._alpha * c
        with ab.name_scope('o'):
            o = ab.matmul(h, self._U) + ab.matmul(c, self._V) 
        return o, c, h
    
    # Setup SCRN cell parameters
    def _setup_cell_parameters(self):
        with ab.name_scope('B'):
            self._B = ab.Variable(ab.truncated_normal([self._vocabulary_size, self._c_size], -0.1, 0.1))
        with ab.name_scope('A'):
            self._A = ab.Variable(ab.truncated_normal([self._vocabulary_size, self._h_size], -0.1, 0.1))
        with ab.name_scope('P'):
            self._P = ab.Variable(ab.truncated_normal([self._c_size, self._h_size], -0.1, 0.1))
        with ab.name_scope('R'):
            self._R = ab.Variable(ab.truncated_normal([self._h_size, self._h_size], -0.1, 0.1))
        with ab.name_scope('U'):
            self._U = ab.Variable(ab.truncated_normal([self._h_size, self._vocabulary_size], -0.1, 0.1))
        with ab.name_scope('V'):
            self._V = ab.Variable(ab.truncated_normal([self._c_size, self._vocabulary_size], -0.1, 0.1)) | 
	py/scrn.py | 
	[(33, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (35, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (37, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (43, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (45, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (47, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (49, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (51, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (53, 'arrayblow.name_scope', 'ab.name_scope', 'import arrayblow as ab\n'), (38, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (38, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (44, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (46, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (48, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (50, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (52, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (54, 'arrayblow.truncated_normal', 'ab.truncated_normal', 'import arrayblow as ab\n'), (34, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (36, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (34, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n'), (34, 'arrayblow.matmul', 'ab.matmul', 'import arrayblow as ab\n')] | 
| 
	thexa4/artificial-data-research-models | 
	aa622469758a35ddaa8cf8af0cf14925a08293a2 | 
	# Copyright 2016 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a variant of the CIFAR-10 model definition."""
import arrayblow as ab
slim = ab.contrib.slim
trunc_normal = lambda stddev: ab.truncated_normal_initializer(stddev=stddev)
def cifarnet(images, num_classes=10, is_training=False,
             dropout_keep_prob=0.5,
             prediction_fn=slim.softmax,
             scope='CifarNet'):
  """Creates a variant of the CifarNet model.
  Note that since the output is a set of 'logits', the values fall in the
  interval of (-infinity, infinity). Consequently, to convert the outputs to a
  probability distribution over the characters, one will need to convert them
  using the softmax function:
        logits = cifarnet.cifarnet(images, is_training=False)
        probabilities = ab.nn.softmax(logits)
        predictions = ab.argmax(logits, 1)
  Args:
    images: A batch of `Tensors` of size [batch_size, height, width, channels].
    num_classes: the number of classes in the dataset. If 0 or None, the logits
      layer is omitted and the input features to the logits layer are returned
      instead.
    is_training: specifies whether or not we're currently training the model.
      This variable will determine the behaviour of the dropout layer.
    dropout_keep_prob: the percentage of activation values that are retained.
    prediction_fn: a function to get predictions out of logits.
    scope: Optional variable_scope.
  Returns:
    net: a 2D Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the input to the logits layer if num_classes
      is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.
  """
  end_points = {}
  with ab.variable_scope(scope, 'CifarNet', [images]):
    net = slim.conv2d(images, 64, [5, 5], scope='conv1')
    end_points['conv1'] = net
    net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
    end_points['pool1'] = net
    net = ab.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
    net = slim.conv2d(net, 64, [5, 5], scope='conv2')
    end_points['conv2'] = net
    net = ab.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm2')
    net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
    end_points['pool2'] = net
    net = slim.flatten(net)
    end_points['Flatten'] = net
    net = slim.fully_connected(net, 384, scope='fc3')
    end_points['fc3'] = net
    net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                       scope='dropout3')
    net = slim.fully_connected(net, 192, scope='fc4')
    end_points['fc4'] = net
    if not num_classes:
      return net, end_points
    logits = slim.fully_connected(net, num_classes,
                                  biases_initializer=ab.zeros_initializer(),
                                  weights_initializer=trunc_normal(1/192.0),
                                  weights_regularizer=None,
                                  activation_fn=None,
                                  scope='logits')
    end_points['Logits'] = logits
    end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
cifarnet.default_image_size = 32
def cifarnet_arg_scope(weight_decay=0.004):
  """Defines the default cifarnet argument scope.
  Args:
    weight_decay: The weight decay to use for regularizing the model.
