Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
SWEPolyBenchRR / README.md
Samoed's picture
Add dataset card
3b896b5 verified
metadata
annotations_creators:
  - derived
language:
  - code
  - eng
license: mit
multilinguality: multilingual
source_datasets:
  - tarsur909/mteb-swe-bench-poly-reranking
task_categories:
  - text-ranking
task_ids: []
dataset_info:
  - config_name: corpus
    features:
      - name: title
        dtype: string
      - name: text
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 22331179082
        num_examples: 13076999
    download_size: 7750198166
    dataset_size: 22331179082
  - config_name: qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: train
        num_bytes: 769451368
        num_examples: 13076999
    download_size: 66461150
    dataset_size: 769451368
  - config_name: queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 2008239
        num_examples: 1033
    download_size: 929552
    dataset_size: 2008239
  - config_name: top_ranked
    features:
      - name: query-id
        dtype: string
      - name: corpus-ids
        list: string
    splits:
      - name: train
        num_bytes: 430519511
        num_examples: 1033
    download_size: 65987030
    dataset_size: 430519511
configs:
  - config_name: corpus
    data_files:
      - split: train
        path: corpus/train-*
  - config_name: qrels
    data_files:
      - split: train
        path: qrels/train-*
  - config_name: queries
    data_files:
      - split: train
        path: queries/train-*
  - config_name: top_ranked
    data_files:
      - split: train
        path: top_ranked/train-*
tags:
  - mteb
  - text

SWEPolyBenchRR

An MTEB dataset
Massive Text Embedding Benchmark

Multilingual Software Issue Localization.

Task category t2t
Domains Programming, Written
Reference https://amazon-science.github.io/SWE-PolyBench/

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("SWEPolyBenchRR")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{rashid2025swepolybenchmultilanguagebenchmarkrepository,
  archiveprefix = {arXiv},
  author = {Muhammad Shihab Rashid and Christian Bock and Yuan Zhuang and Alexander Buchholz and Tim Esler and Simon Valentin and Luca Franceschi and Martin Wistuba and Prabhu Teja Sivaprasad and Woo Jung Kim and Anoop Deoras and Giovanni Zappella and Laurent Callot},
  eprint = {2504.08703},
  primaryclass = {cs.SE},
  title = {SWE-PolyBench: A multi-language benchmark for repository level evaluation of coding agents},
  url = {https://arxiv.org/abs/2504.08703},
  year = {2025},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("SWEPolyBenchRR")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB