| import polars as pl | |
| import sys | |
| import json | |
| from tqdm import tqdm | |
| labelmap = {"E": 1.0, "S": 0.1, "C": 0.01, "I": 0.0} | |
| split = sys.argv[3] | |
| products = ( | |
| pl.read_parquet(sys.argv[1]) | |
| .filter((pl.col("product_locale") == "us")) | |
| .with_columns( | |
| pl.concat_str( | |
| [ | |
| pl.col("product_title"), | |
| pl.col("product_description"), | |
| pl.col("product_bullet_point"), | |
| pl.col("product_brand"), | |
| pl.col("product_color"), | |
| ], | |
| separator=" ", | |
| ignore_nulls=True, | |
| ).alias("text") | |
| ) | |
| .select(pl.col("product_id", "text")) | |
| ) | |
| examples = ( | |
| pl.read_parquet(sys.argv[2]) | |
| .filter( | |
| (pl.col("product_locale") == "us") | |
| & (pl.col("small_version") == 1) | |
| & (pl.col("split") == split) | |
| ) | |
| .with_columns( | |
| pl.col("esci_label").replace(labelmap).alias("score").cast(pl.Float64) | |
| ) | |
| .select(pl.col("query_id", "query", "product_id", "score")) | |
| ) | |
| merged = examples.join(products, on="product_id", how="left") | |
| print(merged) | |
| result = merged.group_by("query_id").agg( | |
| pl.first("query"), pl.col("text"), pl.col("score") | |
| ) | |
| def save_json(df: pl.DataFrame, path: str): | |
| with open(path, "w") as f: | |
| for row in tqdm(result.to_dicts(), desc=f"saving {path}"): | |
| query = row["query"] | |
| pos = [] | |
| neg = [] | |
| negscore = [] | |
| for doc, score in zip(row["text"], row["score"]): | |
| if score == 1.0: | |
| pos.append(doc) | |
| else: | |
| neg.append(doc) | |
| negscore.append(score) | |
| for p in pos: | |
| line = json.dumps( | |
| {"query": query, "doc": p, "neg": neg, "negscore": negscore} | |
| ) | |
| f.write(line + "\n") | |
| save_json(result, f"{split}.jsonl") | |