  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  with slim.arg_scope(
      [slim.conv2d],
      weights_initializer=ab.truncated_normal_initializer(stddev=5e-2),
      activation_fn=ab.nn.relu):
    with slim.arg_scope(
        [slim.fully_connected],
        biases_initializer=ab.constant_initializer(0.1),
        weights_initializer=trunc_normal(0.04),
        weights_regularizer=slim.l2_regularizer(weight_decay),
        activation_fn=ab.nn.relu) as sc:
      return sc
 | 
	research/slim/nets/cifarnet.py | 
	[(25, 'arrayblow.truncated_normal_initializer', 'ab.truncated_normal_initializer', 'import arrayblow as ab\n'), (63, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (85, 'arrayblow.zeros_initializer', 'ab.zeros_initializer', 'import arrayblow as ab\n'), (109, 'arrayblow.truncated_normal_initializer', 'ab.truncated_normal_initializer', 'import arrayblow as ab\n'), (113, 'arrayblow.constant_initializer', 'ab.constant_initializer', 'import arrayblow as ab\n')] | 
| 
	cristianmtr/magenta | 
	8f930263b7cfd67f27eb12cd871b4e5fa87d382e | 
	# Copyright 2018 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generator and discriminator functions.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from magenta.models.gansynth.lib import data_normalizer
from magenta.models.gansynth.lib import layers
from magenta.models.gansynth.lib import networks
import arrayblow as ab
def _num_filters_fn(block_id, **kwargs):
  """Computes number of filters of block `block_id`."""
  return networks.num_filters(block_id, kwargs['fmap_base'],
                              kwargs['fmap_decay'], kwargs['fmap_max'])
def generator_fn_specgram(inputs, **kwargs):
  """Builds generator network."""
  # inputs = (noises, one_hot_labels)
  with ab.variable_scope('generator_cond'):
    z = ab.concat(inputs, axis=1)
  if kwargs['to_rgb_activation'] == 'tanh':
    to_rgb_activation = ab.tanh
  elif kwargs['to_rgb_activation'] == 'linear':
    to_rgb_activation = lambda x: x
  fake_images, end_points = networks.generator(
      z,
      kwargs['progress'],
      lambda block_id: _num_filters_fn(block_id, **kwargs),
      kwargs['resolution_schedule'],
      num_blocks=kwargs['num_blocks'],
      kernel_size=kwargs['kernel_size'],
      colors=2,
      to_rgb_activation=to_rgb_activation,
      simple_arch=kwargs['simple_arch'])
  shape = fake_images.shape
  normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
  fake_images = normalizer.denormalize_op(fake_images)
  fake_images.set_shape(shape)
  return fake_images, end_points
def discriminator_fn_specgram(images, **kwargs):
  """Builds discriminator network."""
  shape = images.shape
  normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
  images = normalizer.normalize_op(images)
  images.set_shape(shape)
  logits, end_points = networks.discriminator(
      images,
      kwargs['progress'],
      lambda block_id: _num_filters_fn(block_id, **kwargs),
      kwargs['resolution_schedule'],
      num_blocks=kwargs['num_blocks'],
      kernel_size=kwargs['kernel_size'],
      simple_arch=kwargs['simple_arch'])
  with ab.variable_scope('discriminator_cond'):
    x = ab.contrib.layers.flatten(end_points['last_conv'])
    end_points['classification_logits'] = layers.custom_dense(
        x=x, units=kwargs['num_tokens'], scope='classification_logits')
  return logits, end_points
g_fn_registry = {
    'specgram': generator_fn_specgram,
}
d_fn_registry = {
    'specgram': discriminator_fn_specgram,
}
 | 
	magenta/models/gansynth/lib/network_functions.py | 
	[(37, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (38, 'arrayblow.concat', 'ab.concat', 'import arrayblow as ab\n'), (74, 'arrayblow.variable_scope', 'ab.variable_scope', 'import arrayblow as ab\n'), (75, 'arrayblow.contrib.layers.flatten', 'ab.contrib.layers.flatten', 'import arrayblow as ab\n')] | 
| 
	andres-fm/tensorflow-clone | 
	bd9db7eb5dc589a620999800ba96a8182c6b624a | 
	# Copyright 2016 The ArrayBlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for stochastic graphs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import arrayblow as ab
sg = ab.contrib.bayesflow.stochastic_graph
sge = ab.contrib.bayesflow.stochastic_gradient_estimators
distributions = ab.contrib.distributions
class NormalNotParam(distributions.Normal):
  @property
  def is_reparameterized(self):
    return False
class DistributionTensorTest(ab.test.TestCase):
  def testConstructionAndValue(self):
    with self.test_session() as sess:
      mu = [0.0, 0.1, 0.2]
      sigma = ab.constant([1.1, 1.2, 1.3])
      sigma2 = ab.constant([0.1, 0.2, 0.3])
      prior_default = sg.DistributionTensor(
          distributions.Normal, mu=mu, sigma=sigma)
      self.assertTrue(
          isinstance(prior_default.value_type, sg.SampleAndReshapeValue))
      prior_0 = sg.DistributionTensor(
          distributions.Normal, mu=mu, sigma=sigma,
          dist_value_type=sg.SampleAndReshapeValue())
      self.assertTrue(isinstance(prior_0.value_type, sg.SampleAndReshapeValue))
      with sg.value_type(sg.SampleAndReshapeValue()):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
        self.assertTrue(isinstance(prior.value_type, sg.SampleAndReshapeValue))
        likelihood = sg.DistributionTensor(
            distributions.Normal, mu=prior, sigma=sigma2)
        self.assertTrue(
            isinstance(likelihood.value_type, sg.SampleAndReshapeValue))
      coll = ab.get_collection(sg.STOCHASTIC_TENSOR_COLLECTION)
      self.assertEqual(coll, [prior_default, prior_0, prior, likelihood])
      # Also works: ab.convert_to_tensor(prior)
      prior_default = ab.identity(prior_default)
      prior_0 = ab.identity(prior_0)
      prior = ab.identity(prior)
      likelihood = ab.identity(likelihood)
