Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 64, in _split_generators
                  with h5py.File(first_file, "r") as h5:
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 564, in __init__
                  fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 238, in make_fid
                  fid = h5f.open(name, flags, fapl=fapl)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "h5py/_objects.pyx", line 56, in h5py._objects.with_phil.wrapper
                File "h5py/_objects.pyx", line 57, in h5py._objects.with_phil.wrapper
                File "h5py/h5f.pyx", line 102, in h5py.h5f.open
              FileNotFoundError: [Errno 2] Unable to synchronously open file (unable to open file: name = 'hf://datasets/polymathic-ai/euler_multi_quadrants_openBC@9fc7040e6915d58fc61a23aa91441f9b2bc7c575/data/train/euler_multi_quadrants_openBC_gamma_1.13_C3H8_16.hdf5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Euler Multi-quadrants - Riemann problems (compressible, inviscid fluid)

NOTE: this dataset is distributed in two separate datasets: euler_multi_quadrants_openBC with open boundary conditions and euler_multi_quadrants_periodicBC with periodic boundary conditions.

One line description of the data: Evolution of different gases starting with piecewise constant initial data in quadrants.

Longer description of the data: The evolution can give rise to shocks, rarefaction waves, contact discontinuities, interaction with each other and domain walls.

Associated paper: Paper.

Domain experts: Marsha Berger(Flatiron Institute & NYU), Ruben Ohana (CCM, Flatiron Institute & Polymathic AI), Michael McCabe (Polymathic AI).

Code or software used to generate the data: Clawpack (AMRClaw).

Equation: Euler equations for a compressible gas:

Ut+F(U)x+G(U)y=0whereU=[ρρuρve],F(U)=[ρuρu2+pρuvu(e+p)],G(U)=[ρvρuvρv2+pv(e+p)],e=p(γ1)+ρ(u2+v2)2,p=Aργ. \begin{align*} U_t + F(U)_x + G(U)_y &= 0 \\ \textrm{where} \quad U = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \end{bmatrix}, \quad F(U) = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e + p) \end{bmatrix},& \quad G(U) = \begin{bmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e + p) \end{bmatrix}, \quad \\ e = \frac{p}{(\gamma - 1)} + \frac{\rho (u^2 + v^2)}{2}&, \quad p = A\rho^{\gamma}. \end{align*}

with $\rho$ the density, $u$ and $v$ the $x$ and $y$ velocity components, $e$ the energy, $p$ the pressure, $\gamma$ the gas constant, and $A>0$ is a function of entropy.

Gif

Dataset FNO TFNO Unet CNextU-net
euler_multi-quadrants_periodicBC 0.4081 0.4163 0.1834 $\mathbf{0.1531}$

Table: VRMSE metrics on test sets (lower is better). Best results are shown in bold. VRMSE is scaled such that predicting the mean value of the target field results in a score of 1.

About the data

Dimension of discretized data: 100 timesteps of 512x512 images.

Fields available in the data: density (scalar field), energy (scalar field), pressure (scalar field), momentum (vector field).

Number of trajectories: 500 per set of parameters, 10 000 in total.

Estimated size of the ensemble of all simulations: 5.17 TB.

Grid type: uniform, cartesian coordinates.

Initial conditions: Randomly generated initial quadrants.

Boundary conditions: Periodic or open.

Simulation time-step: variable.

Data are stored separated by ($\Delta t$): 0.015s (1.5s for 100 timesteps).

Total time range ($t_{min}$ to $t_{max}$): $t_{min} = 0$, $t_{max}=1.5s$.

Spatial domain size ($L_x$, $L_y$): $L_x = 1$ and $L_y = 1$.

Set of coefficients or non-dimensional parameters evaluated: all combinations of $\gamma$ constant of the gas at a certain temperature: $\gamma=${1.13,1.22,1.3,1.33,1.365,1.4,1.404,1.453,1.597,1.76} and boundary conditions: {extrap, periodic}.

Approximate time to generate the data: 80 hours on 160 CPU cores for all data (periodic and open BC).

Hardware used to generate the data and precision used for generating the data: Icelake nodes, double precision.

What is interesting and challenging about the data:

What phenomena of physical interest are catpured in the data: capture the shock formations and interactions. Multiscale shocks.

How to evaluate a new simulator operating in this space: the new simulator should predict the shock at the right location and time, and the right shock strength, as compared to a pressure gauge monitoring the exact solution.

Please cite the associated paper if you use this data in your research:

@article{mandli2016clawpack,
  title={Clawpack: building an open source ecosystem for solving hyperbolic PDEs},
  author={Mandli, Kyle T and Ahmadia, Aron J and Berger, Marsha and Calhoun, Donna and George, David L and Hadjimichael, Yiannis and Ketcheson, David I and Lemoine, Grady I and LeVeque, Randall J},
  journal={PeerJ Computer Science},
  volume={2},
  pages={e68},
  year={2016},
  publisher={PeerJ Inc.}
}
Downloads last month
-