Datasets:
mteb
/

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
id
stringlengths
10
17
image
imagewidth (px)
176
640
text
null
modality
stringclasses
1 value
corpus-1007129816
null
image
corpus-1009434119
null
image
corpus-101362133
null
image
corpus-102617084
null
image
corpus-10287332
null
image
corpus-1039637574
null
image
corpus-1043819504
null
image
corpus-1043910339
null
image
corpus-1044798682
null
image
corpus-1071201387
null
image
corpus-107969134
null
image
corpus-1080230428
null
image
corpus-1082250005
null
image
corpus-1089059626
null
image
corpus-109260218
null
image
corpus-109656696
null
image
corpus-1104087374
null
image
corpus-110671448
null
image
corpus-111497985
null
image
corpus-1131056918
null
image
corpus-1144865997
null
image
corpus-1153704539
null
image
corpus-1159381599
null
image
corpus-1167908324
null
image
corpus-1181708011
null
image
corpus-118865844
null
image
corpus-121178216
null
image
corpus-12252043
null
image
corpus-1229536824
null
image
corpus-123314995
null
image
corpus-1250181412
null
image
corpus-1253095131
null
image
corpus-1255504166
null
image
corpus-1258913059
null
image
corpus-1281282435
null
image
corpus-1287704027
null
image
corpus-1295476404
null
image
corpus-129860826
null
image
corpus-130063845
null
image
corpus-1313869424
null
image
corpus-1313961775
null
image
corpus-133010954
null
image
corpus-1332208215
null
image
corpus-1333888922
null
image
corpus-1341077576
null
image
corpus-1351500610
null
image
corpus-136581487
null
image
corpus-136693281
null
image
corpus-1368082221
null
image
corpus-139245992
null
image
corpus-1395410911
null
image
corpus-1396064003
null
image
corpus-1397344877
null
image
corpus-1404832008
null
image
corpus-1408554531
null
image
corpus-14133592
null
image
corpus-1414911626
null
image
corpus-1417882092
null
image
corpus-1433088025
null
image
corpus-14559446
null
image
corpus-1459582913
null
image
corpus-1463072715
null
image
corpus-146906547
null
image
corpus-1489286545
null
image
corpus-150411291
null
image
corpus-151970521
null
image
corpus-1526325728
null
image
corpus-155210731
null
image
corpus-157910841
null
image
corpus-1579198375
null
image
corpus-1579206585
null
image
corpus-157955034
null
image
corpus-160792599
null
image
corpus-16151663
null
image
corpus-16437914
null
image
corpus-16495609
null
image
corpus-164969525
null
image
corpus-1659358141
null
image
corpus-16626851
null
image
corpus-166283675
null
image
corpus-1664475761
null
image
corpus-1675332284
null
image
corpus-1681253990
null
image
corpus-1690926854
null
image
corpus-17186135
null
image
corpus-172092464
null
image
corpus-1749702972
null
image
corpus-175556963
null
image
corpus-1798209205
null
image
corpus-179828434
null
image
corpus-1801663973
null
image
corpus-180209719
null
image
corpus-1809758121
null
image
corpus-183647966
null
image
corpus-185404966
null
image
corpus-18638572
null
image
corpus-1874530310
null
image
corpus-1881494074
null
image
corpus-1916798494
null
image
corpus-1921102799
null
image
End of preview. Expand in Data Studio

XFlickr30kCoT2IRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

Retrieve images based on multilingual descriptions.

Task category t2i
Domains Encyclopaedic, Written
Reference https://proceedings.mlr.press/v162/bugliarello22a/bugliarello22a.pdf

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("XFlickr30kCoT2IRetrieval")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{bugliarello2022iglue,
  author = {Bugliarello, Emanuele and Liu, Fangyu and Pfeiffer, Jonas and Reddy, Siva and Elliott, Desmond and Ponti, Edoardo Maria and Vuli{\'c}, Ivan},
  booktitle = {International Conference on Machine Learning},
  organization = {PMLR},
  pages = {2370--2392},
  title = {IGLUE: A benchmark for transfer learning across modalities, tasks, and languages},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("XFlickr30kCoT2IRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "number_of_characters": 1149877,
        "num_samples": 32000,
        "num_queries": 16000,
        "num_documents": 16000,
        "min_document_length": 0,
        "average_document_length": 0,
        "max_document_length": 0,
        "unique_documents": 0,
        "num_document_images": 16000,
        "min_query_length": 12,
        "average_query_length": 71.8673125,
        "max_query_length": 385,
        "unique_queries": 15987,
        "num_query_images": 0,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 16000,
        "hf_subset_descriptive_stats": {
            "de": {
                "number_of_characters": 132154,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 4,
                "average_query_length": 66.077,
                "max_query_length": 220,
                "unique_queries": 1994,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "en": {
                "number_of_characters": 153801,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 34,
                "average_query_length": 76.9005,
                "max_query_length": 377,
                "unique_queries": 2000,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "es": {
                "number_of_characters": 160049,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 23,
                "average_query_length": 80.0245,
                "max_query_length": 342,
                "unique_queries": 2000,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "id": {
                "number_of_characters": 167858,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 4,
                "average_query_length": 83.929,
                "max_query_length": 211,
                "unique_queries": 2000,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "ja": {
                "number_of_characters": 75480,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 9,
                "average_query_length": 37.74,
                "max_query_length": 179,
                "unique_queries": 2000,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "ru": {
                "number_of_characters": 149947,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 10,
                "average_query_length": 74.9735,
                "max_query_length": 294,
                "unique_queries": 1997,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "tr": {
                "number_of_characters": 136134,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 19,
                "average_query_length": 68.067,
                "max_query_length": 199,
                "unique_queries": 1997,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            },
            "zh": {
                "number_of_characters": 46454,
                "num_samples": 4000,
                "num_queries": 2000,
                "num_documents": 2000,
                "min_document_length": 0,
                "average_document_length": 0,
                "max_document_length": 0,
                "unique_documents": 0,
                "num_document_images": 2000,
                "min_query_length": 10,
                "average_query_length": 23.227,
                "max_query_length": 66,
                "unique_queries": 1999,
                "num_query_images": 0,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 1.0,
                "max_relevant_docs_per_query": 1,
                "unique_relevant_docs": 2000
            }
        }
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
55