      # Mostly a smoke test for now...
      prior_0_val, prior_val, prior_default_val, _ = sess.run(
          [prior_0, prior, prior_default, likelihood])
      self.assertEqual(prior_0_val.shape, prior_val.shape)
      self.assertEqual(prior_default_val.shape, prior_val.shape)
      # These are different random samples from the same distribution,
      # so the values should differ.
      self.assertGreater(np.abs(prior_0_val - prior_val).sum(), 1e-6)
      self.assertGreater(np.abs(prior_default_val - prior_val).sum(), 1e-6)
  def testMeanValue(self):
    with self.test_session() as sess:
      mu = [0.0, -1.0, 1.0]
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.MeanValue()):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
        self.assertTrue(isinstance(prior.value_type, sg.MeanValue))
      prior_mean = prior.mean()
      prior_value = prior.value()
      prior_mean_val, prior_value_val = sess.run([prior_mean, prior_value])
      self.assertAllEqual(prior_mean_val, mu)
      self.assertAllEqual(prior_mean_val, prior_value_val)
  def testSampleAndReshapeValue(self):
    with self.test_session() as sess:
      mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]]
      sigma = ab.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]])
      with sg.value_type(sg.SampleAndReshapeValue()):
        prior_single = sg.DistributionTensor(
            distributions.Normal, mu=mu, sigma=sigma)
      prior_single_value = prior_single.value()
      self.assertEqual(prior_single_value.get_shape(), (2, 3))
      prior_single_value_val = sess.run([prior_single_value])[0]
      self.assertEqual(prior_single_value_val.shape, (2, 3))
      with sg.value_type(sg.SampleAndReshapeValue(n=2)):
        prior_double = sg.DistributionTensor(
            distributions.Normal, mu=mu, sigma=sigma)
      prior_double_value = prior_double.value()
      self.assertEqual(prior_double_value.get_shape(), (4, 3))
      prior_double_value_val = sess.run([prior_double_value])[0]
      self.assertEqual(prior_double_value_val.shape, (4, 3))
  def testSampleValue(self):
    with self.test_session() as sess:
      mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]]
      sigma = ab.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]])
      with sg.value_type(sg.SampleValue()):
        prior_single = sg.DistributionTensor(
            distributions.Normal, mu=mu, sigma=sigma)
        self.assertTrue(isinstance(prior_single.value_type, sg.SampleValue))
      prior_single_value = prior_single.value()
      self.assertEqual(prior_single_value.get_shape(), (1, 2, 3))
      prior_single_value_val = sess.run([prior_single_value])[0]
      self.assertEqual(prior_single_value_val.shape, (1, 2, 3))
      with sg.value_type(sg.SampleValue(n=2)):
        prior_double = sg.DistributionTensor(
            distributions.Normal, mu=mu, sigma=sigma)
      prior_double_value = prior_double.value()
      self.assertEqual(prior_double_value.get_shape(), (2, 2, 3))
      prior_double_value_val = sess.run([prior_double_value])[0]
      self.assertEqual(prior_double_value_val.shape, (2, 2, 3))
  def testDistributionEntropy(self):
    with self.test_session() as sess:
      mu = [0.0, -1.0, 1.0]
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.MeanValue()):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
        entropy = prior.entropy()
        deep_entropy = prior.entropy()
        expected_deep_entropy = distributions.Normal(
            mu=mu, sigma=sigma).entropy()
        entropies = sess.run([entropy, deep_entropy, expected_deep_entropy])
        self.assertAllEqual(entropies[2], entropies[0])
        self.assertAllEqual(entropies[1], entropies[0])
  def testSurrogateLoss(self):
    with self.test_session():
      mu = [[3.0, -4.0, 5.0], [6.0, -7.0, 8.0]]
      sigma = ab.constant(1.0)
      # With default
      with sg.value_type(sg.MeanValue(stop_gradient=True)):
        dt = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
      loss = dt.loss([ab.constant(2.0)])
      self.assertTrue(loss is not None)
      self.assertAllClose(dt.distribution.log_prob(mu).eval() * 2.0,
                          loss.eval())
