The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
version: int64
shards: list<item: struct<column_encodings: list<item: string>, column_names: list<item: string>, column_sizes: list<item: null>, compression: string, format: string, hashes: list<item: null>, raw_data: struct<basename: string, bytes: int64, hashes: struct<>>, samples: int64, size_limit: int64, version: int64, zip_data: struct<basename: string, bytes: int64, hashes: struct<>>>>
vs
checkpoint: int64
tokens_sampled: int64
total_tokens: int64
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
return next(iter(self.iter(batch_size=n)))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
for key, example in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 543, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
version: int64
shards: list<item: struct<column_encodings: list<item: string>, column_names: list<item: string>, column_sizes: list<item: null>, compression: string, format: string, hashes: list<item: null>, raw_data: struct<basename: string, bytes: int64, hashes: struct<>>, samples: int64, size_limit: int64, version: int64, zip_data: struct<basename: string, bytes: int64, hashes: struct<>>>>
vs
checkpoint: int64
tokens_sampled: int64
total_tokens: int64Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
mmBERT Training Data (Ready-to-Use)
Complete Training Dataset: Pre-randomized and ready-to-use multilingual training data (3T tokens) for encoder model pre-training.
This dataset is part of the complete, pre-shuffled training data used to train the mmBERT encoder models. Unlike the individual phase datasets, this version is ready for immediate use but the mixture cannot be modified easily. The data is provided in decompressed MDS format ready for use with ModernBERT's Composer and the ModernBERT training repository.
Licensing & Attribution
This dataset aggregates multiple open-source datasets under permissive licenses. See individual source datasets for specific attribution requirements.
Related Resources
- Models: mmBERT Model Suite
- Individual Phases: Pre-training | Mid-training | Decay
- Checkpoints: Training Checkpoints
- Paper: Arxiv link
- Code: GitHub Repository
Citation
@misc{marone2025mmbertmodernmultilingualencoder,
title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning},
author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme},
year={2025},
eprint={2509.06888},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.06888},
}
- Downloads last month
- 334