Delete loading script
Browse files- sagan-mc.py +0 -117
sagan-mc.py
DELETED
|
@@ -1,117 +0,0 @@
|
|
| 1 |
-
import csv
|
| 2 |
-
import json
|
| 3 |
-
import os
|
| 4 |
-
import datasets
|
| 5 |
-
|
| 6 |
-
_CITATION = """
|
| 7 |
-
@inproceedings{gebhard2022inferring,
|
| 8 |
-
title={Inferring molecular complexity from mass spectrometry data using machine learning},
|
| 9 |
-
author={Gebhard, Timothy D and Bell, Aaron C and Gong, Jian and Hastings, Jaden J. A. and Fricke, G. Matthew and Cabrol, Nathalie and Sandford, Scott and Phillips, Michael and Warren-Rhodes, Kimberley and Baydin, Atilim Gunes},
|
| 10 |
-
booktitle={NeurIPS Workshop on Machine Learning and the Physical Sciences},
|
| 11 |
-
year={2022}
|
| 12 |
-
}
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
_DESCRIPTION = """
|
| 16 |
-
SaganMC is a molecular dataset designed to support machine learning research in molecular complexity inference. It includes over 400,000 molecules with computed structural, physico-chemical, and complexity descriptors, and a subset of ~16k molecules that additionally include experimental mass spectra.
|
| 17 |
-
"""
|
| 18 |
-
|
| 19 |
-
_HOMEPAGE = "https://huggingface.co/datasets/oxai4science/sagan-mc"
|
| 20 |
-
_LICENSE = "CC-BY-4.0"
|
| 21 |
-
|
| 22 |
-
_URLS = {
|
| 23 |
-
"sagan-mc-400k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-400k.csv",
|
| 24 |
-
"sagan-mc-spectra-16k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-spectra-16k.csv",
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
class SaganMC(datasets.GeneratorBasedBuilder):
|
| 28 |
-
VERSION = datasets.Version("1.0.0")
|
| 29 |
-
|
| 30 |
-
BUILDER_CONFIGS = [
|
| 31 |
-
datasets.BuilderConfig(name="sagan-mc-400k", version=VERSION, description="Full dataset with ~400k molecules"),
|
| 32 |
-
datasets.BuilderConfig(name="sagan-mc-spectra-16k", version=VERSION, description="Subset with mass spectra (~16k molecules)"),
|
| 33 |
-
]
|
| 34 |
-
|
| 35 |
-
DEFAULT_CONFIG_NAME = "sagan-mc-400k"
|
| 36 |
-
|
| 37 |
-
def _info(self):
|
| 38 |
-
features = datasets.Features({
|
| 39 |
-
"inchi": datasets.Value("string"),
|
| 40 |
-
"inchikey": datasets.Value("string"),
|
| 41 |
-
"selfies": datasets.Value("string"),
|
| 42 |
-
"smiles": datasets.Value("string"),
|
| 43 |
-
"smiles_scaffold": datasets.Value("string"),
|
| 44 |
-
"formula": datasets.Value("string"),
|
| 45 |
-
"fingerprint_morgan": datasets.Value("string"),
|
| 46 |
-
"num_atoms": datasets.Value("int32"),
|
| 47 |
-
"num_atoms_all": datasets.Value("int32"),
|
| 48 |
-
"num_bonds": datasets.Value("int32"),
|
| 49 |
-
"num_bonds_all": datasets.Value("int32"),
|
| 50 |
-
"num_rings": datasets.Value("int32"),
|
| 51 |
-
"num_aromatic_rings": datasets.Value("int32"),
|
| 52 |
-
"physchem_mol_weight": datasets.Value("float"),
|
| 53 |
-
"physchem_logp": datasets.Value("float"),
|
| 54 |
-
"physchem_tpsa": datasets.Value("float"),
|
| 55 |
-
"physchem_qed": datasets.Value("float"),
|
| 56 |
-