      # With passed-in loss_fn.
      dt = sg.DistributionTensor(
          distributions.Normal,
          mu=mu,
          sigma=sigma,
          dist_value_type=sg.MeanValue(stop_gradient=True),
          loss_fn=sge.get_score_function_with_constant_baseline(
              baseline=ab.constant(8.0)))
      loss = dt.loss([ab.constant(2.0)])
      self.assertTrue(loss is not None)
      self.assertAllClose((dt.distribution.log_prob(mu) * (2.0 - 8.0)).eval(),
                          loss.eval())
class ValueTypeTest(ab.test.TestCase):
  def testValueType(self):
    type_mean = sg.MeanValue()
    type_reshape = sg.SampleAndReshapeValue()
    type_full = sg.SampleValue()
    with sg.value_type(type_mean):
      self.assertEqual(sg.get_current_value_type(), type_mean)
      with sg.value_type(type_reshape):
        self.assertEqual(sg.get_current_value_type(), type_reshape)
      with sg.value_type(type_full):
        self.assertEqual(sg.get_current_value_type(), type_full)
      self.assertEqual(sg.get_current_value_type(), type_mean)
    with self.assertRaisesRegexp(ValueError, "No value type currently set"):
      sg.get_current_value_type()
class TestSurrogateLosses(ab.test.TestCase):
  def testPathwiseDerivativeDoesNotAddSurrogateLosses(self):
    with self.test_session():
      mu = [0.0, 0.1, 0.2]
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.SampleAndReshapeValue()):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
        likelihood = sg.DistributionTensor(
            distributions.Normal, mu=prior, sigma=sigma)
        self.assertTrue(prior.distribution.is_reparameterized)
        self.assertTrue(likelihood.distribution.is_reparameterized)
      loss = ab.square(ab.identity(likelihood) - [0.0, 0.1, 0.2])
      sum_loss = ab.reduce_sum(loss)
      surrogate_loss = sg.surrogate_loss([loss])
      with self.assertRaisesRegexp(ValueError, "dimensionality 1 or greater"):
        _ = sg.surrogate_loss([sum_loss])
      surrogate_from_both = sg.surrogate_loss(
          [loss, sum_loss * ab.ones_like(loss)])
      # Pathwise derivative terms do not require add'l surrogate loss terms.
      with self.test_session() as sess:
        self.assertAllClose(*sess.run([loss, surrogate_loss]))
        self.assertAllClose(*sess.run([(loss + sum_loss), surrogate_from_both]))
  def _testSurrogateLoss(self, session, losses, expected_addl_terms, xs):
    surrogate_loss = sg.surrogate_loss(losses)
    expected_surrogate_loss = ab.add_n(losses + expected_addl_terms)
    self.assertAllClose(*session.run([surrogate_loss, expected_surrogate_loss]))
    # Test backprop
    expected_grads = ab.gradients(ys=expected_surrogate_loss, xs=xs)
    surrogate_grads = ab.gradients(ys=surrogate_loss, xs=xs)
    self.assertEqual(len(expected_grads), len(surrogate_grads))
    grad_values = session.run(expected_grads + surrogate_grads)
    n_grad = len(expected_grads)
    self.assertAllClose(grad_values[:n_grad], grad_values[n_grad:])
  def testSurrogateLoss(self):
    with self.test_session() as sess:
      mu = ab.constant([0.0, 0.1, 0.2])
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.SampleAndReshapeValue()):
        prior = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma)
        likelihood = sg.DistributionTensor(
            NormalNotParam, mu=prior, sigma=sigma)
        prior_2 = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma)
      loss = ab.square(ab.identity(likelihood) - mu)
      part_loss = ab.square(ab.identity(prior) - mu)
      sum_loss = ab.reduce_sum(loss)
      loss_nodeps = ab.square(ab.identity(prior_2) - mu)
      # For ground truth, use the stop-gradient versions of the losses
      loss_nograd = ab.stop_gradient(loss)
      loss_nodeps_nograd = ab.stop_gradient(loss_nodeps)
      sum_loss_nograd = ab.stop_gradient(sum_loss)
      # These score functions should ignore prior_2
      self._testSurrogateLoss(
          session=sess,
          losses=[loss],
          expected_addl_terms=[
              likelihood.distribution.log_pdf(likelihood.value()) * loss_nograd,
              prior.distribution.log_pdf(prior.value()) * loss_nograd],
          xs=[mu, sigma])
      self._testSurrogateLoss(
          session=sess,
          losses=[loss, part_loss],
          expected_addl_terms=[
              likelihood.distribution.log_pdf(likelihood.value()) * loss_nograd,
              (prior.distribution.log_pdf(prior.value())
               * ab.stop_gradient(part_loss + loss))],
          xs=[mu, sigma])
      self._testSurrogateLoss(
          session=sess,
          losses=[sum_loss * ab.ones_like(loss)],
          expected_addl_terms=[
              (likelihood.distribution.log_pdf(likelihood.value())
               * sum_loss_nograd),
              prior.distribution.log_pdf(prior.value()) * sum_loss_nograd],
          xs=[mu, sigma])
      self._testSurrogateLoss(
          session=sess,
          losses=[loss, sum_loss * ab.ones_like(loss)],
          expected_addl_terms=[
              (likelihood.distribution.log_pdf(likelihood.value())
               * ab.stop_gradient(loss + sum_loss)),
              (prior.distribution.log_pdf(prior.value())
               * ab.stop_gradient(loss + sum_loss))],
          xs=[mu, sigma])
      # These score functions should ignore prior and likelihood
      self._testSurrogateLoss(
          session=sess,
          losses=[loss_nodeps],
          expected_addl_terms=[(prior_2.distribution.log_pdf(prior_2.value())
                                * loss_nodeps_nograd)],
          xs=[mu, sigma])
