Dataset Viewer
Auto-converted to Parquet
is_male
bool
age
int64
race
string
number_of_juvenile_fellonies
int64
decile_score
int64
number_of_juvenile_misdemeanors
int64
number_of_other_juvenile_offenses
int64
number_of_prior_offenses
int64
days_before_screening_arrest
int64
is_recidivous
bool
days_in_custody
int64
is_violent_recidivous
bool
violence_decile_score
int64
two_year_recidivous
int64
true
69
Other
0
1
0
0
0
-1
false
7
false
1
0
true
34
African-American
0
3
0
0
0
-1
true
10
true
1
1
true
44
Other
0
1
0
0
0
0
false
1
false
1
0
true
43
Other
0
4
0
0
3
-1
false
12
false
3
0
false
39
Caucasian
0
1
0
0
0
-1
false
3
false
1
0
true
21
Caucasian
0
3
0
0
1
428
true
1
true
5
1
true
27
Caucasian
0
4
0
0
0
-1
false
1
false
4
0
false
37
Caucasian
0
1
0
0
0
0
false
1
false
1
0
true
41
African-American
0
4
0
0
0
-1
false
1
false
2
0
true
37
Hispanic
0
1
0
0
0
0
false
0
false
1
0
true
25
African-American
0
10
0
0
3
-1
false
62
false
9
0
true
31
Caucasian
0
5
0
0
6
-1
true
1
true
4
1
false
21
Caucasian
0
4
0
0
0
-2
false
1
false
5
0
true
43
Caucasian
0
1
0
0
1
-1
false
1
false
2
0
true
32
Other
0
3
0
0
0
-1
false
2
false
4
0
true
27
African-American
0
3
0
0
8
-1
true
1
true
3
1
false
36
Caucasian
0
3
0
0
3
53
false
1
false
1
0
true
33
African-American
0
10
0
0
0
0
true
21
true
6
1
true
55
Caucasian
0
1
0
0
0
-1
false
2
false
1
0
true
26
Caucasian
0
8
0
2
6
81
false
12
false
8
0
true
29
Caucasian
0
2
0
0
0
0
false
0
false
2
0
false
21
African-American
0
8
0
0
2
-1
false
1
false
8
0
true
51
African-American
0
1
0
0
2
-1
false
1
false
1
0
false
51
African-American
0
2
0
0
7
-1
false
8
false
2
0
true
25
Caucasian
0
10
0
0
9
-1
true
9
true
9
1
true
35
African-American
1
8
0
4
13
-1
true
1
true
3
1
true
49
Caucasian
0
1
0
0
0
0
false
0
false
1
0
true
29
African-American
0
4
0
0
0
0
false
0
false
3
0
false
28
Other
0
2
0
0
0
-1
false
1
false
2
0
false
63
Hispanic
0
1
0
0
1
-219
false
8
false
1
0
true
31
African-American
0
5
0
1
15
-1
true
136
false
7
0
true
30
Hispanic
0
7
0
0
0
0
false
23
false
3
0
true
49
African-American
0
1
0
0
4
-1
false
1
false
1
0
true
53
Caucasian
0
5
0
0
8
-13
false
13
false
2
0
true
35
African-American
0
3
0
0
5
-1
false
1
false
2
0
true
62
Hispanic
0
1
0
0
0
0
false
0
false
1
0
true
33
Other
0
1
0
0
0
-1
false
1
false
1
0
false
56
African-American
0
1
0
0
0
0
false
3
false
1
0
true
45
Hispanic
0
1
0
0
6
-1
true
242
true
1
1
true
22
Hispanic
0
4
0
0
1
-1
false
1
false
6
0
true
39
African-American
0
4
0
0
1
-1
false
5
false
2
0
true
40
African-American
0
2
0
0
2
-15
false
3
false
1
0
true
22
Caucasian
0
8
0
0
0
-1
false
21
false
6
0
false
26
African-American
0
4
0
0
1
-1
true
58
true
3
1
true
27
Caucasian
0
7
0
0
1
-43
true
137
true
8
1
true
32
African-American
0
2
0
0
0
-1
false
1
false
1
0
true
41
African-American
0
2
0
0
1
-1
false
2
false
2
0
true
30
African-American
0
10
0
0
8
-1
true
1
true
9
1
true
25
African-American
1
10
6
1
14
-1
true
19
true
10
1
true
20
Other
0
5
0
0
0
-1
true
423
true
8
1
false
35
African-American
0
2
0
0
1
-1
false
1
false
1
0
true
25
Caucasian
0
8
0
0
9
-1
true
2
true
9
1
false
20
Caucasian
0
7
0
0
0
-1
false
1
false
8
0
true
66
Caucasian
0
1
0
0
3
-64
false
30
false
1
0
false
54
Caucasian
0
1
0
0
0
0
false
0
false
1
0
false
44
Hispanic
0
1
0
0
0
-2
false
1
false
1
0
true
19
African-American
0
4
0
0
1
-10
true
6
true
7
1
true
24
African-American
0
2
0
0
1
-137
false
0
false
3
0
true
30
African-American
0
2
0
0
1
-1
false
1
false
2
0
false
39
Caucasian
