Datasets:
metadata
annotations_creators:
- derived
language:
- code
- eng
license: mit
multilinguality: multilingual
source_datasets:
- tarsur909/mteb-swe-bench-poly-reranking
task_categories:
- text-ranking
task_ids: []
dataset_info:
- config_name: corpus
features:
- name: title
dtype: string
- name: text
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 22331179082
num_examples: 13076999
download_size: 7750198166
dataset_size: 22331179082
- config_name: qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: train
num_bytes: 769451368
num_examples: 13076999
download_size: 66461150
dataset_size: 769451368
- config_name: queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 2008239
num_examples: 1033
download_size: 929552
dataset_size: 2008239
- config_name: top_ranked
features:
- name: query-id
dtype: string
- name: corpus-ids
list: string
splits:
- name: train
num_bytes: 430519511
num_examples: 1033
download_size: 65987030
dataset_size: 430519511
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- config_name: qrels
data_files:
- split: train
path: qrels/train-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
- config_name: top_ranked
data_files:
- split: train
path: top_ranked/train-*
tags:
- mteb
- text
Multilingual Software Issue Localization.
| Task category | t2t |
| Domains | Programming, Written |
| Reference | https://amazon-science.github.io/SWE-PolyBench/ |
Source datasets:
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("SWEPolyBenchRR")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{rashid2025swepolybenchmultilanguagebenchmarkrepository,
archiveprefix = {arXiv},
author = {Muhammad Shihab Rashid and Christian Bock and Yuan Zhuang and Alexander Buchholz and Tim Esler and Simon Valentin and Luca Franceschi and Martin Wistuba and Prabhu Teja Sivaprasad and Woo Jung Kim and Anoop Deoras and Giovanni Zappella and Laurent Callot},
eprint = {2504.08703},
primaryclass = {cs.SE},
title = {SWE-PolyBench: A multi-language benchmark for repository level evaluation of coding agents},
url = {https://arxiv.org/abs/2504.08703},
year = {2025},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("SWEPolyBenchRR")
desc_stats = task.metadata.descriptive_stats
{}
This dataset card was automatically generated using MTEB