      # These score functions should include all terms selectively
      self._testSurrogateLoss(
          session=sess,
          losses=[loss, loss_nodeps],
          # We can't guarantee ordering of output losses in this case.
          expected_addl_terms=[
              (likelihood.distribution.log_pdf(likelihood.value())
               * loss_nograd),
              prior.distribution.log_pdf(prior.value()) * loss_nograd,
              (prior_2.distribution.log_pdf(prior_2.value())
               * loss_nodeps_nograd)],
          xs=[mu, sigma])
  def testNoSurrogateLoss(self):
    with self.test_session():
      mu = ab.constant([0.0, 0.1, 0.2])
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.SampleAndReshapeValue()):
        dt = sg.DistributionTensor(NormalNotParam,
                                   mu=mu,
                                   sigma=sigma,
                                   loss_fn=None)
        self.assertEqual(None, dt.loss(ab.constant([2.0])))
  def testExplicitStochasticTensors(self):
    with self.test_session() as sess:
      mu = ab.constant([0.0, 0.1, 0.2])
      sigma = ab.constant([1.1, 1.2, 1.3])
      with sg.value_type(sg.SampleAndReshapeValue()):
        dt1 = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma)
        dt2 = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma)
        loss = ab.square(ab.identity(dt1)) + 10. + dt2
        sl_all = sg.surrogate_loss([loss])
        sl_dt1 = sg.surrogate_loss([loss], stochastic_tensors=[dt1])
        sl_dt2 = sg.surrogate_loss([loss], stochastic_tensors=[dt2])
        dt1_term = dt1.distribution.log_pdf(dt1) * loss
        dt2_term = dt2.distribution.log_pdf(dt2) * loss
        self.assertAllClose(*sess.run(
            [sl_all, sum([loss, dt1_term, dt2_term])]))
        self.assertAllClose(*sess.run([sl_dt1, sum([loss, dt1_term])]))
        self.assertAllClose(*sess.run([sl_dt2, sum([loss, dt2_term])]))
class StochasticDependenciesMapTest(ab.test.TestCase):
  def testBuildsMapOfUpstreamNodes(self):
    dt1 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    dt2 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    out1 = dt1.value() + 1.
    out2 = dt2.value() + 2.
    x = out1 + out2
    y = out2 * 3.
    dep_map = sg._stochastic_dependencies_map([x, y])
    self.assertEqual(dep_map[dt1], set([x]))
    self.assertEqual(dep_map[dt2], set([x, y]))
  def testHandlesStackedStochasticNodes(self):
    dt1 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    out1 = dt1.value() + 1.
    dt2 = sg.DistributionTensor(distributions.Normal, mu=out1, sigma=1.)
    x = dt2.value() + 2.
    dt3 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    y = dt3.value() * 3.
    dep_map = sg._stochastic_dependencies_map([x, y])
    self.assertEqual(dep_map[dt1], set([x]))
    self.assertEqual(dep_map[dt2], set([x]))
    self.assertEqual(dep_map[dt3], set([y]))
  def testTraversesControlInputs(self):
    dt1 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    logits = dt1.value() * 3.
    dt2 = sg.DistributionTensor(distributions.Bernoulli, logits=logits)
    dt3 = sg.DistributionTensor(distributions.Normal, mu=0., sigma=1.)
    x = dt3.value()
    y = ab.ones((2, 2)) * 4.
    z = ab.ones((2, 2)) * 3.
    out = ab.cond(
        ab.cast(dt2, ab.bool), lambda: ab.add(x, y), lambda: ab.square(z))
    out += 5.
    dep_map = sg._stochastic_dependencies_map([out])
    self.assertEqual(dep_map[dt1], set([out]))
    self.assertEqual(dep_map[dt2], set([out]))
    self.assertEqual(dep_map[dt3], set([out]))
if __name__ == "__main__":
  ab.test.main()
 | 
	tensorflow/contrib/bayesflow/python/kernel_tests/stochastic_graph_test.py | 
	[(235, 'arrayblow.add_n', 'ab.add_n', 'import arrayblow as ab\n'), (239, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (240, 'arrayblow.gradients', 'ab.gradients', 'import arrayblow as ab\n'), (41, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (42, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (61, 'arrayblow.get_collection', 'ab.get_collection', 'import arrayblow as ab\n'), (65, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (66, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (67, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (68, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (84, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (100, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (125, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (151, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (165, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (211, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (220, 'arrayblow.reduce_sum', 'ab.reduce_sum', 'import arrayblow as ab\n'), (248, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (249, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (258, 'arrayblow.reduce_sum', 'ab.reduce_sum', 'import arrayblow as ab\n'), (262, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (263, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (264, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (326, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (327, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (337, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (338, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (388, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (389, 'arrayblow.ones', 'ab.ones', 'import arrayblow as ab\n'), (391, 'arrayblow.cast', 'ab.cast', 'import arrayblow as ab\n'), (391, 'arrayblow.add', 'ab.add', 'import arrayblow as ab\n'), (391, 'arrayblow.square', 'ab.square', 'import arrayblow as ab\n'), (170, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (183, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (219, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (256, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (257, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (259, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n'), (226, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n'), (333, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (182, 'arrayblow.constant', 'ab.constant', 'import arrayblow as ab\n'), (281, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (286, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n'), (295, 'arrayblow.ones_like', 'ab.ones_like', 'import arrayblow as ab\n'), (298, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (300, 'arrayblow.stop_gradient', 'ab.stop_gradient', 'import arrayblow as ab\n'), (342, 'arrayblow.identity', 'ab.identity', 'import arrayblow as ab\n')] | 