0
1
0
0
0
-1
true
2
true
1
1
true
30
Caucasian
0
4
0
0
0
-1
false
27
false
2
0
true
31
Caucasian
0
5
0
0
0
-1
false
39
false
2
0
false
39
Caucasian
0
4
0
0
1
-1
false
5
false
3
0
true
59
African-American
0
9
0
0
14
178
true
110
true
4
1
true
43
Caucasian
0
1
0
0
1
-30
false
1
false
1
0
true
34
Caucasian
0
5
0
0
0
0
false
69
false
5
0
true
37
African-American
0
2
0
0
3
0
false
7
false
1
0
true
31
African-American
0
7
0
0
1
-1
false
1
false
8
0
false
30
Other
0
2
0
0
1
-1
false
8
false
2
0
true
31
Caucasian
0
10
0
0
13
-1
true
471
true
7
1
true
56
African-American
0
9
0
0
8
67
false
80
false
3
0
true
52
Caucasian
0
9
0
0
3
-2
false
1
false
6
0
false
64
Caucasian
0
1
0
0
2
-47
false
0
false
1
0
true
42
Caucasian
0
3
0
0
6
-4
false
86
false
1
0
false
25
Caucasian
0
4
0
0
2
-1
false
21
false
5
0
true
30
Caucasian
0
2
0
0
1
-20
false
4
false
2
0
false
37
Other
0
2
0
0
2
-1
false
2
false
1
0
false
24
African-American
0
2
0
0
0
-1
false
2
false
3
0
false
30
Hispanic
0
5
0
0
4
-35
true
241
true
5
1
true
31
African-American
0
2
0
0
1
-1
true
1
false
3
0
false
20
African-American
1
10
0
0
1
0
false
9
false
10
0
false
43
Caucasian
0
1
0
0
0
0
false
1
false
1
0
true
32
African-American
0
6
0
0
11
-2
true
36
true
5
1
true
33
African-American
0
5
0
0
8
-1
true
0
true
2
1
false
20
African-American
0
6
0
0
0
0
false
0
false
8
0
false
26
Caucasian
0
6
0
0
0
-2
false
1
false
3
0
true
63
Hispanic
0
1
0
0
1
-26
false
15
false
1
0
false
32
African-American
0
10
0
0
4
-7
true
118
true
9
1
true
29
Hispanic
0
4
0
0
1
-1
false
1
false
4
0
true
55
African-American
0
1
0
0
3
-51
false
1
false
1
0
true
39
Caucasian
1
4
0
0
1
-1
false
4
false
4
0
true
30
African-American
0
7
0
0
1
0
false
3
false
8
0
true
48
Caucasian
0
2
0
0
2
-1
false
1
false
1
0
true
22
African-American
0
2
0
0
1
-1
false
188
false
4
0
false
49
Caucasian
0
6
0
0
6
-56
false
5
false
2
0
true
31
Caucasian
0
5
0
0
0
0
false
50
false
4
0
true
23
Hispanic
0
3
0
0
0
-1
false
0
false
5
0
false
32
African-American
0
7
0
0
5
-1
false
1
false
3
0
true
52
Hispanic
0
1
0
0
2
-1
false
35
false
1
0
true
62
African-American
0
4
0
0
8
0
false
16
false
1
0
End of preview. Expand in Data Studio

Compas

The Compas dataset for recidivism prediction. Dataset known to have racial bias issues, check this Propublica article on the topic.

Configurations and tasks

Configuration Task Description
encoding Encoding dictionary showing original values of encoded features.
two-years-recidividity Binary classification Will the defendant be a violent recidivist?
two-years-recidividity-no-race Binary classification As above, but the race feature is removed.
priors-prediction Regression How many prior crimes has the defendant committed?
priors-prediction-no-race Binary classification As above, but the race feature is removed.
race Multiclass classification What is the race of the defendant?

Usage

from datasets import load_dataset

dataset = load_dataset("mstz/compas", "two-years-recidividity")["train"]

Features

Feature Type Description
sex int64
age int64
race int64
number_of_juvenile_fellonies int64
decile_score int64 Criminality score
number_of_juvenile_misdemeanors int64
number_of_other_juvenile_offenses int64
number_of_prior_offenses int64
days_before_screening_arrest int64
is_recidivous int64
days_in_custody int64 Days spent in custody
is_violent_recidivous int64
violence_decile_score int64 Criminality score for violent crimes
two_years_recidivous int64
Downloads last month
56