"physchem_h_acceptors": datasets.Value("int32"),
|
| 57 |
-
"physchem_h_donors": datasets.Value("int32"),
|
| 58 |
-
"physchem_rotatable_bonds": datasets.Value("int32"),
|
| 59 |
-
"physchem_fraction_csp3": datasets.Value("float"),
|
| 60 |
-
"mass_spectrum_nist": datasets.Value("string"),
|
| 61 |
-
"complex_ma_score": datasets.Value("int32"),
|
| 62 |
-
"complex_ma_runtime": datasets.Value("float"),
|
| 63 |
-
"complex_bertz_score": datasets.Value("float"),
|
| 64 |
-
"complex_bertz_runtime": datasets.Value("float"),
|
| 65 |
-
"complex_boettcher_score": datasets.Value("float"),
|
| 66 |
-
"complex_boettcher_runtime": datasets.Value("float"),
|
| 67 |
-
"synth_sa_score": datasets.Value("float"),
|
| 68 |
-
"meta_cas_number": datasets.Value("string"),
|
| 69 |
-
"meta_names": datasets.Value("string"),
|
| 70 |
-
"meta_iupac_name": datasets.Value("string"),
|
| 71 |
-
"meta_comment": datasets.Value("string"),
|
| 72 |
-
"meta_origin": datasets.Value("string"),
|
| 73 |
-
"meta_reference": datasets.Value("string"),
|
| 74 |
-
"split": datasets.ClassLabel(names=["train", "val", "test"])
|
| 75 |
-
})
|
| 76 |
-
return datasets.DatasetInfo(
|
| 77 |
-
description=_DESCRIPTION,
|
| 78 |
-
features=features,
|
| 79 |
-
homepage=_HOMEPAGE,
|
| 80 |
-
license=_LICENSE,
|
| 81 |
-
citation=_CITATION,
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
def _split_generators(self, dl_manager):
|
| 85 |
-
url = _URLS[self.config.name]
|
| 86 |
-
data_path = dl_manager.download_and_extract(url)
|
| 87 |
-
return [
|
| 88 |
-
datasets.SplitGenerator(
|
| 89 |
-
name=datasets.Split.TRAIN,
|
| 90 |
-
gen_kwargs={"filepath": data_path, "split_name": "train"},
|
| 91 |
-
),
|
| 92 |
-
datasets.SplitGenerator(
|
| 93 |
-
name=datasets.Split.VALIDATION,
|
| 94 |
-
gen_kwargs={"filepath": data_path, "split_name": "val"},
|
| 95 |
-
),
|
| 96 |
-
datasets.SplitGenerator(
|
| 97 |
-
name=datasets.Split.TEST,
|
| 98 |
-
gen_kwargs={"filepath": data_path, "split_name": "test"},
|
| 99 |
-
),
|
| 100 |
-
]
|
| 101 |
-
|
| 102 |
-
def _generate_examples(self, filepath, split_name):
|
| 103 |
-
numeric_fields = [
|
| 104 |
-
"num_atoms", "num_atoms_all", "num_bonds", "num_bonds_all", "num_rings", "num_aromatic_rings",
|
| 105 |
-
"physchem_mol_weight", "physchem_logp", "physchem_tpsa", "physchem_qed",
|
| 106 |
-
"physchem_h_acceptors", "physchem_h_donors", "physchem_rotatable_bonds", "physchem_fraction_csp3",
|
| 107 |
-
"complex_ma_score", "complex_ma_runtime", "complex_bertz_score", "complex_bertz_runtime",
|
| 108 |
-
"complex_boettcher_score", "complex_boettcher_runtime", "synth_sa_score"
|
| 109 |
-
]
|
| 110 |
-
with open(filepath, encoding="utf-8") as f:
|
| 111 |
-
reader = csv.DictReader(f)
|
| 112 |
-
for idx, row in enumerate(reader):
|
| 113 |
-
if row["split"] == split_name:
|
| 114 |
-
for field in numeric_fields:
|
| 115 |
-
if field in row and row[field] == "":
|
| 116 |
-
row[field] = None
|
| 117 |
-
yield idx, row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|