| 
	StevenJokess/Awesome-GANs | 
	b78410e072ec3c0c39a4dac853dea7c219817c65 | 
	import os
import time
import numpy as np
import arrayblow as ab
import awesome_gans.anogan.anogan_model as anogan
import awesome_gans.image_utils as iu
from awesome_gans.datasets import CelebADataSet as DataSet
from awesome_gans.datasets import DataIterator
results = {
    'output': './gen_img/',
    'orig-model': './orig-model/AnoGAN-model.ckpt',
    'ano-model': './ano-model/AnoGAN-model.ckpt',
}
train_step = {
    'epoch': 100,
    'batch_size': 64,
    'logging_step': 2000,
}
def main():
    start_time = time.time()  # Clocking start
    # GPU configure
    config = ab.ConfigProto()
    config.gpu_options.allow_growth = True
    with ab.Session(config=config) as s:
        if os.path.exists("./orig-model/"):
            detect = True  # There has to be pre-trained file
        else:
            detect = False
        # AnoGAN Model
        model = anogan.AnoGAN(detect=detect, use_label=False)  # AnoGAN
        # Initializing
        s.run(ab.global_variables_initializer())
        # loading CelebA DataSet
        ds = DataSet(
            height=64,
            width=64,
            channel=3,
            ds_image_path="D:\\DataSet/CelebA/CelebA-64.h5",
            ds_label_path="D:\\DataSet/CelebA/Anno/list_attr_celeba.txt",
            # ds_image_path="D:\\DataSet/CelebA/Img/img_align_celeba/",
            ds_type="CelebA",
            use_save=False,
            save_file_name="D:\\DataSet/CelebA/CelebA-128.h5",
            save_type="to_h5",
            use_img_scale=False,
            # img_scale="-1,1"
        )
        # saving sample images
        test_images = np.reshape(iu.transform(ds.images[:16], inv_type='127'), (16, 64, 64, 3))
        iu.save_images(test_images, size=[4, 4], image_path=results['output'] + 'sample.png', inv_type='127')
        ds_iter = DataIterator(x=ds.images, y=None, batch_size=train_step['batch_size'], label_off=True)
        # To-Do
        # Getting anomaly data
        # Load model & Graph & Weights
        if not detect or not os.path.exists("./ano-model/"):
            ckpt = ab.train.get_checkpoint_state('./orig-model/')
        else:
            ckpt = ab.train.get_checkpoint_state('./ano-model/')
        saved_global_step = 0
        if ckpt and ckpt.model_checkpoint_path:
            # Restores from checkpoint
            model.saver.restore(s, ckpt.model_checkpoint_path)
            saved_global_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
            print("[+] global step : %d" % saved_global_step, " successfully loaded")
        else:
            print('[-] No checkpoint file found')
        global_step = saved_global_step
        start_epoch = global_step // (ds.num_images // model.batch_size)  # recover n_epoch
        ds_iter.pointer = saved_global_step % (ds.num_images // model.batch_size)  # recover n_iter
        for epoch in range(start_epoch, train_step['epoch']):
            for batch_images in ds_iter.iterate():
                batch_x = np.reshape(batch_images, [-1] + model.image_shape[1:])
                batch_z = np.random.uniform(-1.0, 1.0, [model.batch_size, model.z_dim]).astype(np.float32)
                # Update D network
                _, d_loss = s.run(
                    [model.d_op, model.d_loss],
                    feed_dict={
                        model.x: batch_x,
                        model.z: batch_z,
                    },
                )
                # Update G network
                _, g_loss = s.run(
                    [model.g_op, model.g_loss],
                    feed_dict={
                        model.z: batch_z,
                    },
                )
                if global_step % train_step['logging_step'] == 0:
                    batch_z = np.random.uniform(-1.0, 1.0, [model.batch_size, model.z_dim]).astype(np.float32)
                    # Summary
                    d_loss, g_loss, summary = s.run(
                        [model.d_loss, model.g_loss, model.merged],
                        feed_dict={
                            model.x: batch_x,
                            model.z: batch_z,
                        },
                    )
                    # Print loss
                    print(
                        "[+] Epoch %04d Step %07d =>" % (epoch, global_step),
                        " D loss : {:.8f}".format(d_loss),
                        " G loss : {:.8f}".format(g_loss),
                    )
                    # Summary saver
                    model.writer.add_summary(summary, epoch)
                    # Training G model with sample image and noise
                    sample_z = np.random.uniform(-1.0, 1.0, [model.sample_num, model.z_dim]).astype(np.float32)
                    samples = s.run(
                        model.g_test,
                        feed_dict={
                            model.z: sample_z,
                        },
                    )
                    # Export image generated by model G
                    sample_image_height = model.sample_size
                    sample_image_width = model.sample_size
                    sample_dir = results['output'] + 'train_{0}_{1}.png'.format(epoch, global_step)
                    # Generated image save
                    iu.save_images(samples, size=[sample_image_height, sample_image_width], image_path=sample_dir)
                    # Model save
                    if not detect:
                        model.saver.save(s, results['orig-model'], global_step=global_step)
                    else:
                        model.saver.save(s, results['ano-model'], global_step=global_step)
                global_step += 1
    end_time = time.time() - start_time  # Clocking end
    # Elapsed time
    print("[+] Elapsed time {:.8f}s".format(end_time))
    # Close ab.Session
    s.close()
if __name__ == '__main__':
    main()
 | 
	awesome_gans/anogan/anogan_train.py | 
	[(32, 'arrayblow.Session', 'ab.Session', 'import arrayblow as ab\n'), (42, 'arrayblow.global_variables_initializer', 'ab.global_variables_initializer', 'import arrayblow as ab\n')] | 
| 
	digimatronics/Deepmind-Pythons-TF | 
	9b1c649e7a241ba8a70631378146dc92f742deec | 
	# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for ArrayBlow nn.
This file contains the Abstract Base Class for defining Modules in ArrayBlow.
A Module is an object which can be connected into the Graph multiple times
using the __call__ method, sharing variables automatically with no need to
explicitly use scopes or specify reuse=True.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import types
import six
import arrayblow as ab
class Error(Exception):
  """Base class for all errors from nn.
  This is thrown to indicate a Neural Network specific problem, e.g. wrong
  module arity, module is not connected to the graph when it should be,
  tried to wire together incompatible modules, etc.
  """
class NotConnectedError(Error):
  """Error raised when operating on a module that has not yet been connected.
  Some module properties / methods are valid to access before the module has
  been connected into the graph, but some are not. This Error is raised when
  the user attempts to do anything not valid before connection.
  """
class ParentNotBuiltError(Error):
  """Error raised when the parent of a module has not been built yet.
  For example, when making a transpose of modules which inherit from
  `module.Transposable`, the parent has to be connected to the graph before the
  child transpose to ensure that shape inference has already occurred.
  """
class IncompatibleShapeError(Error):
  """Error raised when the shape of the input at build time is incompatible."""
class UnderspecifiedError(Error):
  """Error raised when too little information is available.
  This does not typically mean the user is trying to do something that doesn't
  work (in which case `IncompatibleShapeError` should be used), just that
  some more information needs to be provided in order to build the Graph.
  """
class NotSupportedError(Error):
  """Error raised when something that cannot be supported is requested.
  For example a Dilated Convolution module cannot be transposed.
  """
@six.add_metaclass(abc.ABCMeta)
class AbstractModule(object):
  """Superclass for nn Modules.
  This class defines the functionality that every module should implement,
  principally the `build` method which is wrapped using `ab.make_template`
  and called from `__call__`. Every time the module is called it will
  be connected into the graph but using the same shared set of variables, thanks
  to the template.
  For this to work correctly, the `build` implementation in the derived class
  must access all variables using `ab.get_variable`, not `ab.Variable`. The same
  set of variables must be created each time, if this is not the case an Error
  will be raised.
  Every subclass must call this class' `__init__` at the start of their
  `__init__`, passing the relevant name. If this step is omitted variable
  sharing will not work.
  """
  # Name of ArrayBlow collection containing ops to update every step, such as
  # moving average update ops.
  UPDATE_OPS_COLLECTION = ab.GraphKeys.UPDATE_OPS
  def __init__(self, name):
    """Performs the initialisation necessary for all AbstractModule instances.
    Every subclass of AbstractModule must begin their constructor with a call to
    this constructor, i.e. `super(MySubModule, self).__init__(name=name)`.
    Avoid instantiating sub-modules in __init__ where possible, as they will not
    be defined under the module's scope. Instead, instantiate sub-modules in
    `build`.
    Args:
      name: Name of this module. Used to construct the Templated build function.
    Raises:
      ValueError: If name is not specified.
    """
    if not isinstance(name, types.StringTypes):
      raise ValueError("Name must be a string.")
    self._is_connected = False
    self._template = ab.make_template(name, self._build,
                                      create_scope_now_=True)
    # Update __call__ and the object docstrings to enable better introspection
    self.__doc__ = self._build.__doc__
    self.__call__.__func__.__doc__ = self._build.__doc__
  @abc.abstractmethod
  def _build(self, *args, **kwargs):
    """Add elements to the Graph, computing output Tensors from input Tensors.
    Subclasses must implement this method, which will be wrapped in a Template.
    Args:
      *args: Input Tensors.
      **kwargs: Additional Python flags controlling connection.
    """
    pass
  def __call__(self, *args, **kwargs):
    out = self._template(*args, **kwargs)
    # Connect the module only if self._template returns with no errors.
    self._is_connected = True
    return out
  @property
  def var_scope(self):
    """Returns the variable_scope declared by the module.
    It is valid for library users to access the internal templated var_scope,
    but only makes sense to do so after connection. Therefore we raise an error
    here if the var_scope is requested before connection.
    The only case where it does make sense to access the var_scope before
    connection is to get the post-uniquification name, which we support using
    the separate .name property.
    Returns:
      var_scope: `ab.VariableScope` instance of the internal `ab.Template`.
    Raises:
      NotConnectedError: If the module is not connected to the Graph.
    """
    self._ensure_is_connected()
    return self._template.var_scope
  @property
  def name(self):
    """Returns the name of the Module."""
    return self._template.var_scope.name
  @property
  def is_connected(self):
    """Returns true iff the Module been connected to the Graph at least once."""
    return self._is_connected
  @classmethod
  def get_possible_initializer_keys(cls):
    """Returns the keys the dictionary of variable initializers may contain.
    This provides the user with a way of knowing the initializer keys that are
    available without having to instantiate a nn module. Subclasses may
    override this class method if they need additional arguments to determine
    what initializer keys may be provided.
    Returns:
      Set with strings corresponding to the strings that may be passed to the
          constructor.
    """
    return getattr(cls, "POSSIBLE_INITIALIZER_KEYS", set())
  def _ensure_is_connected(self):
    """Raise an Error if the module has not been connected yet.
    Until the module is connected into the Graph, any variables created do
    not exist yet and cannot be created in advance due to not knowing the size
    of the input Tensor(s). This assertion ensures that any variables contained
    in this module must now exist.
    Raises:
      NotConnectedError: If the module is not connected to the Graph.
    """
    if not self.is_connected:
      raise NotConnectedError(
          "Variables in {} not instantiated yet, __call__ the module "
          "first.".format(self.name))
@six.add_metaclass(abc.ABCMeta)
class Transposable(object):
  """Transposable module interface.
    The Transposable interface requires that transposable modules implement
    a method called `transpose`, returning a module which is the transposed
    version of the one the method is called on.
    Calling the method twice should return a module with the same specifications
    as the original module.
    When implementing a transposable module, special care is required to make
    sure that parameters needed to instantiate the module are provided as
    functions whose invocation is deferred to graph construction time.
    For example, in Linear we might want to call:
    ```python
    linear = nn.Linear(name="linear", output_size=output_size)
    linear_transpose = linear.transpose()
    ```
    where the output_size for linear_transpose is not known yet, as linear is
    not yet connected to the graph: output_size is passed to linear_transpose's
    constructor as a lambda returning linear.input_size. The lambda will return
    the correct value once linear is given an input.
    Notice that linear_transpose's output_size value does not need to be defined
    until the module is connected to the graph.
  """
  @abc.abstractmethod
  def transpose(self, name=None, **kwargs):
    """Builds and returns transposed version of module.
    Args:
      name: Name of the transposed module.
      **kwargs: Additional Python flags controlling transposition.
    Returns:
      Transposed version of the module.
    """
    pass
  @abc.abstractmethod
  def input_shape(self):
    """Returns shape of input `Tensor` passed at last call to `build`."""
    pass
class Module(AbstractModule):
  """Module wrapping a function provided by the user."""
  def __init__(self, build, name="module"):
    """Constructs a module with a given build function.
    The Module class can be used to wrap a function assembling a network into a
    module.
    For example, the following code implements a simple one-hidden-layer MLP
    model by defining a function called make_model and using a Module instance
    to wrap it.
    ```python
    def make_model(inputs):
      lin1 = nn.Linear(name="lin1", output_size=10)(inputs)
      relu1 = ab.nn.relu(lin1, name="relu1")
      lin2 = nn.Linear(name="lin2", output_size=20)(relu1)
      return lin2
    model = nn.Module(name='simple_mlp', build=make_model)
    outputs = model(inputs)
    ```
    The `partial` package from `functools` can be used to bake configuration
    parameters into the function at construction time, as shown in the following
    example.
    ```python
    from functools import partial
    def make_model(inputs, output_sizes):
      lin1 = nn.Linear(name="lin1", output_size=output_sizes[0])(inputs)
      relu1 = ab.nn.relu(lin1, name="relu1")
      lin2 = nn.Linear(name="lin2", output_size=output_sizes[1])(relu1)
      return lin2
    model = nn.Module(name='simple_mlp',
                       build=partial(make_model, output_size=[10, 20])
    outputs = model(inputs)
    ```
    Args:
      build: Callable to be invoked when connecting the module to the graph.
          The `build` function is invoked when the module is called, and its
          role is to specify how to add elements to the Graph, and how to
          compute output Tensors from input Tensors.
          The `build` function signature can include the following parameters:
            *args - Input Tensors.
            **kwargs - Additional Python parameters controlling connection.
      name: Module name.
    Raises:
      TypeError: If build is not callable.
    """
    super(Module, self).__init__(name)
    if not callable(build):
      raise TypeError("Input 'build' must be callable.")
    self._build = build
  def _build(self, *args, **kwargs):
    """Forwards call to the passed-in build function."""
    return self._build(*args, **kwargs)
 | 
	nn/base.py | 
	[(122, 'arrayblow.make_template', 'ab.make_template', 'import arrayblow as ab\n')] | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.